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Abstract. We derive a pseudo-metric for weighted point sets. There
are numerous situations, for example in the shape description domain,
where the individual points in a feature point set have an associated
attribute, a weight. A distance function that incorporates this cxtra
information apart from the points’ position can be very uscful for
matching and retrieval purposes. There are two main approaches to do
this. One approach is to interpret the point sets as fuzzy sets. However,
a distance measure for fuzzy sets that is a metric, invariant under rigid
motion and respects scaling of the underlying ground distance, docs not
exist. In addition, a Hausdorfl-like pseudo-metric fails to differentiate
between fuzzy sets with arbitrarily different maximum membership
values. The other approach is the Earth Mover’s Distance. However,
for scts of uncqual total weights, it gives zcro distance for arbitrarily
different scts, and docs not obey the triangle incquality. In this paper
we derive a distance measure, based on weight transportation, that is
invariant under rigid motion, respects scaling, and obeys the triangle
inequality, so that it can be used in efficient database searching.
Morcover, our pscudo-metric identifies only weight-scaled versions of
the same set. We demonstrate its potential use by testing it on two dif-
ferent collections, one of company logos and another one of fish contours.

Keywords: pscudo-mctric, weighted point sct, shape recognition, index-
ing, triangle incquality

1 Introduction

In this paper we derive a distance measure for weighted point sets that is in-
variant under rigid motion, respects scaling, and obeys the triangle incquality,
so that it can be used in efficient database searching.

There are numerous situations where the individual points in a point set
have an associated value, a weight. It would be very interesting to try to define
distance functions that, apart from the position of the points, incorporate this
cxtra information as well.

The meaning of a point weight and the way it affects matching depends on
the particular application. For example, the weight could be a certainty measure
of the correctness of the points’ coordinates. The interpretation for matching
could be that points with low weight values match easier than those with high
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weight values, since their position is uncertain, and they have more freedom to
move around. Alternatively, a small weight could mean that the existence of the
point is uncertain; the smaller its weight the less its influence in the matching.

Another example of the meaning of a weight is the amount of some property
such as the curvature of points along a contour. Matching weighted point scts
is then a matter of matching one amount of curvature spread over a number of
locations, with another onc.

If the weights are in [0, 1] they could be interpreted as “membership values”
used in fuzzy sets. For the support set S, a fuzzy set U is a function U : § — [0, 1].
The value U(z) is thought of as the membership value of 2 in S. In other words,
the points have weights from [0, 1], where weight 0 means the point is not
contained in the sct and weight 1 mecans the point is completely contained in
the set. An ordinary or “crisp” set is a fuzzy set whose membership values are
either 0 or 1.

A similarity mecasure is a function defined on pairs of patterns indicating the
degree of their resemblance. Formally speaking, a similarity measure d on a set
S is a nonnegative valued function d : $ x S — R* U {0}. For many pattern
matching applications; it is desirable that d has some of the following properties:

i. Self-identity: For all @ € S, d(z,z) = 0.
il. Positivity: For all  # y in S,d(x,y) > 0.
iii. Symmetry: For all z,y € S,d(z,y) = d(y, z).
iv. Triangle incquality: For all z,y,z € S, d(z, 2) < d(z,y) + d(y, 2).
v. Transformation invariant: For a chosen transformation group G, for all x,y €
S, 9€G,
d(g(z), g(y)) = d(z,y). This also implies that d(g(A), B) = d(A, g 1(B)).

A function d having propertics (i)—(iv) is called a metrie. Other combinations
are possible: a pseudo-metric is a function that has properties (i), (iii) and (iv),
while a semi-metric is a function that obeys only (i), (ii) and (iii). In addition,
an invariant metric (pseudo-metric or semi-metric) for a group G can be used to
define a new metric (pseudo-metric or semi-metric) on shapes using minimization
under all transformations in G.

