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Abstract. The plane-based calibration consists in recovering the
internal parameters of the camera from the views of a planar pattern
with a known geometric structure. The existing direct algorithms use
a problem formulation based on the properties of basis vectors. They
minimize algebraic distances and may require a ‘good’ choice of system
normalization. Our contribution is to put this problem into a more
intuitive geometric framework. A solution can be obtained by inter-
secting circles, called Centre Circles, whose parameters are computed
from the world-to-image homographies. The Centre Circle is the camera
centre locus when planar figures are in perpective correspondence, in
accordance with a Poncelet’s theorem. An interesting aspect of our
formulation, using the Centre Circle constraint, is that we can easily
transform the cost function into a sum of squared Euclidean distances.
The simulations on synthetic data and an application with real images
confirm the strong points of our method.

Keywords. Calibration, Homography, Planar Scene, Multiple View Ge-
ometry, Poncelet.

1 Introduction

The metric information of the camera is partially encoded through a set of pa-
rameters, called internal parameters of the camera. The ‘plane-based calibration’
problem consists in recovering the internal parameters of the camera from n dif-
ferent views of a planar object lying on some reference plane Π, providing that
Euclidean information aboutΠ is available (e.g. coordinate system, angle, length
ratio, etc.). If no Euclidean structure of the plane is available, this problem then
refers to ‘autocalibration from planes’ [13][8]. Apart from the fact that, in many
man-made environments, planes are widely present and easily identifiable, an
important advantage of plane-based autocalibration [4, § 18.7, pp. 470-471] is
that it only requires to know the homography matrices induced by world planes,
whose estimations are much stable and accurate than those of inter-image trans-
formations arising from projections of 3D points, e.g. the fundamental matrix.
Once the internal parameters are recovered, the estimation of the relative pose
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between planes and cameras (i.e. the external parameters of the camera) can be
achieved [12].

The issue of plane-based calibration has been widely studied during the past
years [2][9][8][11][14]. Fundamentally, as for the problem formulation, one very
determining result has been to highlight some imaginary projective entities, in
particular the absolute conic [1, § 2.5.8, pp. 29-30], whose image encodes the
Euclidean information related to the camera. This enables to define a generic
framework for calibration based on the properties of basis vector in Π [13].
In particular, each world-to-image homography, induced by Π, yields two con-
straints, that basically represent the orthogonality and the equality of norms of
the imaged basis vectors, with respect to the imaged absolute conic. Using these
constraints, the plane-based calibration problem consists in estimating the pa-
rameter matrix of the imaged absolute conic [14][11][7][4]. Fortunately, the two
constraints can be linearized and the problem can therefore can be solved using
direct (i.e. non-iterative) least-squares techniques. As the relation between the
internal parameters of the camera and the elements of the parameter matrix of
the imaged absolute conic is one-to-one, one can estimate the former set of pa-
rameters by estimating the latter. These algorithms are easy to implement and
fast. They also proved to be efficient, providing that there are no critical camera
displacements [11]. However, in search of a ‘better’ estimation, one may criticize
the existing algorithms for minimizing algebraic error functions. It follows that it
is not straightforward to explicit what is actually minimized during the estima-
tion process. Moreover, in certain cases, a good choice of ‘system normalization’
can be required to obtain reliable results.

Our contribution is to put the plane-based calibration problem into a more
intuitive geometric framework, in accordance with a theorem of J.V. Poncelet.
In the middle of the XIXe century, Poncelet stated some geometric properties
deduced from two planar figures in perspective correspondence and, in particular,
about the positions of the centres of projection. We show that the solution of the
plane-based calibration problem can be obtained by intersecting circles (called
Centre Circles) whose parameters can be easily computed from the world-to-
image homographies. For one view, the Centre Circle is the locus of the camera
centre (i.e. the set of multiple solutions). To put it more precisely, the Centre
Circle equation can be represented by two equations, the former defining a plane
(called Centre Plane) and the latter a sphere (called Centre Sphere). We show
that these two equations and the two equations based on the properties of basis
vectors are equivalent. Nevertheless, we exhibit two interesting aspects of our
formulation. The first aspect is that we can easily transform (in most cases)
the algebraic error functions into a sum of squared Euclidean distances. The
second aspect is that the Centre Plane equation is irrespective of the focal length.
This latter property makes it possible for us to describe a two-step method for
calibrating a camera with varying focal length. At first, the constant parameters
are estimated, then the m different focal lengths are directly computed from
each ‘partially calibrated’ view. It is worthy of note that the complexity of our
algorithm is in O(m) while it was in O(m3) in the existing methods.
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Notations. A scalar is denoted by a non-bold letter X, u or ω. A vector is
denoted by a lowercase bold letter, e.g. x. A matrix is denoted by an uppercase
bold letter, e.g. M, or a Greek bold letter, e.g. ω. We use diag(d1, · · · , dn) for
denoting the diagonal (square) matrix of order n with the elements d1, · · · , dn

