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Abstract. We propose to combine simple discriminators for object dis-
crimination under the maximum entropy framework or equivalently un-
der the maximum likelihood framework for the exponential family. The
duality between the maximum entropy framework and maximum likeli-
hood framework allows us to relate two selection criteria for the discrimi-
nators that were proposed in the literature. We illustrate our approach by
combining nearest prototype discriminators that are simple to implement
and widely applicable as they can be constructed in any feature space
with a distance function. For efficient run-time performance we adapt
the work on “alternating trees” for multi-class discrimination tasks. We
report results on a multi-class discrimination task in which significant
gains in performance are seen by combining discriminators under our
framework from a variety of easy to construct feature spaces.

1 Introduction

A object discriminator can in general be thought of as any function that induces
a partition of the space of images X. For example, a very crude example of a
discriminator would be a function that tests whether the average intensity or
some other simple statistic of a fixed subwindow of the input image crosses a
threshold - in this case the image space is partitioned into two. Examples of more
complex discriminators would be decision trees where each decision node is a
simple discriminator as in the example above and the set of leaf nodes of the tree
corresponds to the partition of the image space. Yet another example is a nearest
prototype discriminator, in which a set of prototypes in some feature space (like
color, shape, etc.) induces a partition, where each subset of image space in the
partition contains the images that are closest to one of the prototypes (in other
words, the partition is the voronoi diagram induced by the set of prototypes, see
figure § ). An ideal discriminator will induce a partition in which each subset
of image space in the partition contains images of objects from a single class.
Such an ideal discriminator might be hard to construct if the partition required
is complex.

In practice, it might be easier to construct discriminators that induce simple
partitions but which are far from ideal. We can then think of combining such
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Fig. 1. The partition of image space induced by discriminators. Three classes of objects
are shown within the image space (depicted as an ellipse). The discriminator on the left
(a nearest 3-prototype discriminator for illustration, constructed in some feature space
like color, edge, shape, etc., the prototypes are marked by x) discriminates the three
classes quite well but is complex. The discriminator on the right (with 2 prototypes)
does not discriminate as well as the one on the left, but is simpler to implement.
The partition boundaries in each case is given by the voronoi diagram induced by the
prototypes which are at the center of each cell.

simple discriminators to create a more powerful discriminator. In this paper, we
show how the maximum entropy (ME) framework [6/8] can be used to combine
simple discriminators. Under the ME framework, we seek a combined discrimi-
nator that is constrained to be consistent (in a manner that will be made precise
shortly) with each of the simple discriminators, but is otherwise least committed.
The resulting scheme is very similar to boosting [2] which was initially derived
from computational learning principles (see § Blfor a discussion of the similarities
and differences). The ME framework can also be generalized to handle regular-
ization to avoid over-fitting in a principled manner [I] compared with standard
boosting. In related work in computer vision, the framework has been used in
the context of selecting good features for texture synthesis [I0]. The framework
is also known to be dual to the more familiar maximum likelihood (ML) frame-
work for exponential distributions, but the justification for our approach is more
natural under the ME framework.

A second issue we address is that of selecting which simple discriminators
to combine. Given a large collection of NV simple discriminators, we want to
select a fixed number K <« N from this collection which when combined in
the above framework gives the best discriminator possible. In practice, K might
be constrained by the run time performance required. Two schemes have been
proposed in the literature, one under the ME framework [10], and another under
the ML framework [8]. Using the known duality between the two frameworks,
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we show that these two seemingly different selection schemes are in fact the
same (see §[4).

For good run-time performance we would like to combine the simple discrim-
inators in an efficient structure like a tree. For this purpose, we adapt the work
on alternating trees [3] - a generalization of the more familiar decision trees -
for multi-class discrimination (see § [6). In § [[] we illustrate our scheme on a
multi-class discrimination task where significant gains in performance are seen
by combining simple discriminators based on different types of features.

