Image Segmentation by Flexible Models Based
on Robust Regularized Networks

1,

Mariano Riveral? and James Gee!

! Department of Radiology, University of Pennsylvania
3600 Market Street, Suite 370, Philadelphia, PA, USA 19104
{mrivera,gee}@grasp.cis.upenn.edu
2 Centro de Investigacion en Matematicas A.C.
Apdo. Postal 402, Guanajuato, Gto., Mexico 36020
mrivera@cimat.mx
http://www.cimat.mx/ "mrivera

Abstract. The object of this paper is to present a formulation for
the segmentation and restoration problem using flexible models with
a robust regularized network (RRN). A two-steps iterative algorithm
is presented. In the first step an approximation of the classification
is computed by using a local minimization algorithm, and in the
second step the parameters of the RRN are updated. The use of robust
potentials is motivated by (a) classification errors that can result from
the use of local minimizer algorithms in the implementation, and (b)
the need to adapt the RN using local image gradient information to
improve fidelity of the model to the data.
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1 Introduction

Image segmentation from different cues (such as gray level, local orientation or
frequency, texture, and motion) is typically formulated as a clustering problem,
where the consideration of spatial interactions among pixel labels provides ad-
ditional, useful constraints on the problem. Thus, in order to classify a pixel,
one takes into account the observed value (which is generally noisy) and the
classification of neighboring pixels. Specifically, let g be the image that is to be
segmented into K classes according to its gray level, then—in the context of
Markov random fields [I]— the classification ¢ and the means of the gray levels
p = {p1, 2, ..., ix } can be computed by minimizing a cost functional of the
general form:

U(C,M):Z{Vl (,uc,,._gr)‘i‘/\ Z ‘/2(07";05)}’ (1)

reL sEN,

where r indicates the position of a pixel in the regular lattice L, ¢, € C (with
C ={1,2,...,K}) is the classification for pixel r, u, is the centroid of class ¢,
the neighborhood N, = {s : |s — r| = 1}. Functional () has two terms, their
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contribution to the total cost controlled by the positive parameter \. Within the
context of Bayesian regularization, the first term corresponds to the negative
of the log-likelihood and promotes fidelity of the segmentation to the observed
data. Assuming Gaussian noise, for instance, V; (z) = |#|*. The second term,
regularization term, encodes our a priori knowledge that the images contain
spatially extended regions. To achieve this, the potential of the regularization
term is constructed to penalize differences in the classification of pixel r with
respect to the pixels within its neighborhood N,., one of the most commonly
used being the Ising potential [3]:

Va(z,y) =1—26(z —y), (2)

where §(-) € {0, 1} is the Kronecker’s delta function. The trouble with the Ising
potential (), however is that it leads to a combinatorial optimization problem.
Stochastic algorithms that can minimize (), such as simulated annealing [2][3],
are extremely time consuming. In contrast, fast deterministic algorithms such
as the Iterated Conditional Modes (ICM) [4], are easily trapped by “bad” local
minima. Consequently, investigators have proposed fast segmentation schemes
that produce “good results with reasonable computational cost” based on ap-
proximation of the cost functional () or variants of deterministic minimiza-
tion algorithms; for example, the techniques as the Mean Field theory [5][6],[7]
Multigrid-ICM [8], Relaxation Labeling [9][10], Annealing-ICM [11], or more re-
cently Gauss-Markov Measure Fields [12].

In the early work of Darrell and Pentland [I3], simple multi-layered mod-
els (based on polynomials) are used to represent and segment smooth piecewise
gray scale images or optical flow fields for regions containing multiple motions.
More recently, other authors have reported different approaches toward or appli-
cations of layered models. In the work of Black et al. [14], models were proposed
for computing the optical flow from a pair of images under changes of form,
illumination, iconic content (those produced by pictorial changes in the scene)
and specular reflections. Specifically, affine transformations or linear combina-
tions of basis displacement fields model the motion in the regions. The model
parameters and the membership weights (that define the support region for each
model) are computed by using the Expectation—Maximization (EM) algorithm.
Recently, Marroquin et. al. [T5] introduce the MPM-MAP algorithm, an EM like
algorithm. In which the classification is computed by approximating the MPM
estimator using Gauss—Markov measure field models [12] and applying paramet-
ric models based on a finite element basis functions. The resultant models have
greater flexibility for capturing the inherent geometry of the images.

