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Abstract. We propose Markov chain Monte Carlo sampling methods
to address uncertainty estimation in disparity computation. We consider
this problem at a postprocessing stage, i.e. once the disparity map has
been computed, and suppose that the only information available is the
stereoscopic pair. The method, which consists of sampling from the
posterior distribution given the stereoscopic pair, allows the prediction
of large errors which occur with low probability, and accounts for spatial
correlations. The model we use is oriented towards an application to
mid-resolution stereo systems, but we give insights on how it can be
extended. Moreover, we propose a new sampling algorithm relying on
Markov chain theory and the use of importance sampling to speed up
the computation. The efficiency of the algorithm is demonstrated, and
we illustrate our method with the computation of confidence intervals
and probability maps of large errors, which may be applied to optimize
a trajectory in a three dimensional environment.

Keywords: stereoscopic vision, digital terrain models, disparity, uncer-
tainty estimation, sampling algorithms, Bayesian computation, inverse
problems

1 Introduction

In this paper, we address the problem of assessing the uncertainty of depth
estimates computed from a stereo system. We exclude the possibility of using
any external source of information on the observed scene, i.e. only the radiometric
information provided by the stereoscopic pair will be used. The application we
have in mind is the certification of digital terrain models for the aircraft industry,
but the methods we propose here are quite general and can be applied to any
stereo system with some adaptations of the model used.

1.1 Errors in Stereovision

A stereo system consists of two cameras observing the same scene from two dif-
ferent points. With this set-up, a left and right image are obtained. A physical
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point M projects onto the image plane of each camera. These projections form
a pair of homologous points, and their coordinates in each image plane can be
expressed as a function of the stereo system parameters (mainly the baseline b
and the focal length f) and the coordinates of M. The principle of depth es-
timation from stereovision relies on the inversion of this relation. An extensive
introduction to three dimensional computer vision and depth from stereo can be
found in [10].

Many different techniques are used for depth computation, depending on the
type of sensors and the nature of the scene. However, they generally consist
of the following steps. First, the stereo system parameters are computed, using
calibration methods (see [§] for an example). It is then possible to reproject the
images in the epipolar geometry, in which two homologous points have the same
vertical coordinate. The difference between their horizontal coordinates is called
the disparity. Hence, the rectification step reduces the search of homologous
points to a mono-dimensional one (along the rows of the images). The stereo
problem itself amounts then to the computation of the disparity map, which is
done by matching pixels (or features) in the left image with the corresponding
pixels in the right image [9]. Lastly, the computation of the real world coordi-
nates, the triangulation, follows from the disparity map and the geometry of the
stereo system.

Uncertainty in depth estimates arises from errors or approximations in each

step described above, however it is important to distinguish between these errors.
Calibration, rectification and triangulation rely on geometric relations verified
by the stereo system. Even if these are only approximations of the true geometric
constraints, the errors associated with them can be controlled and their range
computed. For instance, quantization errors, which come from the knowledge
of the image points coordinates at fixed positions only, with a precision equal
to half the sampling interval § [20], depend only on the stereo system parame-
ters. Possibly, the precision can be improved by modifying the stereo system: for
example, an increase of the product bf enables to obtain more accurate depth
estimates [20)).
In opposition, matching errors are strongly dependent on the nature of the ra-
diometric information, and cannot be entirely controlled by the design of the
stereo system. The reason for this lies in the implicit matching assumption that
pairs of homologous points can be identified. In many situations, violations of
this assumption are encountered: the geometric deformations induced by the
projections may be strong, the images are corrupted by sensor noise or the ra-
diometric information itself may be ambiguous (existence of repetitive features,
lack of texture in the images,...). As a result, matching errors are likely to be
dependent on the specific features in the images and to vary strongly over the
disparity map.

1.2 A Stochastic Approach

A convenient framework to handle uncertainty in disparity computation is to
consider the disparity D and the stereoscopic pair Y = (I, l3), as random
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functions. This approach has been successfully applied in a Bayesian context to
compute disparity estimates [1].