on the main diagonal. The column vectors of matrix M are denoted by mj and
its elements are denoted by Mij . We use the Matlab-like notation M(1:r,1:c) for
denoting the r × c submatrix of M selected by the row range 1 : r and the
column range 1 : c. The notation M(:,1:c) (resp. M(1:r,:)), selects the first c (resp.
r) columns (resp. rows) of M. A set of n objects, e.g. n matrices M, is denoted
by M(1),M(2) . . .M(n). Notation x ∼ y means that x is equal to y, up to a
scalar factor.

2 Outline of Existing Plane-Based Calibration Methods

2.1 Plane-Based Calibration Equations

The Euclidean world coordinates (X,Y, Z) of a point and its imaged pixel coor-
dinates (u, v) are related by the projection equation [u, v, 1]� ∼ P[X,Y, Z, 1]�.
The 3× 4 perspective projection matrix P can be decomposed as P = A[R | t],
where A is the calibration matrix and (R, t) describes the object with respect
to the camera coordinate system. The matrix A is the upper triangular matrix,
given in (1), that encodes the internal parameters of the camera: f is the focal
length (in pixels) with respect to the u-axis, τ is the aspect ratio parameter
(unit-less) and (u0, v0) are the pixel coordinates of the principal point. We as-
sume that the object is planar, lying on the world plane Π with equation Z = 0
with respect to the world coordinate system. Consequently, the world-to-image
homography matrix H, describing the restriction of P to Π, admits the following
decomposition

H = A
[
r1 r2 t

]
, where A =


f 0 u0
0 −τf v0
0 0 1


 . (1)

The vector ri denotes the ith column of the rotation matrix R. Considering r1, r2
as basis vectors inΠ, the properties r�

1 r2 = 0 and ‖r1‖2 = ‖r2‖2 transform under
P into

h�
1 ωh2 = 0, h�

1 ωh1 = h�
2 ωh2, (2)

where h1et h2 are the first two columns of H ; the matrix ω represents the image
of the absolute conic [1] such that

ω =


 τ2 0 −τ2u0

0 1 −v0
−τ2u0 −v0 τ2u20 + v20 + τ2f2


 ∼ A−�A−1. (3)

As for camera self-constraints, it is known [4] that the following equalities hold
ω12 = 0, ω11 = τ2ω22, (4)

u0ω11 = −ω13, v0ω22 = −ω23. (5)
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2.2 Linearization of the Plane-Based Calibration Equations

A. Constant internal parameters. A single world-to-image homography matrix H
yields 2 constraints (2) on the 5 elements of symmetric matrix ω. If we represent
these 5 unknowns by x ∼ [ω13, ω23, ω11, ω22, ω33]

�, then the constraints (2) can
be linearized as the 2 homogeneous equations

[
a | b ]�

x = 0, where

a = [ H11H32+H12H31, H22H31+H21H32, H11H12, H21H22, H31H32 ]�,
b = [ 2(H11H31−H12H32), 2(H21H31−H22H32), H2

11−H2
12, H2

21−H2
22, H2

31−H2
32 ]�.

(6)

By enforcing the additional constraint ‖x‖ = 1, at least 2 images are required
to obtain a solution.

B. Varying focal length. When the focal length f varies, its different values
can be considered as additional unknowns. Indeed, in (3), all the elements are
irrespective of f , except ω33. We distinguish between the different ω33 by us-
ing the notation ω

(j)
33 (1 ≤ j ≤ m), where m is the number of differ-

ent focal lengths. Accordingly, the (4 + m) unknowns can be represented by
x ∼ [ω13, ω23, ω11, ω22, ω

(1)
33 , . . . , ω

(m)
33 ]�. The matrix

[
a | b ]� is now a 2×(4+m)

matrix defined as:

a =
[
a1, a2, a3, a4,0�

j−1, a5,0
�
m−j

]�
, b =

[
b1, b2, b3, b4,0�

j−1, b5,0
�
m−j

]�
, (7)

where ai (resp. bi) is the ith element of a (resp. b) given in (6). By enforcing
‖x‖ = 1, at least 4 images are required to obtain a solution.