2 Formulation

For simplicity of implementation and wide applicability, in our work we use
the nearest prototype (NP) discriminators as the simple discriminators that we
choose to combine. As described earlier, the partition in image space induced by
such a discriminator corresponds to the voronoi diagram (see figure § [I) with
prototypes at the center of each cell. An NP discriminator has wide applicability
since it can be constructed in any feature space that has a distance function. For
example, the distance function for intensities in an image patch is typically just
Euclidean, the distance for histograms is the non-linear y? distance, the distance
for edge maps is the hausdorff distance, etc. An NP discriminator is specified by
the feature space that it is constructed in and the number and locations of the
prototypes in that feature space. A particularly simple implementation that we
use in our work, chooses the location of the prototypes from those derived from
the set of training images rather than searching for the best prototypes in the
whole feature space. This has the benefit of easy implementation even in feature
spaces like histograms or edge maps where the distance function is non-linear
and a search over the whole feature space may be infeasible. See § [ for the
details of our implementation of NP discriminators.

Our task is to learn a multi-class discriminator for objects of interest, given
a training set S = {(z1, ), (x2,¢2), ... , (Tm,cm)}, where z; € X are the train-
ing images and ¢; € {1,...,l} are class labels. We assume that the objects
are centered in the training images (see Fig.(#) for training examples from a
discrimination task that we report in § []).

Let us assume that a discriminator h has been trained on S using some
procedure. Recall that a discriminator partitions the image space X. In the
usual formulation, at run-time on input z € X a discriminator outputs the class
labels c¢; of all images x; in the training set S that fall in the same subset of
the image space partition induced by h that contains the input x. These class
labels c; can then be post-processed and weighted by the relative number w; of
training examples from each class that fall in the same partition as x to give a
confidence value for each label. Alternatively a simpler implementation would
report the class label(s) that is associated with the most number of training
images that fall in the same partition as x.

In our work, we use an alternate formulation where the original multi-class
discrimination task is reduced to an equivalent two-class problem as follows. This
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formulation simplifies the development of the framework as well as allows a finer-
grained selection of “good” discriminators compared with the original multi-
class framework. Instead of thinking of a discriminator as outputting the class
label(s) given an input image, we can think of a discriminator that determines
if a given pair of input images belongs to the same class or different classes of
objects. Formally, given a pair of images (z;,z;), the discriminating function
h:X x X — {—1,+1}, outputs the label h(z;,z;) = +1 if the pair belongs to
the same partition induced by h, otherwise it outputs h(z;, z;) = —1. Under this
formulation, the training set S gets transformed into a corresponding training
set (which we will continue to denote as .S) for the two-class problem :

S={((wi, ), 9i5) 14,5 =1,...,m, yiy € {1, +1}} (1)

where the new class labels y;; is assigned +1 if the condition ¢; = ¢; holds for
the original class labels, and —1 otherwise. After learning a discriminator h from
this set, at run-time on input x, just as for the original multi-class formulation
described above, the discriminator outputs the class labels c; corresponding to
all the training examples x; for which h(z,z;) = +1, i.e. z; falls in the same
partition as . Again, the class labels can be weighted by the relative number w;
of training examples from each class to give a confidence value for each label, or
the class label(s) associated with the most number of training examples x; can
be reported. In the next section we consider the task of combining the outputs
of a set of such simple discriminators under the maximum entropy framework.

3 Maximum Entropy Framework for Combining
Discriminators

We can think of the tuple ((x;,z;),v:;) € S as an assertion which states that
the pair of images (z;,z;) belongs to the same class (i.e., y;; = +1) or in dif-
ferent classes (y;; = —1). For a discriminator h, the expression f(z;,x;,¥i;) =
yijh(x;, ;) can be considered as a test which determines if the assertion is true
(f = +1) or not (f = —1) for the discriminator h. We will call f the testing
function corresponding to the discriminator h.