However, to our knowledge, the problem of uncertainty assessment has been only
partly handled, mostly through the computation of standard deviation [23//16].
Standard deviation estimates give only a rough idea of the range of possible er-
rors, and are not appropriate to describe large errors, which appear with very low
probability and are spatially correlated. Therefore, specific methods have to be
proposed. Typically, if we consider an object in motion in a 3D environment, one
must find the path to a given target which minimizes the risk of collisions. Such
problems require the computation of the whole conditional probability distribu-
tion wp(d|Y = y) of the disparity D given the stereoscopic pair Y. Note that
once mp(d|Y = y) is known, we can easily compute the corresponding probability
distributions for the real world coordinates, using the geometric transformation
of the stereo system. This motivates the choice of the disparity as variable of
interest.

The main contribution of this paper is to propose a theoretically founded ap-
proach to the problem of uncertainty assessment in disparity computation. Espe-
cially, we show in Sect.[Z that this problem amounts to sample from the posterior
distribution mp and to use Monte Carlo integrations. We also explicit the model
wp used for computation, but point out that this one is very dependent on the
application. We give insight on how this model can be adapted to specific ap-
plications. On the opposite, the sampling algorithms we propose in Sect. [3] are
quite general and can be used for different forms of probability models wp. The
only restriction is a gaussian assumption for the prior model. Lastly, in Sect. [
we illustrate our methods with an application to the study of a stereoscopic pair
of SPOT images.

In the sequel, we will assume that an estimate d of the disparity has been
already computed, for example with a correlation based algorithm. This means
that the algorithms we propose in the sequel are not used for disparity com-
putation, but only for uncertainty assessment. One reason is that Monte Carlo
algorithms are computationally cumbersome. Another reason is that we are in-
terested in the uncertainty which is intrinsic to the radiometric information. In-
deed, we consider the uncertainty estimation mostly at a postprocessing stage,
and would like to propose a method that is widely independent of the disparity
computation itself.

2 Stochastic Framework: Stereovision as an Inverse
Problem

Let Y = (I1,I2) be a stereoscopic pair in the epipolar geometry. We consider a
physical point M, and its projections m; with coordinates (u1,v1) in I; and mea,
with coordinates (usg,vs) in I5. The epipolar constraint imposes v1 = vy and we
can define the disparity in the reference system of I; as the difference:

d(ul, 1}1) = Uz — U1 (1)
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Therefore, a pair of homologous points is fully defined by the coordinates (u, v) of
my in I; and the disparity d(u,v). Note that a symmetric definition of disparity
in the cyclopean image is possible, see [1]. Although we proceed with definition
[[l the approach we propose is readily applicable to this alternative definition.
This purely geometric presentation however corresponds to the direct problem,
where the coordinates of the homologous points are known. In practice, these are
to be found, and generally a loss function C,, ,,(d), which expresses the similarity
of the images in the neighborhood of I (u,v) and Iy(u + d,v), is used [9]. The
estimate d of the “true” disparity is then taken to be the value which maximizes
Cy,v(d), possibly under some constraints, i.e.:

d(u,v) = arg max Cuv(d) (2)

Therefore, when computing the disparity, and whatever method is used, one
must move from a purely geometric definition [l to an optimization criterion
In other words, disparity computation in stereovision is an inverse problem, and
therefore, the result is only an estimate of the underlying disparity. This estimate
is sensible to the amount of noise in the stereoscopic pair, but, even if perfect
signal is assumed, uncertainty remains, because of the ambiguity of the infor-
mation, due to occlusions, repetitive features, lack of texture in the images,...
The Bayesian framework [3] is well adapted to inverse problems. Bayesian in-
ference has been widely used in image analysis [2], and efficient algorithms
have been proposed to solve the restoration problem, as in [I3]. More recently,
this formalism has been applied to the stereo-reconstitution problem [23]1]. Let
7p(d|]Y = y) be the posterior (or conditional) probability of the disparity D
given the stereoscopic pair Y = y. Using Bayes relation, this one can be ex-
pressed by means of the conditional distribution of Y given D = d, 7wy (y|D = d),
and the marginal distributions 7p(d) and 7y (y). Since here Y is known and
remains equal to y, my (y) is a constant, and we can introduce the likelihood
L(y|D = d) = %(Dy):d), which can be computed up to a multiplicative con-
stant, and for clarity, we denote ¢g(d) = mp(d) the prior distribution. With these
notations, the posterior distribution writes:

mp(dlY =y) = L(y|D = d)g(d) 3)