Algorithm. The procedure is as follows. Given n homography matrices:

1. Stack the 2n row vectors a�,b� as given in (6) or (7) into a matrix F.
2. Find

x̂ = WR argmin
x
(‖WLFWRx‖2), subject to ‖x‖ = 1,

given the adequate metric in terms of left-hand and right-hand weighting
matrices WL, WR.

3. Recover the internal parameters from (4) and (5).

Such a Total Least-Squares (TLS) solution [5] can be obtained by means of a
singular value decomposition (SVD) of the 2n×(4+m) matrix F, where m is the
number of the different focal lengths. The elements of F may differ in magnitude
in a very sizeable way. This may lead to a bad system conditioning that a right-
hand equilibration of F (e.g. a column scaling such as to have equal norms as
suggested in [11]) can highly improve. It is worthy of note that equilibrating may
be very determining, in particular with regard to the case 2.2.B.

This approach has been utilized by Z. Zhang [14], with regard to 2.2.A, and
P. Sturm & S. Maybank [11], with regard to 2.2.B. Although a geometric inter-
pretation of basic equations (2) is given in [14], within a projective framework,
it is not straightforward to explicit what is actually minimized. This is notably
owing to the fact that the homography matrices are only known up to a scale
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factor that varies with each image. This is why we claim that the cost functions
used in the algorithm described in 2.2 are based on algebraic distances. As a
general rule, it is known that algebraic error functions are not geometrically or
statistically meaningful and the obtained solutions may not be those expected
intuitively [4]. On the other hand, computing the solution may require a SVD
decomposition that can be extensive, regarding the algorithm complexity. As
shown in [2], the required amount of flops is in O(m3). With regard to real time-
like calibration, we assert that, providing that the estimator is consistent, i.e.
converges to the true value as n tends to infinity, the minimization algorithm
must exhibit a low complexity, i.e. in O(m).

3 A Centre Circle Approach to Plane-Based Calibration

The primary motivation of this paper is to seek a direct method that does not
reveal the disadvantages discussed in the previous section. In this section, we first
consider the transformation of the basic equations. Such a normalization step
turns out to be quite interesting because it enables us to connect the plane-base
calibration problem to a Poncelet’s theorem. This theorem is then discussed, as
for its importance in selecting a ‘good’ minimization criterion.

3.1 Transformation of the Basic Equations

The coordinates of points in plane Π are usually given with an origin arbitrarily
chosen. It can readily be seen that any homography of the form HS, where S
is a matrix representing a similarity of the projective plane, also satisfies the
basic constraints (2). The fact of post-multiplying H by S amounts to apply a
change of coordinates in plane Π. Consider the similarity matrix S =

[
ī j̄ k̄

]
,

whose columns are ī = 1
n [H31,−H32, 0]

�, j̄ = 1
n [H32, H31, 0]

� and k̄ = [0, 0, 1]�,
where n is a scale factor 1. The transformed homography matrix is given by

H̄ = HS =




1
n (H11H31 +H12H32) 1

n (H12H31 −H11H32) H13

1
n (H21H31 +H22H32) 1

n (H22H31 −H21H32) H23

n 0 H33


 . (8)

It is easy to see that (8) is equivalent to h̄ = Dh, where h̄ (resp. h) denotes
the 3 × 2 submatrix H̄(:,1:2) (resp. H(:,1:2)) as a single 6 × 1 vector obtained
by stacking the elements in order ‘row-first’ and D = diag(S̄�, S̄�, S̄�) is a
6× 6 matrix 2 ; S̄ denoting the 2× 2 submatrix S(1:2,1:2). As a result, H̄32 = 0
always holds, whatever the camera orientation. From a geometrical point of
view, this means that the vanishing point associated with one basis vector of Π
is always at infinity or, equivalently, that this basis vector is always parallel to
the intersection line of Π with the image plane.
1 We suggest n =

√
H2

31 + H2
32 (S is then a rotation matrix) although the only justi-

fication we can give in this paper for such a choice is empirical.
2 Notation-wise, diag(·) is here generalized to block matrices.
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Accordingly, substituting h̄ for h in (2), the basic equations are then lin-
earized as

[
ā | b̄ ]�

x = 0, where

ā� = [ H̄12H̄31, H̄22H̄31, H̄11H̄12, H̄21H̄22, 0 ],
b̄� = [ 2H̄11H̄31, 2H̄21H̄31, H̄

2
11 − H̄2

12, H̄
2
21 − H̄2

22, H̄
2
31 ].