Suppose we wish to combine a given set of simple discriminators hg, k =
1,..., K. As discussed above, for each of the discriminators hj, we can derive a
testing function fj that determines whether an assertion is true or not for the
discriminator hy. Similarly, we would like to derive a testing function F' for the
combined discriminator H. Intuitively, F' should combine the outputs of each of
the fr on an input assertion to determine the truth of that assertion. Rather
than derive a binary testing function F' (with outputs in {—1,+1} as is the
case for each of the fi), we will seek a more general probability distribution p
over the possible output values {—1, +1} that gives the likelihood that an input
assertion is true or not given the outputs of the testing functions f; on that
assertion. The likelihood will give a measure of the confidence in a prediction
(truth or falsity of an assertion) made by the combined discriminator. Formally
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for our purposes, we would like to derive a conditional probability distribution
p(yi; | (%, x;)) that measures the likelihood that y;; = +1 or y;; = —1 given
the outputs of fi,k =1,..., K on any assertion ((x;,2;), y:j)-

What should the constraints be in selecting a probability measure p from
the space of all probability measures 7 The outputs of the testing functions fx
on all the assertions in the training set S provide one source of constraints.
Obviously since S is finite and the space of probability measures is infinite, we
need additional a priori constraints to properly constrain the selection of p. The
maximum entropy (ME) framework [6l8] is based on the principle that the only
constraint that we can reasonably impose on the probability measure p a priori is
that it be consistent with the outputs of the tests fi over all training assertions
for each k, but is otherwise “least-committed”. The probability measure p is
defined to be consistent with a test fi for a given k if a set of chosen statistics
of fi over all possible assertions z € X x X x {—1,4+1} under the probability
measure p matches the empirical statistics over the training set .S. Intuitively,
we want to select the probability measure that is at least in agreement with the
training data. The simplest statistic is the mean. The empirical mean is defined
by :

Fo=w S )

S
‘ | ((Zi,I]),yiJ‘)ES

Note that in principle one can impose additional constraints corresponding to
higher order moments. But in practice, typically only the constraint for the mean
is imposed since estimating the higher-order moments reliably requires more and
more training data as the order of the moment increases.

Given these constraints, the ME framework searches for the “least commit-
ted” probability measure. Intuitively, the least committed measure under no
constraints is the uniform probability measure. As we add constraints, we would
like to keep the measure as close to uniform as possible while satisfying the
constraints. More generally, we would like to be as close to a prior measure qq
that may not be uniform, and is task dependent but data independent. For our
task, the distance between two conditional probability measures p and ¢ can be
measured by the following conditional Kullback-Leibler (KL) divergence [8] :

D(p,q) = Kl Z Z p(Yij | (i, x;)) IOgM
(arq;,xj)ESyijE{—L-‘rl} 9 yl] v

which is non-negative and 0 iff p = q.
Let M be the space of all conditional probability measures. Define the feasible
set F C M as:

F={pe M| E,fx] = (fx) for all k}

where E,[-] denotes the expected value operator under p. Then the ME frame-
work entails the solution of the following problem : minimize D(p, qo) subject to
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p € F and a fixed prior measure ¢g. In our task, we assume a uniform prior for
qo- In this case it can be shown [7] that by setting up an appropriate Lagrangian,
the optimal solution denoted by pyg is the logistic function :

1
— L exp (= 20 A fi (i, 25, i)
where A is the set of Lagrange multipliers, one for each of the constraints

E,[fx] = (fx). These multipliers can be determined by minimizing the following
objective function :

(2)

pME(yij | (i, xj))

T\ f) = log(1 + exp(— (A, f(2)))) (3)

z€S

where (-, ) denotes vector dot product.

The dual objective looks very similar to the exponential cost function that
is minimized in boosting [2]. In fact it has been recently shown [7] how boosting
can be derived from the ME framework by using slightly different constraints
than those used here. The boosting framework was originally inspired by compu-
tational learning principles where the exponential cost function is a continuous
upper bound to the true discrete error function for the boosting classifier. Here
we have derived the objective to be minimized from first principles under the ME
framework. Furthermore, the ME framework allows us to generalize the scheme
in a principled manner to avoid over-fitting [I] if needed.

4 Selecting Good Features

First we note a duality between the ME framework and and the maximum
likelihood (ML) framework over exponential measures. Consider the family of
conditional exponential probability measures :

Q={peM | plyy | (@) o aolys | (i)™ omm) X e RN

Let p((xs,x;), yi;) be the empirical distribution over the assertions determined
by the training set S (since by construction each assertion in S is unique, p
will simply take the value 1/[S| over each assertion in S and 0 elsewhere). The
log-likelihood L of a probability measure p with respect to p is defined as :

L(ﬁap) = _D(ﬁap)

It has been shown [§] that the probability measure pyp, that maximizes the
likelihood over the exponential family @ is the same as pyg. Thus the two
optimization problems are dual to each other.