The triangle inequality is very useful for making searching more eflicient [1,
25]. This is based on the following observation. Consider a shape or point set 4;
that closely matches a query A, d(Aq, A,) is small. Let A, be some reference
shape. If the triangle inequality holds, d(A,, A5) < d(A,, A1) +d(A1, Ag), then
we know that d(A,, Aq) —d(A,, A1) is small as well. We can measure the distance
between a database shape A1 and a query A, by comparing their distances from
a reference shape A,. The computation of the latter distances can be done off-
line for all 4;. So at run-time the computation of a single d(A,, 4,) yields all A;
that resemble A, as much as A,, including those that resemble A,.

It is tempting to demand of any distance defined for fuzzy scts to be an
invariant under rigid motion metric and respect scaling of the underlying dis-
tance. In [3] it is proved that there is no metric that satisfies all these properties.
So it makes sense to take a close look at distance properties, and choose those
that are relevant for the application in mind. In this paper we are interested
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in a distance measure for weighted point sets that is invariant under rigid mo-
tion, respects scaling and obeys the triangle incquality. These propertics makes
it suitable for shape based image database retrieval: transformation invariance
is then used to recognize shape (represented as weighted point sets), and the
triangle incquality is uscd to cfficiently scarch the databasc. Depending also on
the application, the property of positivity can be dropped as long as this does
not result in counter-intuitive identifications of arbitrarily different scts.

In the next two sections we survey related work on devising distance measures
for weighted point scts. We expose advantages and disadvantages of proposed
distances in the literature and show that either the properties of interest don’t
hold, or when they do, they can produce extremely counter-intuitive results.
Then in section 4 we introduce a pseudo-metric, the proportional transportation
distance (PTD), which has the desired properties and identifies only weight-
scaled versions of the same sct. Finally we exhibit its potential use by testing it
on a company logo collection and a fish contour database.

2 Fuzzy Sets and Hausdorff Distance

An often used metric for general point sets is the Hausdorff distance. The di-
rected Hausdorfl distance between two general sets A, B is given by h”(A, B) =
SUD,e 4 Infpe 3 d(a, b) where d is one of the L, metrics. Then the Hausdorff met-
ric for A, B is defined by h(A, B) = max{h"(A, B),h"(B, A)}. The rest of the
scction gives an overview of some extensions of the Hausdorff metric to weighted
point sets that have been proposed. All of them use the notion of level sets. Let
S be the support set and a non-empty compact metric space. For a weighted
point set w, the set oy(w) = {& € Slw(x) >t} is the “internal” ¢-level set of w;
the set & (w) = {x € S|w(z) <t} is called the “external” t-level set of w.

An extension of the Hausdorff distance that is a metric, respects scaling of
the sets and is invariant under isomorphisms is defined in [4]. However the seri-
ous drawback of this dcfinition is that it is not always valid, since not all the scts
have the same maximum membership values. As a consequence the level sets
are empty for some sets and membership values, and the Hausdorfl distance be-
tween the empty and some other set is undefined. This problem can be solved by
modifying the sets such that they have the same maximum membership value.
This has the undesirable cffects that the nature of the scts change, and that
sets that initially differ only in their weights cannot be distinguished anymore,
e.g. two sets that are equal at all support points except their maxima. In other
words, uniqueness is not satisfied any more and the distance fails to differentiate
between fuzzy sets with arbitrarily different maximum membership values. This
problem can be tackled by adding a term that is a metric itsclf, denoting dis-
similarity rather than geometrical distance based on weights of the original sets
only. On the other hand, under this correction, the metric will no more respect
scaling of the underlying distance. Both definitions coincide with the ordinary
Hausdorfl distance for crisp sets.
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Another metric was defined in [2]. Here the problem of emerging null level-
scts is solved by introducing an auxiliary compact sct S’ where SN S' =0, and
extending every fuzzy set w defined on S to the fuzzy set w' defined on S U S’
such that w'(x) = 0 for all x € §’. Under this definition the resulting distance is
a metric, respects scaling but is not motion invariant. Another disadvantage of
this metric is that it does not coincide with the ordinary Hausdorff distance in
the case of ordinary scts. For a general compact set S, the sclection of 57 might
be difficult and different selections have different effect on the metric H. The
arbitrary choice of S’ makes this metric less appealing than it seems, though in
the simple case of S being the set of pixels of an image, S’ can naturally be the
border of the image.