(9)

This step can be seen as a first step of Gaussian elimination in system (2) but
there is a crucial difference if we are concerned with the error propagation when
mapping the elements of h̄ (resp. h) to ā and b̄ (resp. a and b). The algebraic
elimination of ω33, as we did previously in [2], yielded coefficients of degree 3 with
respect to the elements of h. Here, using the ‘compatible’ substitution h← h̄,
providing that the estimation of the homography matrix H̄ exactly satisfies the
constraint H̄32 = 0, there is no change in the degree of coefficients. This remark
seems important to us regarding the behavior of the minimization algorithm.

This step enables us to connect the plane-base calibration problem to the
following Poncelet’s theorem.

3.2 Poncelet’s Theorem

The geometric properties deduced from two planar figures in perspective corre-
spondence and, in particular, about the positions of the centres of projection,
are known for a long time, notably thanks to the works of J.V. Poncelet in the
middle of the XIXe century. Within the computer vision community, it is well-
known that the pose problem, from a single uncalibrated view of a planar figure,
has an infinite number of solutions. Yet, the following Poncelet’s theorem3 [10]
tells us that this indetermination has an interesting geometrical interpretation.

Theorem 1. When a planar figure is the central projection of another planar
figure, these figures remain in perspective correspondence when one rotates the
plane of the first around its intersection with the plane of the second ; the centre
of projection then lies on a circle, in a plane perpendicular to this intersection.
As a result, if one projects this circle orthogonally onto the image plane, one
obtains a line segment that is the locus of the principal point.

The Centre Circle and Centre Line. Poncelet’s theorem Th. 1 is best
explained by referring to Fig. 1. Basically it is said that, given the image of
a planar figure, there exists an infinity of ‘feasible’ world planes on which the
planar figure might lie, associated with an infinity of centres of projection. The
set of world planes is a pencil whose axis is the intersection line between the
image plane and the ‘true’ world plane. The locus of centres of projection is a
circle, called Centre Circle, perpendicular to this intersection. The orthogonal
projection of the Centre Circle onto the image plane is a line segment, called
Centre Line. As the Centre Circle is the camera centre locus in space, the Centre
Line is the principal point locus in the image plane.
3 We take the liberty to slightly paraphrase the original theorem.
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image plane

world planes

Centre Line

Centre Circle

centres of projection

intersection line

Fig. 1. Illustration of the Poncelet’s theorem given as Th. 1.

Poncelet demonstrated Th. 1 in a purely geometrical way. We demonstrated
it analytically but, due to space limitation, we only give the proof to the following
property ; it will give the reader an idea how to proceed.

The Centre Plane. Denote by LΠ the intersection line between the image
plane and a world plane Π. Let us call Centre Plane of a camera the plane P,
passing through the camera centre, whose normal vector is parallel to the line
LΠ (i.e. the Centre Plane contains the Centre Circle).

Property 1 (Centre Plane). If two cameras, with calibration matrices A and A′

satisfying τ = τ ′, yield exactly the same image of a planar figure, then the centre
of the second camera necessarily lies in the Centre Plane P of the first.

Proof. Let (R, t) represent the position and orientation of the second camera
with respect to the first. It suffices to show that R is a rotation whose axis
is perpendicular to P and the translation vector t is parallel to P. If two im-
ages are identical, then the inter-image homography matrix HΠ induced by Π
is the identity transformation, up to a scale factor λ �= 0. Let (n, d) be the
representation of world plane Π with respect to the first camera. Suppose that
n21 + n22 > 0 which means that Π is not parallel to the image plane. From the
usual decomposition of HΠ [1, § 7.5, p.290], we get

λA′−1A− (R+
1
d
tn�) = 0. (10)