In stereovision, this formalism has been mostly applied to compute an estimate
of the disparity, through maximum a posteriori (MAP) estimation [1], where
the maximization of 7p(d|Y = y) is used as criterion. However, here, we are
interested in the computation of the whole posterior distribution 7p(d|Y = y).
Especially, for any mp—measurable function h, we would like to compute the
integral:

E., (h) = / W(2)mp (Y = y)dz (4)

With an appropriate choice of h, every probability concerning D can be com-
puted. For example, with h(d) = 1‘ ded|>s where d is an estimate of the disparity,
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we obtain the probability that the estimation error D—dis greater than a thresh-
old s:
PUD~d|zs)= [ wo(elY = y)d: 5)
|z—d|>s
In the following, we explicit the computation of @]l and derive an expression
for mp.

2.1 MCMC Methods

In practice, the numerical computation of @is not possible since 7p is a function
of n variables, where n is the size of the image. Another reason is that mp is
known only up to a multiplicative factor. A solution is provided by Monte Carlo
integration which evaluates the integral in Hlby drawing samples {z;,i = 1,...,m}
from 7p and then approximating

Ero(W)~ = Y~ h(z) ()

The laws of large numbers ensure that the approximation can be made as accu-
rate as desired by increasing the sample size m.

Monte Carlo methods were used in similar problems [11J7], but mostly to com-
pute map estimates. We show in this paper that more information can be ex-
tracted from the posterior distribution.

A method to draw samples from 7p consists of building a Markov chain
having 7p as its stationary distribution. In practice, the problem amounts to
determine a transition probability kernel which ensures the convergence to 7p.
This is the principle of the well known Metropolis-Hastings algorithm [I5] or the
popular Gibbs sampler [I3]. For a detailed introduction to Markov chain theory,
the interested reader is referred to [18] and [24]. Practical applications of Markov
chain Monte Carlo can be found in [T4].

As a conclusion, assessment of disparity uncertainty and disparity estima-
tion are two very different problems, and the former requires the development
of specific methods. Uncertainty can be assessed under a Bayesian framework
by drawing samples from the posterior distribution of the disparity given the
stereoscopic pair. Two points remain to be solved: the specification of the model,
which is treated in Sect.[22] and the choice of a sampling algorithm, which is
the subject of Sect. 3

2.2 Model Derivation

We need to specify the likelihood term L(y|D = d), which describes the rela-
tion between the images of the pair at fixed disparity, and the prior model g,
which reflects the spatial structure of the disparity. Let us point out that the
choice of the probability model 7p is specific to the application, i.e. to the type
of images recorded and the nature of the scene observed. In our case, we use
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stereoscopic pairs of SPOT images for the computation of mid-resolution digital
terrain models (with a ground resolution approximately equal to 10m). We first
derive an expression for the image model (likelihood) and then for the disparity
model (prior).

A common modeling for the likelihood [I] consists of assuming that the
recorded intensity I for a specific feature is the same for both images Iy and
I> and sensor noise is additive. Therefore, for fixed disparity d, the relation
between I, and Iy writes:

I (u,v) — Is(u + d(u,v),v) = n(u,v) (7)

where n(u,v) can be interpreted as the residual between the intensities after a
correction on the coordinates with the disparity.