Last, another proposal comes from [8]. If S is a compact metric space then it is
bounded in the Euclidean space. We arbitrarily choose the diameter d of S; then
d = suph(U, V) exists for all non-empty compact subsets U,V C S. Then the
Hausdorff metric can be extended such that h(, 0) = 0 and h(U,0) = h(0,U) =d
for all non-empty compact subsets U of §. Under this convention the distance
can be defined as in [4]. This metric is motion invariant, coincides with the
Hausdorff distance for crisp sets but does not respect scaling since d is fixed. An
intuitive drawback is that the value of the metric can be heavily biased by the
diameter d.

3 The Earth Movers Distance

3.1 Definition

Let A = {a1,a2, ...a,} be a weighted point set such that a; = {(2;,w;)},i =
1,..,m, where z; € R¥ with w; € R* U {0} being its corresponding weight. Let
also W=3""_, w; be the total weight of set A.

The Earth Movers Distance between two weighted point sets measures the
minimum amount of work nceded to transform one to the other by moving weight
under certain conditions which arc discussed later on. Intuitively speaking, a
weighted point a; can be seen as an amount of earth or mass, equal to w; units,
situated at x;; alternatively it can taken as an empty hole of w; units of mass
capacity. We can arbitrarily assign the role of the supplier to one set and that
of the receiver/demander to the other one, setting, in that way, the direction
of weight movement. The EMD then, measures the minimum amount of work
needed to fill the holes with earth.

Formally, the EMD can be expressed as a linear programming problem. Given
two weighted point sets A, B and a ground distance d, we denote as f;; the
elementary flow of weight from x; to y;, over the elementary distance d;;. If
W,U are the total weights of A, B respectively, the set of all feasible flows
F = [fij] is defined by the following constraints: {(i)fi; > 0,4 = 1,...,m,j =
1,e,mn (ii)Z;"zl fii S wiio= 1, .om, @)Y fig < ud = 1,.n
(V)22 3051 fij = min(W,U). These constraints simply say that each par-
ticular flow is non-negative, a point from the “supplier” set does not give away
more weight than it has and a point from the “receiver” set does not receive
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more weight than it needs. Finally the total weight moved is the minimum of
the total weights of the two sets.

The flow of weight f;; over a distance d;;, is penalized by its product with
this distance. The sum of all these individual products-costs is the total cost paid
in order to transform A to B. The EMD(A, B) is defined as the minimum total
cost over F, normalized by the weight of the lighter set; a unit of cost or work
corresponds to transporting a unit of weight by a unit of ground distance. That

is: EMD(A, B) = minFEf,rgi;(a%;)*l L% Stated in a different way, the EMD is
the average ground distance that weights travels during an optimal flow [6].

An extensive work on the history, theory, modifications and applications of
gencral Mass Trangportation Problems can be found in [17) and [18]. The carth
movers distance has been used for colour-based image retrieval by Cohen [5] and

Rubner [21] as well as shape-based image retrieval [5] and [10].

3.2 Properties and Computation

The most important propertics of the EMD can be summarized below:

1. Tt is a metric if the ground distance is a metric and is applied on the space
of equal total weight sets. A nice proof of this can be found in [21].

2. Its transformation invariance group coincides with that of the ground dis-
tance (assuming transformations that do not modify the weight of the
points).

. Tt respects scaling of the underlying ground distance.

. Tt is invariant under uniform weight scaling.

. Tt allows for partial matching by definition, thus showing some tolerance for
occlusion, since the total weights need not be the same. In the case of two sets
with unequal total weights, some of the weight of the heavier distribution
remains unused or unmatched depending on the direction of the weight flow.