It may be seen that r = [n2,−n1, 0]� is a vector normal to P, i.e. parallel to the
line LΠ , intersecting the first image plane andΠ. Also, it is easy to verify that the
equality A′−1Ar = µr holds, providing that τ = τ ′, where µ = f

f ′ �= 0. By right-
multiplying both sides of equation (10) by r, we get the equality (R−λµI)r = 0.
From this, we infer that λµ = 1 since the unique real eigenvalue of a rotation
matrix is 1. axis is perpendicular to P. Now, left-multiply both sides of equation
(10) by r�, then the first two equalities of the resulting equation yield n1r�t = 0
and n2r�t = 0. Since n1, n2 can not be both zero, it follows that r�t = 0, which
means that t is parallel to P.
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u0=559

u0=559

v0=247

v0=247

f=1572

Π

Π

u0=457

u0=457

v0=825

v0=825

f=1343

Fig. 2. From one single image with squared pixels (i.e. pixel aspect ratio τ = 1), the
plane-based calibration problem admits a one-parameter set of solutions. According
to Poncelet’s theorem (Th. 1), this parameter basically corresponds to the abscissa
of the camera centre on the Centre Circle or, equivalently, of the principal point on
the Centre Line. As a result, each solution completely determines ‘feasible’ internal
parameters u0, v0, f as well as one ‘feasible’ angle between the image and 3D planes.
As an example, two solutions are shown graphically (taken from an animation available
at the URL given in [3]).

This property will be used in the first step of our ‘Centre Circle-based’ algo-
rithm. The question now immediately occurs how to relate Poncelet’s theorem
Th. 1 to the planed-based calibration problem.

3.3 Link between Th. 1 and Planed-Based Calibration

From one single view of a planar figure, Th. 1 tells us that the set of ‘feasible’
camera centres defines a circle in the Centre Plane P, i.e. the Centre Circle.
Now, let us attach a ‘τ -corrected’ 3D coordinate system to the image, such as
the camera centre has Euclidean coordinates (ũ0 = u0, ṽ0 = 1

τ v0, w̃0 = −f)
and the principal point has Euclidean coordinates (ũ0, ṽ0, 0) ; we call it the
voxel coordinate system. Each abscissa on the Centre Circle gives one solution
(ũ∗

0, ṽ
∗
0 , w̃

∗
0), which determines the angle between the image plane and Π, as is

shown in Fig. 2. As mentioned earlier, the orthogonal projection of the Centre
Circle onto the image plane (i.e. the Centre Line) is the principal point locus in
the image plane. Hence, each abscissa on this segment determines one solution
(ũ∗

0, ṽ
∗
0) for the principal point.

The Centre Circle can be represented as the intersection between a sphere S
(called Centre Sphere) and the Centre Plane P, in the form of the two following
equations

(ũ− ũS)2 + (ṽ − ṽS)2 + (w̃ − w̃S)2 − ρ2S = 0. (11)

η1(ũ− ũP) + η2(ṽ − ṽP) + η3(w̃ − w̃P) = 0, (12)

where (ũ, ṽ, w̃) are Euclidean point coordinates, with respect to the voxel co-
ordinate system. Eq. (11) is the equation of the Centre Sphere S, with centre
(ũS , ṽS , w̃S) and radius ρS . Eq. (12) is the equation of the Centre Plane P,
passing through (ũP , ṽP , w̃P) and whose normal vector is η.
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Next, we show that it suffices to state ũP = ũS , ṽP = ṽS , w̃P = w̃S = 0
and we necessarily have η3 = 0. We also show how to map the five elements of
H̄, i.e. H̄11, H̄12, H̄21, H̄22, H̄31, to the five coefficients ũP , ṽP , η1, η2, ρS .

3.4 Parametrization of the Centre Circle

With reference to § 3.1, we state the following propositions4.
Proposition 1 (Centre Plane constraint). Equation ā�x = 0 tells us that
the camera centre lies on the Centre Plane P, whose equation is (12) with respect
to the voxel coordinate system, where

η =
[
−H̄31H̄12, −1

τ
H̄31H̄22, 0

]�
; ũP =

H̄11

H̄31
, ṽP =

1
τ

H̄21

H̄31
, w̃P = 0.