The choice of the image model amounts hence to the modeling of n, and especially
its spatial correlation. If we assume the residual 7 to be uncorrelated gaussian
noise with mean p and standard deviation s, as in [4J6J1], we end up with the
following expression of the likelihood:

(nij — 1)?
L(y|D =d) xexp | — Z EEEYCE (8)
i,

The assumption of uncorrelated noise n may be questioned. Especially, one may
argue that if the deformations induced by the stereo system are relatively im-
portant, the residual n will show strong patterns. Therefore, this point is very
dependent on the setting of the stereo system and the nature of the scene. For
satellite images at mid-resolution, these deformations may be neglected in a first
approach, and the assumption of uncorrelated gaussian noise is reasonable. How-
ever, this is definitely a challenging aspect of the problem.
Note that, as we have an estimate d of the disparity, we can compute from Iy
and I, an estimate of the residual (u, v) = I (u,v) — Iy(u + d(u, v),v). Hence,
the model parameters ¢ and s can be estimated by maximum likelihood.

For the disparity model, we adopt a gaussian random function framework,
which is relatively common [23J4T]. Under the gaussian assumption, the prior
distribution is entirely specified by the mean m and the spatial covariance C.
These parameters can be estimated from the disparity map ci, for example under
an assumption of spatial stationarity [5]. Finally, the prior distribution g takes
the following form:

1
o) oxp (= 5d = m) ¢ - m) ©
Here again, let us point out that the choice of the prior model is dependent
on the application. Especially, the behavior of the covariance at the origin will
reflect the smoothness of the disparity: for example, a model with a linear be-
havior (such as Brownian motion [I]) is liable to reproduce discontinuities. Our

experience is that covariances which are differentiable at the origin (such as the
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cubic covariance) are well adapted in the case of mid-resolution stereo systems.
However, for high-resolution applications, such as urban or indoor scenes, other
models may be chosen. For example, in [1], Belhumeur proposes to model di-
rectly the discontinuities at the edges of objects through Poisson processes. More
generally, one may argue that for such applications, stochastic geometric mod-
els, which directly take into account the form of objects, may be better adapted.
Such models were applied to building detection [12] and road extraction [22].
Let us point out that, although we made the gaussian assumption for the prior
distribution g, the posterior distribution is not necessarily gaussian. The nature
of the posterior distribution depends largely on the likelihood term L, which is
not a quadratic form of d. For example, the presence of repetitive features in the
stereoscopic pair would result in a multimodal posterior distribution.

3 Sampling Algorithm

In this section we expose the details of the sampling algorithm. We recall that
the probability distribution to be sampled from is of the form:

m(2]Y = y) = LY|Z = 2)9(2) (10)

where L(y|Z = z) is the likelihood function, which may be known up to multi-
plicative factor, and g(z) is the prior distribution.

3.1 Markov Chain Sampling Algorithms

As stated previously, iterative Markov chain algorithms have to be used. In
our case, the difficulty lies in the form of the likelihood term L(Y|D = d),
which cannot be approximated efficiently and is expected to vary strongly with
the coordinates (u,v). The Gibbs sampler, which in combination with Markov
random fields models is very popular in image analysis, relies on the use of
conditional densities of the form m(zs|2_s), where S is a subspace of the grid to
be simulated and —S§ its complementary part [3]. Unfortunately, because of the
expression of the distribution 7p, it is not possible to sample directly from the
conditional distributions. Other alternatives are Metropolis-Hastings algorithms
[14] and variants such as discretized Langevin diffusions [19].

The principle of the Metropolis-Hastings algorithm is to generate a transition
from the current state z to the state 2’ from a proposal transition kernel ¢(z, 2’),

and to accept this transition with probability a(z, 2’) = min (1, %) The
efficiency of this algorithm relies merely on the proposal transition kernel ¢, but
when the target distribution 7 cannot be easily approximated, optimal choices
of g are not possible, and very often an ad hoc transition kernel is used, like in

the independence sampler or the random walk [14].
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3.2 A New Sampling Algorithm

These difficulties have led us to propose a new sampling algorithm which makes
use of the target distribution 7 to generate the transitions. Let us assume that
the prior distribution g(z) denotes now a gaussian distribution.