6. It is continuous, in other words, infinitesimal small changes in position

and/or weight of existing points cause only infinitesimal change in the its
value. Moreover addition of a point, i.e noise (which can be seen as increas-
ing its weight from zero to a positive value) can lead to an arbitrary small
change in the EMD’s value by making the point’s weight arbitrarily small.
These two facts simply imply that the EMD is deformation and noise robust
according to the corresponding robustness axioms presented in [11].

CU ok

The EMD can be computed cfficiently by solving the corresponding lincar
programming problem, using for example a streamlined version of the simplex
algorithm for the transportation problem [12]. In practice simplex performs well,
but in theory it can preform an exponential number of steps before giving a
solution. Theoretically better - polynomial time - algorithms for general linear
programming, like an interior point algorithm could be used; however it is likely
to perform better than the simplex method only for very large problem sizes.
Since the transportation problem is a special case of the minimum cost flow
problem in networks, a polynorial time algorithm that solves the latter can be
used as well [19].
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3.3 Drawbacks of the EMD

Let AV denote the space of weighted point sets, in which any two scts can have
unequal total weights. The EMD has the following drawbacks when applied on

N:

1. It does not obey the positivity property, see section 1. The EMD does not
take into account the surplus of weight, if any, between two sets. As a result,
there are cases where it does not distinguish between two non-identical sets.
For example in figure 1, B’ was constructed by adding just the point b} of
arbitrary weight v to B. However EMD(B, B')=0. We can add new points or
weight on existing points on the left of b, thus making B’ arbitrary different
than B, but its distance to B will not increase.

2. It does not obey the triangle inequality. Figure 1 gives a simple counter-
example. Moving point ¢; to the right, thus increasing =, can invalidate the
triangle incquality between sets A, B and C: The incquality holds for e = 1
but not for £ = 10. As a result the EMD prevents the triangle inequality
from being used in speeding up database retrieval.

Consequently the EMD on N is not a metric.
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Fig. 1. The EMD does not distinguish between sets B and B’, and does not satisfy
the triangle incquality for scts A, B and C.

4 The Proportional Transportation Distance

An interesting question, that naturally arises, is the following: is there a simi-
larity measure based on weight transportation such that the surplus of weight
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between two point sets is taken into account and the triangle inequality still
holds?

In the sequel we present a new distance for weighted point sets in N. Let
A,B € N. When measuring the distance from A to B, rather than taking A
as the supplier and B as the demander moving only as much weight as needed,
trying to fill the ‘holes’ with ‘earth’, we move the total weight of 4 to the
positions of the points in B. What we measure then, is the minimum amount of
work needed to transform A to a new set A’ that resembles B. In particular, we
redistribute A’s total weight from the position of its points, to the position of
B’s points lcaving the old percentages of weights in B the same.

We call this distance the Proportional Transportation Distance (PTD); it is
defined as follows. Let A, B be two weighted point sets and d a ground distance.
The set of all feasible flows F = [f;;] from A to B, is now defined by the following
constraints: (1)f;; > 0,i=1,...,m,=1,...,n, (ii)z:;":] fig=wi,i=1,..,m,
(ii)d 22, fij = TLJiJW J=1 e, (V)20 Z;L:] fij =W.

The PTD(A, B) is given by: PTD(A, B) = Zireraiidimifodu gy
straints 2 and 4 forces all of A’s weight to move to the positions of points in B.
Constraint 3 ensures that this is done in a way that preserves the old percentages
of weight in B. Next, we examine PTD’s propertics.

4.1 Properties

Let us take a closer look at PTD’s definition. While measuring the PTD(A,
B) for any sets A and B, if we substitute the variables fi;, i, j = L.n,m in
its LD formulation, call it Ly with f..W (W # 0 is the total weight of A) we
get the following LD problem: minpex ;" 37| fi;di; , where F is defined by:
W) ff; =0, ()37 fi; = wi/W, ()30 fl; = uy/U, (V)32 305 fij = 1.

It is clear that this new formulation, call it LPg, gives us the distance between
the two scts of percentages of weights in A, B. Note that the total weights of the
new sets are both equal to one. Since the substitution function f;; = fl’J W, W £0
is bijective, LP; is equivalent to LPs. This means that we are working again on
the space of equal total weight sets.