Proposition 2 (Centre Sphere constraint). Equation b̄�x = 0 tells us the
camera centre lies on the Centre Sphere S, whose equation is (11) with respect
to the voxel coordinate system, where

ũS = ũP , ṽS = ṽP , w̃S = w̃P ; ρS =
‖η‖
H̄2

31
=

√
H̄2

12 + τ−2H̄2
22

|H̄31| . (13)

It is worthy of note that propositions 1 and 2 are valid, providing that H̄31 �= 0
(the case where H̄2

12 + H̄2
22 = 0 is impossible) 5. In fact, H̄31 = 0 holds if the

image plane and Π are parallel, i.e. the corresponding intersection line is the
line at infinity. Indeed, from the decomposition

H̄(:,1:2) ∼ AR̄


1 0
0 1
0 0


 =


 fR̄11 + u0R̄31 fR̄12
−τfR̄21 + v0R̄31 −τfR̄22

R̄31 0


 ; R̄32 = 0,

one can deduce that R̄31 = |sin θ|, where θ is the angle between the image plane
and the world plane Π. As a result, we can make two remarks:

– The centre of the sphere lies on the Centre Line, since it lies on both the
image plane (i.e. w̃S = 0) and the Centre Plane (i.e. ũS = ũP , ṽS = ṽP , w̃S =
w̃P). Hence, the centre of the Centre Circle coincides with the centre of the
Centre Sphere. When θ = π

2 , the centre of the sphere coincides with the
principal point ; when θ decreases, the centre of the sphere moves along the
Centre Line (tending towards some point ‘at infinity’, if θ tends towards 0) ;

– When τ = 1, we have ρS = f
|sin θ| , with lim

θ→0
(ρS) = +∞.

Our Euclidean framework yields insights into the constraints related to plane-
based calibration, as shown in Fig. 3. For a most general framework, Euclidean
equations (11) and (12) would have been stated as projective ones, but the
geometrical interpretation would be obscured.
4 The proofs are omitted.
5 S is a real sphere, providing that ∆ = 4τ4(H̄31H̄12)2 + 4τ2(H̄22H̄31)2 > 0 holds.
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θ = 15◦

θ = 55◦

θ = 55◦

Fig. 3. On the left, the Centre Cercle of a camera is the intersection of the Centre Plane
and the Centre Sphere. The Centre Sphere radius depends on the angle θ between the
image and the world planes (not drawn). On the right, the spheres of two cameras with
same focal length: the largest radius corresponds to θ = 15◦, the smallest to θ = 55◦.

3.5 The Normalized ‘Centre Plane-First’ Approach

In the first place, we make it clear that both the Centre Plane and Centre
Sphere equations, respectively Eq. (11) and Eq. (12), are linear with respect
to the elements of the vector x that encodes the internal parameters of the
camera, as defined in 2.2.A or 2.2.B. However, there is an important difference:
the Centre Plane equation is irrespective of the focal length. We now give the
following Euclidean properties related to the Centre Plane and Centre Sphere
equations.

Let us represent the Euclidean coordinates of any 3D point c, with respect
to the voxel coordinate system, by the vector c = [ũ, ṽ, w̃]�.

1. In Eq. (12), the vector η is normal to Centre Plane. If we normalize η such
as ‖η‖ = 1, then it can readily be seen that Eq. (12) represents the distance
from the point c to the Centre Plane.

2. Let cS be the centre of the Centre Sphere. On the one hand, we point out
that the Eq. (11) represents the power of the point c with respect to the Cen-
tre Sphere S. This quantity is indeed defined by pow(c,S) = ‖p− pS‖2−ρ2S ,
where ρS is the radius of S, which is invariant under Euclidean transforma-
tions. On the other hand, since the radius ρS depends on the focal length
and θ (i.e. the angle between the image plane and the world plane) according
to § 3.4, it is not very meaningful to minimize pow(c,S), except if the focal
length and θ remain constant during the acquisition. Alternatively, we might
approximate the distance from a point c to the sphere S by the distance from
this point to its polar plane with respect to the sphere. Intuitively, this nor-
malization might apply when the distance from c to S is very small with
regard to the radius ρS of S.
The fact that the Centre Plane equation is irrespective of the focal length

(which ‘unifies’ problems 2.2.A or 2.2.B.) plus the difficulty to give a meaning
to the Euclidean normalization of Eq. (11), with regard to the minimization
criterion, guide us in selecting a two-step algorithm that estimates the internal
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parameters u0, v0, τ alone, irrespective of the focal length f . In accordance with
the remark 1, this can be achieved by minimizing Euclidean distances. This
‘Centre Plane-first’ approach enables us to propose a two-step algorithm: at first,
the aspect ratio and the principal point are estimated by minimizing distances
to Centre Planes, using the Euclidean normalization of Eq. (12), then each focal
length is directly computed from the ‘pre-calibrated’ views. It can be of interest
for plane-based calibration methods that require an off-line pre-calibration step,
like in [9]. Our method offers a real strong point: the required amount of flops
is now in O(m), where m is the number of images with different focal lengths,
instead of O(m3) in the existing ones. The detailed algorithm, also called Centre
Line-based algorithm, can be found in a previous paper [2].