Now we consider the problem of selecting good discriminators. Assume that
we are given a large but finite collection C of discriminators hy,k = 1,... , N.
This is the case in our work where we use nearest prototype discriminators for
which the prototypes are chosen from the finite set of prototypes in the training
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set (see §[H). We wish to choose K < N discriminators from this collection that
gives the best combined discriminator. In practice, K will be determined for
example from run-time performance considerations.

We can formulate two criteria for choosing the best K discriminators, one
for each of the two frameworks. Under the more familiar ML framework [§],
for a fixed family of probability measures ), the criterion is to choose the K
discriminators that maximize the likelihood function L(p,p),p € Q. Formally
the ML criterion can be stated as follows :

Criterion ML. For a fized choice of K discriminators {hi,... ,hx} C C, let

p* be the probability measure that mazimizes the likelihood p* = argmax L(p, p).
PeEQ

Choose the K discriminators for which L(p,p*) is mazimum over all choices of

K discriminators from C.

Under the ME framework on the other hand, the authors in [T0] propose the
use of the mini-max entropy criterion. The context of their work was selection
of good features for texture synthesis. In their original formulation, the crite-
rion assumes a uniform prior model gy and chooses the K features such that
the resulting maximum entropy probability measure pyig has minimum entropy
over all choices of K discriminators. This criterion might seem less intuitive at
first than the ML criteria. It is based on the notion that the entropy of the
probability measure determined by a given choice of K discriminators indicates
how “informative” the discriminators are, the discriminators being more infor-
mative the lower the entropy. Thus the mini-max entropy criterion chooses the
K most informative discriminators. Since minimizing (maximizing) the entropy
of a distribution p is the same as maximizing (minimizing) the KL divergence
D(p, qo) where qq is set to the uniform distribution, the original mini-max en-
tropy criterion can be generalized for arbitrary priors gy and formally stated as
follows :

Criterion ME. For a fized choice of K discriminators {hy,... ,hx} C C, let p*

be the maximum entropy probability measure with constraints determined by the

corresponding testing functions fi,..., fk, i.e. p* = argmin D(p,qo). Choose
peF

the K discriminators for which D(p*,qo) is mazimum over all choices of K
discriminators from C.

We show in the following theorem that due to the duality between the ME
and ML framework, these two seemingly different criteria are in fact the same
when the ML criterion is applied to the exponential family @ :

Theorem 1. A set of K features optimize the ME criterion iff they also opti-
mize the ML criteria for the exponential family.

Proof. We first state an analogue of the Pythagorean theorem for the KL diver-
gence [3] :

D(p,q) = D(p,p*) + D(p", q), forallp € F,q € Q
where Q is the closure of @ and by the duality theorem [§],

pyL = argminD(p, p) = p* = argminD(p, qo) = pmE
PEQ peEF
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We set p = p, the empirical distribution from the training set S, and ¢ = ¢qo a
prior measure, both of which are fixed for a given learning task and thus D(p, qo)
is constant. Also since the log-likelihood is given by L(p, p) = —D(p, p), we have :

L(p,p*) = D(p", qo) + const

Thus choosing the K discriminators that maximize the likelihood L(p, p*) also
maximize the KL distance D(p*, qp) and thus the K discriminators that optimize
the ML criterion also optimize the ME criterion and vice-versa.

In practice, instead of searching for the best K discriminants all at once, we
select each discriminant in a greedy fashion one at a time. At iteration k, we have
k—1 < K discriminants that have been chosen in the previous iterations. We then
choose to add the discriminant that along with the previous k — 1 discriminants
gives the biggest gain in the ML or ME criteria. Concretely, this means we
choose the discriminant that along with the previous discriminants minimizes
the objective function J in (B). Optimization of J is a convex optimization
problem in Aq, ..., A\; that can be done using standard numerical techniques [9].