However, it’s obvious that more than one LP; problems can he equivalent to
the same LI’s problem i.e. any two weighted point sets of the same cardinality
and positionally coincident, can have the same percentages of weight at the same
positions although their corresponding individual weights are different.

We can now state the properties of PTD.

1. It obviously has the identity property.

2. Tt obeys the triangle inequality. This follows from the equivalence between
the two LP formulations stated above.

3. It does not follow the positivity property since the distance between posi-
tionally coinciding sets with the same percentages of weights at the same
positions is 0. However this is the only case in which the distance between
two non-identical point sets is zero. The PTD will distinguish two sets B
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and B’ where the one came from the other by adding even only one point
(sce cxample in figure 1).
4. Tt has all the other propertics that the EMD for cqual total weight scts has.

It follows that the PTD is a pseudo-metric. Of course, by identifying sets with
zero distance we can produce a metric on the resulting partition of the set A of
generally unequal total weight sets.

5 Experimental Results

We have tested our pseudo-metric on two different image collections, one of logos
and another one of fish contours. Our primary objective is to show that it can
actually be used in shape-based object recognition; this together with its prop-
erties, namely the triangle inequality, would make it a good candidate for image
retrieval applications as explained in the introduction of this paper. However, it
was not our purpose to find and exhibit the best matching and retrieval proce-
dure possible for logos and fish specifically; in the course of the next sections,
we discuss also about how our experimental results can be improved.

In both cases the original images are reduced to feature weighted point sets.
The weight of a point represents its importance in the image: its edge strength
value in the first collection and a curvature measure value in the second. In order
to calculate the PTD between two sets, each set is first normalized by its total
weight as the LD» formulation suggests. The distance computation is based on
the EMD publicly available code [9]. This code implements a special version of
the simplex method, see section 3.2.

5.1 Logos

The UMD-Logo-Database [13] contains 105 grey-scale images that are black and
white scanned versions of logos. We have sclected only 14 logos, good represen-
tatives of the whole database, to test the PTD. These can bhe seen in the first
column of figure 2.

The weighted point sct for cach logo is constructed as follows. First, we iden-
tify edges using a Canny edge detector [23] and corners using the SUSAN corner
detector [22] and [26]. Then an intermediate weighted point set is constructed
by selecting only edge points that are also corners, keeping the intensity in the
edge image, rather than in the original image, as the point weight. The higher
the intensity the more important the point. In this way, we keep the most dom-
inant in the logo’s shape points reducing the initial number of edge points from
some thousands to some hundreds - in most cases less than 500. This makes the
computation of the PTD between two sets possible in a reasonable amount of
time. For example the PTD between two sets of around 300 points each, takes no
morc than 20 scconds on a typical Pentium 111, 500MHz with 128MB of memory.

Finally, the bounding box of the logo in each image is first centered to the
origin and then scaled to a unit area rectangle. Taking into account the purpose
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Fig. 2. Top six matches for the 14 selected logos.

of our experiments and the type of the logo images in the database, this simple
normalization compensates satisfactorily for translational and scaling effects in
the original images. Since there are hardly any rotated versions of logos we did
not incorporate any rotational normalization.

Note that ‘weak’ outliers, that can frequently occur in scanned versions of
images, may not be detected as edges or points. Since the feature point extrac-
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tion precedes the normalization step, outliers may be prevented from wrongly
determining the bounding box of cach logo’s.

We have computed the distance for every pair of the selected logos. Each
line in figure 2 shows the initial logo image, its corresponding weighted point set
and best 6 matches. The width of the dots in the weighted point scts is relative
to the values of the weight. This can be easily seen in the apple in the second
raw where points in its interior have lower weight than points on its outline. As
an indication of the actual distance values, here are the values for the Apple
logo in the first row, from left to right: 0.0, 0.087, 0.146, 0.147, 0.152 and 0.157.
Interestingly enough, the worst match for both Apple logos is the Microsoft logo
(this is not shown here due to limited space) with a distance value of 0.3958 and
0.3956 respectively.