The algorithm is based on the following remark. Let W; and Wy be two in-
dependent gaussian processes with zero mean and covariance C (which we de-
note Wi, Wy ~ g). Then, for any 6 € [0,2x], the linear combination W () =
Wi cosf + Wy sin 6 is also a gaussian process with zero mean and covariance C.
We propose to use this relation, together with an appropriate choice of 8, to
build the transitions of a Markov chain Z = (Zx,k > 0). The algorithm is the
following:

1. sample w ~ g,
2. compute the proposal transitions:

2 2
2] = 2, cos (ﬂr) + wsin (ZW) Vi=0,m—1 (11)

m m
and the corresponding transition probabilities:

L(y|Z = =)
S LYl Z = 2)

alz,2) =

. Vi=0,m—1 (12)

3. choose z; ~ a(z, z}) and set zp41 = 2.

We prove in [21] that the Markov chain built according to this algorithm has 7
as stationary distribution.

A comparison study of this algorithm with the independence sampler and the
Langevin diffusion can be found in [21]. The interesting feature of this algorithm
is that at each iteration, a whole path of possible transitions is proposed, in
opposition to a single one in the Metropolis-Hastings algorithm, and this is done
at a low computational cost since it only requires the computation of linear
combinations of the form [I1] Therefore, transitions are likely to occur more
often, which improves mixing within the chain and speeds up the convergence.
An illustration of this feature is displayed on Fig. [l

3.3 Size Reduction and Importance Sampling

For large grids, the computational burden of Markov chain algorithms can be-
come very cumbersome. Gaussian samples can be generated very quickly (with
algorithms such as those relying on the Fast Fourier Transform [5]), but the tran-
sition rate of the Markov chain tends to decrease drastically with the grid size, so
that the sampling algorithm must be run longer to achieve convergence. To cope
with this difficulty, we propose to split the sampling in two consecutive phases.
Consider a subgrid S of the total sampling grid G and its complementary —S§ in
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Fig. 1. Path of possible transitions generated from the current point and an indepen-
dent simulation (black dots). The target distribution, displayed in the background with
level lines, is a bigaussian distribution. The circles along the path, which correspond
each to a different value of 6, are proportional to the transition probability a(z, z}).

G. zs denotes the restriction of the vector z to S. The posterior distribution 7
can be decomposed as follows:

LylZ = =)

m(zlY =y) = L0l Zs = 25)

9(2-s|Zs = zs)L(y|Zs = zs5)9(2s)  (13)

The term L(y|Zs = zs)g(zs) is the posterior distribution 7(zs|Y = y) on S,
whereas ¢g(z_s|Zs = zs) is the conditional distribution of the gaussian vector
z_s given zg (this is the conditional distribution which is used in the Gibbs
sampler). Sampling from this conditional distribution can be done directly and

very efficiently using an algorithm such as conditioning by kriging [5]. The first
L(y|Z=2)

L(y|Zs=zs)

samples in the Monte Carlo integration. We end up with the following algorithm:

term w = is a correction factor which shall be used to weight the

1. run the Markov chain algorithm on the subgrid S,

2. for each generated sample 2%, generate 2° ¢ using the conditional gaussian
distribution g(z2_s|Zs = zs), and construct z; = (2%, 2% 5) the sample on
the total grid G,

3. compute the weight w; = %,
=
4. compute the integral
1 m
E.(h) = =7 wih(z;) . (14)

The last step is an application of importance sampling theory [14]. One may
run the risk that all weights w; but a few become equal to 0, and only a few
samples take the total weight. This could happen if the distribution used for
sampling 7/ (z|Y = y) = n(zs|Y = y)g9(2_s|Zs = zs) and the target distribution
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7(z|Y = y) are very different. In our case, this should be avoided due to the
strong spatial correlations exhibited by the disparity D. The idea is that if
we know the disparity on a subgrid S, then we are able to compute accurate
estimates of D on the total grid G, and correct fluctuations can be reproduced
by sampling from the conditional distribution ¢g(z_s|Zs = zs). An overview of
the sampling algorithm is shown on Fig. 2|