5 Nearest Prototype Discriminators

In this section, we describe in more detail the particular type of discriminators
that we use in our work. As mentioned in the introduction, nearest prototype
discriminators are easy to implement and widely applicable. Such a discriminator
is specified by the feature space the prototypes come from (color, histograms,
shape, etc.), as well as the number and locations of the prototypes. For example,
in the experiments that we report later, we use edge maps of images as one of
the features. In this case, a prototype in the discriminator will be an edge map.
The image space will be partitioned by the set of prototypes in the discriminator
where each partition corresponds to the subset of the image space that is closest
to one of the prototypes. The distance function that determines this partition is
the hausdorff distance between edge maps.

If we restrict the choice of the locations of the prototypes to be those in the
training images, we get a finite collection of discriminators C to choose from :
for each feature space, given m training images, there are a total of O(r™)
discriminators with r prototypes. At each iteration of the greedy search, we
can in principle exhaustively search C for the best discriminator (that which
minimizes J the most along with the other discriminators that were chosen in
the previous iterations).

In practice, this does not scale well when m is large. Instead, we use a simple
sampling technique that trades off the quality of the discriminator found for a
speed-up in the search process. Rather than searching for the best discriminator
at each iteration, we will search for a discriminator in the top s percentile (for
example s = 0.1%), where the discriminators are ranked according to the how
much they minimize J. Under this search strategy, we can show that with high
probability we can find a discriminator in the top s percentile by uniformly
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sampling the finite set of discriminators C a fixed number of times n that is
independent of the total number m of training examples and the number of
prototypes r required. More precisely, let 0 < § < 1, then it can be shown that
we need to sample :

o > 80

discriminators such that at least one of them is in the top s percentile with
probability at least 1 — 4.

6 Efficient Organization of Discriminators

For run-time performance, we would like to combine the discriminators that we
choose in an efficient structure. For this purpose, we adapt the work on “alter-
nating trees”, which is a generalization of decision trees (see Fig. (@)). The salient
feature that distinguishes alternating trees from regular decision trees is that a
node in an alternating tree can have multiple decision nodes as children. The
term “alternating” refers to alternating levels of two types of nodes : prediction
nodes, which in our task predicts whether two images belong to the same class
or not, and discriminator nodes which correspond to the discriminators that we
choose. A predictor node is associated with a subset U of the image space X that
pass through the the sequence of discriminators from the root to the predictor
node. In other words, the subset U is determined by the conjunction of discrim-
inators from the root to the predictor node. We can think of the rest of the
image space X — U as the subset that the predictor node “abstains” from. The
root node of the alternating tree is a predictor node associated with the entire
image space X. A predictor node can have a multiple number of discriminators
as children. Each discriminator node partitions the image space subset U associ-
ated with its parent predictor node. In turn, a discriminator node has predictor
nodes as children, each of which corresponds to a subset of the image space in the
partition induced by the parent discriminator node. The possibility of multiply
partitioning the image space gives the alternating tree more flexibility compared
with standard decision trees. In fact, by constraining each predictor node to have
at most one discriminator node as a child, we get a standard decision tree after
combining each predictor node with its sole discriminator child (if any).

In order that an alternating tree of discriminators can be incorporated under
the maximum entropy framework, we need to derive the testing functions fj, for
each discriminant hy in the tree. Recall from § [2] that the testing function f is
derived from the partition induced by a discriminator h : if h(x;,2;) denotes
whether two images are in the same (h(z;, ;) = +1) or in different (h(z;, z;) =
—1) partitions induced by the discriminator, then f(z;, z;,v:i;) = vijh(zi, x;)
tests whether the assertion ((x;, x;), y;;) is true for discriminator h. The partition
associated with a discriminator hx in an alternating tree is the partition induced
on the subset U of image space associated with its parent predictor node, as well
as the compliment subset X — U that the parent abstains from. Concretely, if
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Fig. 2. Alternating Trees. The tree alternates between prediction nodes (ellipses) and
discriminator nodes (boxes). Each prediction node is associated with a subset U of
the image space (marked by X ), which is partitioned by any discriminator child of the
prediction node. A prediction node outputs +1 when a pair of images are both in either
the subspace U associated with the node or in the compliment X — U, otherwise it
outputs —1. Each prediction node can have multiple discriminator nodes as children,
each of which partitions the subset U of image space associated with its parent predictor
node.