For almost all logos the weights arc within a very small range. Discarding the
weights, thus setting them all to 1, can produce bad matches only for those sets
that have many points with low weight. For example a query with the second
in the query column Apple logo, gives as a best match, after itself of course, the
rounded logo with the bird inside (fourth in the query image column); the other
Apple logo, first in the column, comes sccond. This is due to the fact that more
weight in the interior of the query Apple logo has to travel towards the outline
of the first Apple logo. In general, the use of the edge strength as the weight
value will really pay off if the test database consists of noisy e.g blurred images,
provided that our feature detectors are good enough to avoid most of the noise.
Then, the higher the intensity of a point in the edge image, the more certain we
are about its participation in the object’s shape.

query points

matchtl match 4 match 6 match 6

Fig. 3. Top six matches of the Apple logo using the EMD.

Last, we have compared our PTD results with those of EMD: for the second
in the query column Apple logo, the best six matches using EMD are shown in
figurc 3. The rcason bchind this is that the weighted point that corresponds to
the Apple logo has almost a hundred points while the one of the University of
Maryland has almost a thousand and much more total weight. When they arc
matched almost every point in the Apple’s set will coincide or be very close to
a point in the Maryland’s set and thus little weight is moved.
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5.2 Fish Contours

Our second test data set comes from the SQUID database [7] which contains
1100 images of contours of marine animals, mostly fish. Each one of them is
thinned to a one pixel width contour which is actually a simple polygon with its
defining points ordered, in our casce, clockwisc.

Preprocessing. In order for our computations to be independent of orienta-
tion, position and scaling the following preprocessing steps arc applied to the
polygons. First, each polygon’s center of mass is translated to the origin. Then
the polygon is rotated around the origin in such a way that its major principal
axis, identified with the PCA method [15], coincides with the x-axis. Next, cach
polygon is re-translated so that the center of its bounding box lies on the origin.
The rcason behind this translation lies in our choice of corners as feature points,
see next section; since they probably lie on the bounding box, we would like them
to play a bigger role in the translational normalization. Finally the polygon is
scaled so that its bounding box has unit arca.

Corner Extraction. Corners are points with high curvature and therefore sig-
nificant for a polygon’s shape. As alrcady mentioned in the beginning of section 5,
we would like to select points with high curvature, and construct a weighted
point set with the weights set to the actual curvature value. However, discrete
curvature estimation is a difficult problem by itself. Several algorithms have been
proposed, each one with its advantages and drawbacks [27].

We used a simple, fast and casy to implement corner detection algorithm
by Rosenfeld and Weszka [20], [24]. The algorithm computes the value of a
curvature measure for each point and then retains only points of local maxima as
corners. A smoothing parameter determines the region of support, the curvature
measure value for each point and, as a result, the number of output corners. We
sct this smoothing paramcter to 0.045 for all input polygons. This gives us a
small number of corners between 15 and 30 in most cases.

Here we should re-emphasize the fact that this curvature measure was used
as a way to obtain weighted point scts and demonstrate the use of the proposed
pseudo-metric and is not of the best interest of the application itself; we applied
it on onec particular collection where all the contours have been gencrated in
the same way and on the same scale. Moreover, while computing the curvature
measure, the same smoothing parameter was used for all the contours. Further
discussion on the cffects of this feature extraction choice on the matching results
can he found in the next section.

Distance Computation and Results. We computed the distance for all pairs
of all fish polygons. We should mention here that although the PCA method gives
the two principal axis, it lacks any information about their direction, resulting
thus in a two way ambiguity for each of them. In our case this means that there
are two configurations resulting in the same set of principal axis. This has heen
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observed by other researchers as well [14]. We deal with this problem as follows.
Let A, B be two normalized weighted point sets and —B a rotated by 180 degrees
around the origin version of B. Then: PTD(A, B)=min{PTD(A, B), PTD(A4,
—B)}. Since the sets are small the computation of the distance takes no more
than 0.2 scconds on a machine with the same configuration as the one used for
the logo collection.