Samson et al. [I6] have reported a variational approach to classification (seg-
mentation) and restoration, in which robust multimodal potentials are used to
perform piecewise smooth restoration of images. The segmentation is automat-
ically obtained by detecting the valleys (local minima) within which restored
pixels lays. The minimization of the corresponding energy functional is achieved
by means of an efficient deterministic algorithm. However, it is not clear, how
spatially varying classes can be introduced, which may be required for represent,
for example, illumination gradients.
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This work builds on the fore mentioned methods and recasts them in a gen-
eral variational framework, We develops a formulation for the segmentation and
restoration problem using flexible models within a robust regularized network
(RRN). Without loss of generality, the technique (based on an iterative algo-
rithm) is presented in the context of image segmentation based on gray level
intensity. In the first step of the iterative algorithm, an approximation of the
classification is computed by using a local minimization algorithm. In the sec-
ond step, the parameters of the RRN are updated. The use of robust potentials
is necessary for two reasons, which will be developed in full in the remainder of
the text:

1. To account for errors in the classification step that result from the use of a
local minimizer.

2. To improve the fidelity of the segmentation to the data, the flexibility of the
RN must to be adapted according to the local image gradient.

The plan of the paper is as follows. In the next section, we present a general
framework for adaptive flexible models. The formulation of our models is based
on Regularized Networks (RN) [17] with a robust potential for the data term and
a quasi-robust potential for the regularization term [18]. Then, in subsection 2.2,
the complete cost functional is described. Next, a general iterative minimization
algorithm is proposed. In subsection 2.4, details of the implementation are dis-
cussed. Numerical experiments that demonstrate the performance of the method
are presented in section 3. Finally, our conclusions are given in section 4.

2 Segmentation and Restoration with Flexible Models

In order to motivate our cost functional, first let us assume that the classifica-
tion is given and it contains some errors as a product of noisy data or inexact
models. The formulation of the energy functional for a specific class must there-
fore take into account that the data may be corrupted by outliers. Then, based
on the introduced robust models, the complete functional for classification and
restoration is presented. For minimizing the cost functional (which by construc-
tion is bounded by zero), we propose a deterministic iterative algorithm which
alternates between two steps: updates of the classification (by means of a lo-
cal minimization); and updates of the restoration (by means of a half-quadratic
minimization scheme [20][21][22][23]).

2.1 Flexible Models Based on Robust Regularized Networks (RRN)

Without loss of generality, the algorithm is presented in the context of image
segmentation based on gray intensity level. First, we note that an image can be
viewed as an ensemble of regions each with smooth intensity gradient (i.e., we
are assuming a piecewise smooth image model), so the parametric model that
we use for representing the data in each region must be consistent with this
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assumption. For representing the restored data ¢ that belongs to the class ¢, we
choose a model based on a regularized network [17]. Given a class ¢ = ¢, the
associated restored data ¢ is computed as the minimizer of the cost functional:

RO = > p1(r(0:,6) = gri k1) + 7P (6 (0z,6)) (3)

rel:c,=¢

where P is a regularization term over the model whose contribution to the total
cost is controlled by the parameter v, and ¢, (6s, ¢) is the computed value for
pixel r (that belongs to class ¢) with corresponding parameter 6;:

¢ (0e,¢) = Z 0.0 (1), (4)

where ®; (r) represents the j*" interpolation function evaluated at the pixel r
whose contribution is controlled by the parameter 6; ;. p; is a robust potential
function for outlier rejection and &y is the associated positive scale parameter
[20][22)[23][24] [18][25]. In section 2.4 (Implementations Details), we specify the
robust potential p; and ps and the form of the interpolation functions &. Ex-
amples of models with the form (@) include Radial Basis Functions (RBF) or
Additive Splines [17][26][27]. We use a robust potential in the data term because
the classification field ¢, may be corrupted by outliers as a product of noisy data
or inexact models. The classical (Lg) regularized network of RBF corresponds
to choosing p; (z) = x2.