SR

the discriminator hy partitions U into U; and Us for example, then the partition
{X — U,Uy,Us} is associated with hg, from which the corresponding testing
function fj, is derived.

6.1 Summary

We now outline the iterative scheme for selecting nearest prototype discrimina-
tors in a greedy manner while composing them in an alternating tree. Assume
that we can extract a variety of features from images (intensity, edge maps, his-
tograms, etc.). Thus each image belongs to a set of feature spaces g € G. Denote
by C(g,S) the finite collection of nearest prototype discriminators constructed in
feature space g, where the locations of the prototypes are chosen from those in
the training set S. Let h*(g,S) € C(g, S) be the nearest prototype discriminant
optimizing the objective function J by the sampling scheme described in § Bl
The alternating tree is initialized to a predictor node that corresponds to
the whole image space X. At the start of iteration k, let T' be the alternating
tree constructed so far in the previous iterations. Let S; C S denote the subset
of training examples that reach the predictor node P; in T'. At iteration k, we
choose the discriminant A* that minimizes the objective function J from among
the set of all h*(g,.S;) over all choices of feature space g € G and training sets .S;
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associated with each predictor node P; in the tree. Note that since a predictor
node P; can have multiple children, each predictor node will participate in all
iterations, unlike the case for a standard decision tree where only the current
leaf nodes are considered.

At the end of a fixed number of iterations, we output the final alternating
tree with discriminators hy along with the optimal Lagrange multipliers Ag.
The corresponding testing functions f; along with A; determines the maximum
entropy conditional probability distribution pamg (yi; | (24, 2;)) given by (2). pme
can be used to determine if an input image xz; belongs to the same class of
objects as that of a training example x; as follows. Define the log-ratio for a pair
of images (x;,x;) with respect to the probability distribution pyg as :

_ 1. pue(y; = +1] (2 2;))
pz;,z;) = 5 log N — P Z/\khk T, i) (4)
The log-ratio indicates whether the input image x; is in the same class as the
training image x; if p(x;,x;) > 0, otherwise they belong to different classes.
The magnitude of the log-ratio can be thought of as the margin or confidence in
making the prediction. Using this observation, on input x; we output the class
label c; of the training example x; that is predicted to be in the same class as
z; (p(x;, ;) > 0) and whose margin is largest (|p(x;, ;)| is maximum over all
x;). Figure B gives the pseudo-code for the whole scheme.

Initialize :

1. Initialize the alternating tree 17" with a root predictor node.

2. Let G be the collection of feature spaces in which discriminators
will be constructed.

3. Let S; C S denote the training set that reaches a predictor node
P; € T from the root.

do for K iterations

1. For each ¢ € G and each S; corresponding to predictor node
P; € T, find the optimal discriminant h*(g, S;) using the sampling
scheme in § B

2. Add the best discriminator A* that minimizes J from among all
h*(g,S:) to the alternating tree 7.

Output : The discriminating rule @ with the Lagrange multipliers \j
that optimizes J.

Fig. 3. Pseudo-code for the iterative greedy scheme.
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Fig. 4. Example training (top row) and testing (middle row) views of 5 objects. For
each object 12 training views were taken in a circle around the object, and 24 testing
views were taken with varying clutter and occlusion. The bottom row shows more
testing examples for one the objects.

7 Results

We illustrate our approach on a multi-class discrimination task, where we show
the benefits of combining simple discriminants from different feature spaces (edge
maps and intensity histograms). In our task, we have five objects that need to
be discriminated from each other (see Fig. (). For each object, we collected 12
grey valued training images spanning the viewpoints around the object placed
at a desk. The training images have the objects at the center and are taken from
a fixed distance to the camera.