In figure 4 the five best matches for example polygon queries are shown. The
results are organized in pairs of rows where the first row shows the normalized
polygon and the second the normalized weighted point set. Their orientation is
the onc of the two that gave the minimum distance according to the previous
paragraph. The distance values, from left to right, for the shark query are as
follows: 0.0, 0.082, 0.091, 0.102, 0.109. In contrast with the point sets in figure 2,
the weights here are spread over the whole range of values in (0, 1); this is shown
by dots of variable width. Thus discarding the weights, influences the results;
the same, more or less, sct of shapes is then retrieved but more similar shapes
can come after less similar ones.

The corner extraction method used here imposes a trade off between the
number of output corncr points and the relevance of the curvature measurc
value to the actual curvature value. Adjusting the smoothing parameter to give
out more corners will result in a weight distribution quite different from the
actual curvature distribution. Less corners; however, enclose less information on
the polygon’s shape.

Figurc 5 shows a countcr-intuitive example. Here, the first column corre-
sponds to the query and best match and the second to the second best match.
Note for example that the two spikes close to the ‘belly’ of the second fish are
matched with point’s on the ‘belly’ of the first fish although the latter does
not have spikes. Note also that the belly of the second fish is represented in
its weighted point sct only by onc point of low weight. A bad corner detector
and curvature measure can give point sets with points in close positions which
correspond to dissimilar shapes. A way to prevent bad matches, is to incorpo-
rate a better curvature measure together with a way of selecting a set of points
that contains almost all points of relatively high curvature and is big enough to
outline the polygon’s shape.

We have examined many other query results through a simple demo that
can be also found in our web page [16]. Although shape similarity is a highly
subjective matter, generally argued similar shapes arc given as a result for most
queries. Overall the results are satisfactory and indicate that our pseudo-metric
is promising.

Moreover, the web site demonstrates two ways of retrieval: the full distance
matrix approach and the vantage (reference) shapes method, described in sec-
tion 1. In the first all the distances are precomputed. This approach is of course
fast, and gives all best matches that the user is interested in without false posi-
tives. A query with a new image can be dealt with by using linear search, where
the distances from the new image to all the images in the database are com-
puted. In our case, taking into account the average size of a weighted point set
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Fig. 5. A counter-intuitive match.

corresponding to a fish contour, this method will give a query time of about three
to four minutes; clearly, the linear search method is not at all suitable for larger
collections. An alternative to the latter is the vantage objects method which,
taking advantage of the triangle inequality, is both scalable and fast. Given a
query image and a positive constant ¢, all images in the database that are within
distance e from the query are returned, together with some false positives. In
our case, using for example ten vantage objects, the query time is not more than
two scconds, on the average.

6 Concluding Remarks

We have presented a pscudo-metric for weighted point scts, based on weight
transportation. Our distance is an improvement over previous approaches in that
it obeys triangle inequality, respects scaling of the ground distance, is invariant
under rigid motion and docs not identify arbitrarily diffcrent point scts.

We show that PTD can be used in shape based matching and, through tri-
angle inequality, in efficient shape retrieval by testing it on two collections with
different characteristics. For the company logo colleetion, the weights are sct to
an intensity value indicating edge strength; for the fish contour database the
weights are set to a curvature measure value. We also show the importance
of good feature extraction in the matching results giving directions on how to
improve them as well.

Finally, we should mention that in order to take into account transformation
factors, a different approach is to minimize the proposed pseudo-metric under all
transformations in a given transformation group. An algorithm for minimizing
the EMD was given in [6]. Although this approach increases the computation
time considerably and can be trapped in local minima, it is a better approach
for applications that require partial matching when the EMD on unequal total
weight sets is used [5]. A more general and difficult to solve partial matching
problem can be formulated as follows. Given two sets A, B, ¢ > 0, k> 0 and a
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transformation group G find subsets A’ of A and B’ of B, with |A’| > k, and
g € G such that PTD(g(A"), B") < e. This gives us some challenging future
research directions.
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