Markov chain Importance Monte Carlo
‘\\ sampling sampling integration
Left S
Image L Probability
\\x‘ map

\\\\\\\\\\\\\ —_

Stereoscopic ~# —_— —
. s >

pair P <

Right
Image

Fig. 2. Overview of the sampling algorithm. First, the Markov chain sampling algo-
rithm is run on a sub-grid, conditional to the stereoscopic pair. Then, for each generated
sample, the whole grid is generated. Lastly, the Monte Carlo integration is performed.

4 Experimental Results

We have applied the model of Sect. 2.2]and the sampling algorithms introduced
in Sect. [ to the study of a stereoscopic pair of rectified SPOT images of the
Marseille area, of size 512 x 512 pixels (Fig. B). A disparity map (Fig. B)) has
been computed using a correlation based algorithm.

2000 samples have been generated. Using the importance sampling algorithm,
the size of the sampling grid has been reduced to 64 x 64, yielding thus a size re-
duction factor equal to 64. To illustrate the efficiency of the sampling algorithms,
we run a Metropolis-Hastings algorithm (denoted as MH) on the total grid, then
the sampling algorithm of Sect. Bl (denoted TCP for transitions along continuous
paths), first on the total grid, and then on the reduced grid with the importance
sampling method (denoted further TCPIS). We compared the computation time
required to generate 100 samples with at least 10 state transitions between two
samples, assuming that these conditions ensure similar convergence properties.
Computations were performed on a SUN Ultra 60 computer with a 400 Mhz
ULTRA SPARC II processor. The results are shown on Tab. [0l The TCP algo-
rithm allows to reduce the computation time by a factor 10 in comparison to
the independence Metropolis-Hastings sampler. The size reduction coupled with
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(a) One image of the stereo- (b) Disparity
scopic pair

Fig. 3. One rectified image of the stereoscopic pair (Marseille area, France) and the
corresponding disparity (right)

Table 1. Comparison of computation time for MH, TCP and TCPIS.

MH | TCP [TCPIS
CPU time (sec.)||642571(55454| 1326

the importance sampling algorithm (TCPIS) allows to reduce again the compu-
tation time, by a factor 40. The overall computation time is still relatively large
(a few hours for our case study), but the TCPIS algorithm allows a tremendous
gain in comparison with crude sampling algorithms.

The application we aim at is the detection of possible large errors; that is,

given an error threshold s, which are the pixels for which disparity errors larger
than s are likely to occur? This is typically the type of questions one may face
in applications in the aircraft industry. This problem can be formulated as the
computation of the probability P(D—J > s), and, for a given risk «, the location
of the pixels (u,v) for which P(D(u,v) — d(u, v) > 8) < «, which correspond to
the safe area.
Figure Ml displays the probability maps obtained for s = 2 and s = 3. The
probability of errors varies strongly with the location (u,v), that is why usual
methods estimating error ranges over a large domain are not appropriate for
such applications. It is then possible to threshold these maps to a given risk
value, say 0.1%, to identify the safe areas.

In real applications however, it is not realistic to consider that such infor-
mation is required for every pixel. For example, if one thinks of an object in
motion over a domain, then one must guarantee that no collision occurs along
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Fig. 4. Probability map of positive errors larger than 2 (left) and 3 (right) pixels. One
scale unit on the vertical axis equals 10%.

its trajectory. Hence, we need to consider a whole domain, and compute the
probability that no error greater than a given threshold s occurs in this domain,
with a probability 1 — «. Since errors are spatially correlated, this is not equal
to the product of the corresponding probabilities over the domain. We point
out that this type of computation definitely requires the knowledge of the entire
multivariate distribution 7p and not only the marginal distribution of a given
pixel.