For our experiments, nearest prototype discriminators constructed from the
following two types of feature spaces are combined to construct the alternating
tree during training :

Edge Maps. Edge contours are quite insensitive to some illumination and view-
point changes. Two edge maps can be compared using the robust Hausdorff
measure [5]. The Hausdorff distance h(A, B) between two edge maps A and
B is given by :

h(A, B) = max (max min ||ja — b||, max min ||a — b||)
a€A beB beB acA

The distance is made robust to occlusion and clutter by replacing the max-
imum distance over all points in one set to the closest neighbour in the
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other set in the above expression by the distance at some percentile. In our
experiments we use a percentile of 75%.

Second-Order Histograms. A second order or correlation histogram [4] mea-
sures the distribution of grey value pixel intensities while taking into account
the relative positions of the pixels. Formally the histogram C/ (g, ¢’) measures
the number of pixel pairs in a subwindow centered around the object (80 x 80
in our experiments) that are a certain distance 7 apart and which have in-
tensities g, ¢’ respectively. The intensities in our experiments are quantized
to 15 levels. A second order histogram is more informative than a simple
histogram of pixel intensities due to the inclusion of the relative positions of
the pixels. In our experiments 7 is set to 5 or 10 pixels either horizontally or
vertically. Two histograms can be measured by the x2 distance :

(C1(b) — Ca(b))?

X(C1,Co) = Y C1(b) + C(b)

bebins
where b runs over the set of bins in a histogram.

In general, we can consider other types of feature spaces like color, shape from
shading etc.

For testing, we took 24 images of each object under varying levels of occlusion
for a total of testing 120 images. (see Fig. (@) for examples). In general, a
complete recognition system would typically be divided into two stages : an
object detection stage, which might be based on grouping principles or other
pattern recognition techniques, will first identify regions of the image that might
possibly contain objects of interest, and a second stage where these regions are
then passed to a discriminator for the identification of a specific object. This is
the approach for example in face recognition, where a general face detector can
be used to first identify regions in the input image that contains a face which can
then be recognized by a separate module. An object detection stage is beyond
the scope of this paper, and so in our work we will assume that the objects of
interest are roughly centered in the test images. Note that the testing images
still have significant clutter and occlusion.

Fig. (@) shows the training and testing error versus the number of discrimi-
nators in the alternating tree (or equivalently the iteration number in the greedy
selection scheme). In practice, the number of discriminators in the tree will be
dictated by the trade-off between the run-time performance and the testing er-
ror desired. For both the testing and training, three curves are shown based
on using discriminators from both the feature spaces described above (“haus-
dorff+histogram” in the plot), or using discriminators from just one of the feature
spaces (“hausdorff” and “histogram” in the plot). As expected, using discrim-
inators from multiple feature spaces can significantly enhance the performance
of the algorithm. In our experiment, at the end of 50 iterations the testing error
was reduced from 50.42% when using only edge maps or from 30.25% when using
only intensity histograms to 13.45% when using both. Most of the error is due to
one of the objects (phone) which does poorly with discriminators from either of
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Fig. 5. Training (a) and testing (b) error vs. number of discriminators in the alter-
nating tree. The testing error when using discriminators from both edge maps and
histograms (“hausdorff+histogram”) is significantly better (13.45% error for 50 nodes
in the tree) than when using discriminators from either feature space alone ( “hausdorft”
at 50.42% error and “histogram” at 30.25% error).

the feature spaces. It is quite possible that other feature spaces that we haven’t
considered can bring the error down even further.

We note that in our approach it is conceptually no more difficult to combine
discriminants from multiple feature spaces than it is to combine discriminants
from just one feature space. This is one of the advantages inherent in our ap-

proach compared with other approaches like neural networks that have difficulty
in working with disparate feature spaces.

8 Conclusion

We have shown how the maximum entropy framework can be used to combine
simple discriminants from a variety of feature spaces in a principled manner. The
nearest prototype discriminator is simple to implement and can be constructed
in any feature space with a corresponding distance function. We have shown that
two criteria for selecting discriminants - one in the maximum entropy framework
and the other in the dual maximum likelihood framework - are in fact equivalent.
For run-time performance, we have adapted the work on alternating trees for
combining simple discriminators into an efficient structure. Experiments on a
multi-class discrimination task validated the approach and showed significant
gains by combining simple discriminants constructed in different feature spaces.
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