For choosing the form of the regularization term P, we take into account
that:

1. The data term in (@) is only evaluated at the pixels that belong to class é.
Therefore, the regularization term P allows us to interpolate over missing
data (those sites that do not belong to ¢).

2. Regions with an inhomogeneous smoothness.

Therefore, we propose the following regularization term P in (3)):

P (¢ (07 é)) = Z Z P2 (¢T (ecw CT) - ¢s (905765) 5 k2)

reL:c,=¢ SEN,:cs=¢

1 > (D (06,8) = b (82,0))°, (5)

rel seN,

where the first term in (B uses a robust potential function ps (with scale pa-
rameter ko) over the discrete version of the gradient of ¢ at those sites that
belong to é. This allows the model to adapt its stiffness according to the data.
The second term implements a quadratic potential over the gradient of ¢ on
the whole domain. The quadratic potential has two effects: performs a smooth
interpolation (or extrapolation), and avoids an over—relaxation of the stiffness
of the adaptive model. The trade—off between the two terms is controlled by the
positive parameter .
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2.2 Cost Functional for Restoration and Segmentation Based on
Robust Regularized Network (RNN) Models

Given the flexible models, (@), @) and (), we can specify the complete cost
functional for restoration and segmentation:

UR(Cv 9) = Z l:H(CTa 907‘; C’H 87) + Z Z /\3 (¢r (0q7 Q) - ¢s (0q7 Q))Q ’ (6)

rel SEN, qgeC

where H(c,,0.,) is a local energy functional:

H(Cmecr; Cr7 @T) = pP1 (¢r (ecm CT) — Jr; kl)
+ Z A1(1—d(cr —c))

SEN,.
+/\2P2 (¢r (90,,» Cr) - ¢s (961'7 Cr) 5 k2) 5(Cr - Cs)]7
(7)

Cr={cs:s€ N} and O, = {f., : s € N} and A1, Ay and A3 redefine the
regularization parameters \, v and p.

Functional (@) was derived by assuming that the classification was given.
Note that in order to compute the minimization with respect to the classification
¢ (keeping 6 fixed), we need to take into account an additional regularization
term [weighted by Ao in (@)] that does not appear in the original functional
(M. We can understand the effect of this new term as follows: the first term
[in (@)] penalizes unconditionally the granularity of the classification (an over—
segmentation), while the second term [ in ()] promotes the change of data model
only if the gradient of the model ¢ is large enough (via the robust potential ps).

2.3 Minimization Algorithm

The computation of the global minimum of (B) (the segmentation ¢* and the
parameters of the restoration defined by the set of models 6*) corresponds to

{c", 0"} = argmien Ur(c,6). (8)

An effective approximation is to alternatively minimize (@) with respect to ¢
and 6 by iterating between following two steps until convergence (given an initial
guess for the model parameters 6. and setting ¢ = 0):

1. Update the segmentation c, keeping fixed the restoration 6*:

t+1

= inU, 6%).
c arg min Ug/(c, 0)

2. Update the restoration 6, keeping fixed the segmentation ct*!:

0" = arg min Ugr(c'™,0),

and set t =t + 1.
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The combinatorial optimization implied in step 1 can be performed by
stochastic algorithms (SA) such as simulated annealing or Gibbs sampling . How-
ever, it is well known that stochastic methods are extremely time consuming,
and for this reason, deterministic approaches have been preferred (e.g., Iterated
Conditional Modes, Mean Field Annealing, Label Relaxation, and others [1]) in
spite of the fact that only the computation of a local minimum is guaranteed.
The use of heuristics, such as multigrid algorithms, graduated non-convexity or
the provision of a good initial guess, reduce the risk of being trapped by “bad”
local minimum. Thus, good quality results can be computed at a fraction of the
time than with SA algorithms. With this in mind, we present a deterministic
algorithm for minimizing (@).