For this purpose, we divided the disparity map in 64 sub-domains of equal sur-
face, and computed the probability that errors larger than 3 (respectively 4)
pixels occur anywhere in the sub-domain (Fig. [Bl). Thus, as previously, it is pos-
sible to determine the safe areas as the sub-domains for which this probability
is lower than « = 0.1%. The results obtained are rather pessimistic: the 3 pixel
threshold map has only 2 safe domains, this contrasts with the situation we
would have expected from the right map displayed on Fig. [ This surprising
result emphasizes the importance of spatial correlations and justifies the use of
Monte Carlo methods, although they are computationally demanding.

We consider now the opposite situation, which is often encountered in prac-
tice: a risk value « is given, and one needs to compute a confidence interval
[Zint, Zsup) for the variable Z such that P(Z € [Zint, Zsup]) > 1 — . An example
of the use of confidence intervals in a different context of computer vision can
be found in [17]. To derive a confidence interval, we propose to make use of the
min and max of the disparity samples. Indeed, for n + 1 independent identically
distributed random variables Z;, we have the following result:

n—1
n—+1

P(Zn41 € [min Z;, max Z;]) = (15)
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Fig. 5. Probability map of positive errors larger than 3 (left) and 4 (right) pixels in a
subdomain. One scale unit on the vertical axis equals 10%.

Therefore, for any risk value o, we can choose the smallest integer n such that
Z—__& > 1 — « and compute for each pixel the min and the max of the n samples.
The confidence interval has then the form of two embedding surfaces.

In order to validate our results, we have used a reference disparity map obtained
from high resolution images, which has been degraded to the SPOT resolution.
Using this reference map, it is possible to compute the percentage of points
lying in the confidence interval computed previously and to compare this value
to the theoretical value given by The risk value was set equal to 0.1%,
and therefore we used n = 2000 samples to construct the confidence interval.
From the reference map, we found that 0.11% of the total points fell outside the
confidence interval, which is in very good agreement with the theoretical value
0.1%. Moreover, the mean size over the grid of the computed disparity interval
is 4.4 pixels: although the risk value is very small, the precision given by the
confidence interval is reasonable. Therefore, the method proposed in this paper
allows to compute accurate statistics.

5 Conclusion

In this paper, we have considered the problem of assessing the uncertainty of a
disparity map with only the use of the stereoscopic pair as information. Since
the usual standard deviation approach does not permit to handle the case of
large errors which occur with very low probability and are spatially correlated,
specific methods have to be proposed. A solution consists of computing the
posterior distribution of the disparity given the stereoscopic pair. Hence,
uncertainty assessment amounts to sample from this posterior distribution and
to compute the desired probabilities using a Monte Carlo approach. From a
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practical point of view, a model for the posterior distribution must be chosen,
and an efficient sampling algorithm must be used to keep the computation time
reasonable.

This method is very general and can be applied to different types of stereovision
systems, but the choice of the stochastic model is specific to the application.
The model explicited in this paper considers an application to the computation
of mid-resolution digital terrain models, for which the disparity map can be
assumed to vary relatively smoothly and the gaussian assumption is reasonable.
For more complex applications, models which take explicitly into account the
geometry of the scene may be more appropriate.

An important problem is the choice of the sampling algorithm. The algorithm
we propose considers the case of gaussian priors, which is quite general. It is
based on the construction of a continuous path of possible transitions, and
compared to standard sampling algorithms such as the independence sampler
proves very competitive. Moreover, we have shown that the computation can be
tremendously speeded up by first running the Markov chain on a subgrid and
then generating conditionally the samples on the whole grid.

This Markov chain Monte Carlo approach has been applied to the study
of a stereoscopic pair of SPOT images. The results show that the disparity
statistics are highly non-stationary. This is due to the nature of the radiometric
information itself. These statistics can be used to determine the safe areas,
for which large errors occur with probability inferior to a given risk value, or
to compute precise confidence intervals. The range of applications is however
brighter: for example, they may be used to optimize a functional over the
domain under study. We think especially of the motion of an object in a
three-dimensional environment, for which the path to a given target has to be
optimized and collisions avoided.
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