3.6 A Two-Step Algorithm for Plane-Based Calibration

Recovering the Internal Parameters. Let the three unknown constant pa-
rameters be encoded into the vector x defined as

x = [ −u0 ,− 1
τ2
v0 ,

1
τ2

]�.

Given n homography matrices, let F̄ be the normalized n×4 matrix obtained by
stacking the normalized row vectors [ā1, ā2, ā4, ā3]/(ā21 + ā22)

1/2, where āi is de-
fined in (9). According to § 3.5, we can define a left-hand equilibration (diagonal)
matrix WL such as the least-squares solution satisfies 6

x̂ = argmin
x
‖WLF̄

[
x�, 1

]� ‖2 ≈ argmin
x


 n∑

j=1

dist2(c0,P(j))


 ,

where dist(c0,P(j)) is the Euclidean distance from the camera centre c0 to the
jth Centre Plane P(j), with respect to the voxel coordinate system.

Recovering the Focal Lengths. This step is detailed in [2].

3.7 Experiments

Simulations. We found out that the Centre Circle algorithm yields the most
convincing results when the focal length varies. To illustrate it, we tested it
on simulated data, by carrying out comparison tests with the Sturm & May-
bank’s algorithm described in [11]. Simulations have been achieved using a
set of 10 images, with a 512 × 512 resolution, taken from different positions
and orientations of the camera. The camera has constant internal parameters
u0 = 255, v0 = 255, τ = 1 and a varying focal length f . The calibration object
was a 30cm×30cm planar grid, with 10× 10 points. The camera was at a range
about 2m from the observed grid. We chose random values for f and for the an-
gle θ between the image plane and the plane containing the grid, from a uniform
distribution on different intervals. Additive Gaussian noise have been added to
the projected points, with zero mean and standard deviation σ ∈ [0.5; 2] pixels.
6 We omit the right-hand equilibration for simplicity.
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The world-to-image homography matrices have been estimated, using the nor-
malized Direct Linear Transformation (DLT) algorithm [4]. As for calibration
results, we computed absolute errors (in pixels) for u0, v0, relative errors for τ
and the 10 focal lengths (in percent). We also counted the rate of computation
failures for f , i.e. when it could not be recovered. We conducted two tests. Each
result presented in Fig. 3.7 was the mean of 1000 independent trials.
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Fig. 4. Calibration results in general configurations: the angle between the image and
world planes varies within ]0◦, 90◦[ and the focal length varies within [1000, 2000]. The
best results are obtained using Centre Circle-based (Euclidean) distances.
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Fig. 5. Calibration results in presence of singular configurations: the angle varies within
]1◦, 10◦[. The best results are obtained using Centre Circle-based (algebraic) distances.
We currently investigate how to automatically select the adequate distance.

Test 1. For each trial, the 10 focal lengths took different values within interval
[1000, 2000] (in pixels), while θ varied within ]0◦, 90◦[. In Fig. 3.7, the solid lines
show the errors associated with the Sturm & Maybank’s algorithm. The dotted
(resp. dashed) lines show the errors associated with the Centre Circle algorithm
without (resp. with) Euclidean normalization of equations. As a result, we can
point out that the Euclidean normalization of equations improved the accuracy
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of the results. The gain in accuracy is around 2σ for u0, v0 and σ% for f . The
rate of computation failures for f is around 3% for σ = 2.

Test 2. The second test differed from the first, owing to the fact that θ
varied within interval ]0◦, 10◦[, in order to test how the Centre Circle algorithm
behaved in presence of singular configurations, i.e. when the planar grid was
nearly parallel to the image plane. Actually, even in this case, the Centre Circle
algorithm yielded the best results, although it was very close in precision to
Sturm & Maybank’s results. Nevertheless, as it may be seen in Fig. 3.7, it is
not recommended to use the Euclidean normalization in this case. The problem
with Euclidean normalizations here is due to the division of the Centre Plane
coefficients by the norm of a vector which is collinear to the line intersecting the
image and world planes. When the angle between these planes tends towards 0,
the vector tends towards the null vector. Without Euclidean normalization, the
Centre Circle-based algorithm still yields the best results. The gain in accuracy
is around σ for u0, v0. It is worthy of note that, like in Test 1, the Centre Circle
algorithm exhibits the smallest rate of computation failures (around 20% for
σ = 2) as well as the smallest errors on f .
Real Images. As seen in Fig. 6, we checked the Centre Circle-based algorithm
with 6 real images of a calibration grid taken at a distance of about 40cm from
different positions. Images are taken by a Nikon Coolpix 800 in a 1600×1200
jpeg format with the maximal setting of zoom. We know that the bigger zoom is
used, the less distortion is present in the images. There has been small variations
of the focal length during the auto-focusing. The recovered internal parameters
are u0 = 810.14, v0 = 558.32, τ = 1.0026, f (1) = 3472.95, f (2) = 3507.95, f (3) =
3656.54, f (4) = 3479.40, f (5) = 3402.76, f (6) = 3465.67. The residual error
vector, whose elements are orthogonal distances from the estimated principal
point to the Centre Lines (i.e. the lines intersecting the Centre Planes and the
image plane), has mean 5.5 pixels with standard deviation 5.8.

4 Conclusion

The usual formulation of plane-based calibration of a camera is based on prop-
erties of basis vector with respect to the observed plane. For constant internal
parameters [14][7] (or varying internal parameters [11]), a solution can be ob-
tained by minimizing an algebraic cost function using a direct method.

Our contribution is to put the problem into a more intuitive geometric frame-
work, in accordance to a Poncelet’s theorem, which enables us to give an Eu-
clidean interpretation to the plane-based calibration equations. The proposed
algorithm is carried out through a two-step process: at first, the aspect ratio
and the principal point are estimated, after which each focal length is directly
computed. This approach is said to be ‘Centre Plane-first’ since the problem
is first that of minimizing distances from the camera centre to a set of Centre
Planes (or equivalently from the principal point to a set of Centre Lines). It
offers a real advantage: the required amount of flops, for recovering all internal
parameters, is in O(n) while it was in O(n3) in the existing one. Our algorithms
yield the most accurate results, especially when the focal length varies.
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Fig. 6. At top, the plane-based calibration from 6 views of a planar grid sticked on a
CD jewel case, taken by a camera with different focal lengths. The estimated principal
point is plotted with a cross and the different Centre Lines (i.e. the lines intersecting the
Centre Planes and the image plane) are displayed in each view. In the left-hand image
at bottom, the ‘pencil’ of Centre Lines is plotted with respect to the first image frame.
In the right-hand image at bottom, by zooming the window near the principal point
with a factor 100, the plane-based calibration problem is that of minimizing orthogonal
distances from the camera centres to the different Centre Planes or, equivalently, from
the principal point to the different Centre Lines.

One can argue that a better accuracy is generally obtained when all pa-
rameters are estimated simultaneously. However, the estimation of parameter
matrix ω through the linearization of basic equations (2) must be discussed. All
the existing direct solutions to the plane-based calibration problem are obtained
through the linearization of a nonlinear errors-in-variables model [5]. Indeed, the
mapping of H to matrix

[
a | b ]� is nonlinear in (6), which means that we actu-

ally solve
[
a(H) | b(H)

]�
x = 0, using a total least squares (TLS) approach [5].

It theorically requires heteroscedastic regression [6], i.e. to take in account that
errors on vectors a, b can have nonzero mean and different covariance matrices.
From a statistical point of view, it can be shown [6] that a TLS solution can
introduce a bias, in particular when mapping H to the vector b. This stems
from the fact that the elements of b have squared terms. This drawback notably
appears under the assumption that the errors ∆H in H are independently dis-
tributed with zero mean, as soon as the covariance matrix Σ∆H is diagonal with
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different variances. The good accuracy of the incremental results, with our ‘Cen-
tre Plane-first’ algorithm, can be explained in part by the fact that the equation
associated with b (i.e. with the Centre Sphere) is not used in its first step.
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