First, we note that for a given classification ¢, (@) is half-quadratic with
respect to the restoration parameters ¢ [20][21][22][23]. Thus, in order to perform
this minimization, we can use efficient algorithms (as reported in [18][23][28])
that guarantee convergence to a local minimum. Our iterative algorithm consists
of the followings two steps:

1. Update the segmentation ¢ (keeping fixed 6) by performing a local optimiza-
tion using ICM:

it = arg miré H(c,,0.); forall relL,
cre

where H is given in ().
2. Update the parameters of the models 6 (keeping c fixed) by using a Half—
Quadratic minimization:

0! = arg mein Ur(c™,0),

and set ¢t =t + 1.

In practice, step 1 is performed more that once (in our experiments we per-
formed three iterations), which guarantee that

UR(CH_l, 9") S UR(Ct,Ht).

On the other hand, the minimization indicated in step 2 is not completely
achieved, in order to guarantee convergence it is only necessary that

Ur(c', 0" < Ug(cTH, 6Y),
thus, we performed only three iteration the weighted Gauss-Seidel algorithm
[18][23].
2.4 Implementation Details

The use of the ICM algorithm for computing the segmentation step results in a
significant computational time reduction. However, it also increases the number
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of errors in the classification when compared to the use of a stochastic algorithm
or other deterministic approaches, such as mean field theory based algorithms.
Therefore, we introduce a potential term for outlier rejection needs to be used
in the data term. On the other hand, we chose a quasi-robust potential for
the regularization term [I8] since we wanted the model to adapt its stiffness
to smooth changes in the data, while at the same time disallowing internal
discontinuities within regions—strong discontinuities must result in a change of
the model.

The quasi-robust potentials p(t) correspond to (in general) non-convex po-
tentials that grow at a slower rate than quadratic ones, and have the following
characteristics [I8]:

1. p(t) > O Yt with p(0) = 0.

2. p(t)=0p(t(f))/Of exists.

3. p(t) = p(—t), the potential is symmetric.

4. p,(t) exists.

5. hm,HJroop t) —mandllmt_>0+p() =M,0<m< M < +o0.

(a) (b)

Fig. 1. (a) Potential function corresponding to the quasi-robust regularization poten-
tial (1 — w)t® 4+ pp2(t?; k2), and its (b) corresponding weight function.

Condition ([@.1) establishes that a residual equal to zero produces the mini-
mum cost. Condition (@.2) constrains p to be differentiable, so that one can use
efficient deterministic algorithms for minimizing the cost function. Condition
(@3) constrains p to penalize equally positive and negative values of ¢. Finally,
conditions (@14)-([@6) impose the outlier rejection condition (particularly, (@5)
corresponds to the quasi-robust condition [I8], for u = 0 the potential is robust).
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Specifically, our method implements the Geman—McClure robust potential

[19):
oy (x/k)?
p (k) = T

for both the data and regularization potential (p; and po, respectively). We recall
that the combination of a hard-redescending robust potential (such as p) and a
quadratic one results in a quasi-robust potential (see figure 1).

We assume a smooth intensity variation for each class, so various parametric
models are possible, as interpolation polynomials (for example, Hermite and
Lagrange), radial basis functions (RBF), splines or as in [27][17], the function
|z|. In this work, because of their computational efficiency, we use the finite
support functions:

B(a,y) = {wx)w(y) for |a],|y| < 1

0 otherwise,
where two choices for ¢ are employed:

1. First order Lagrange linear interpolation polynomials (that correspond to
bilinear interpolation): ¢y (t) = 1 — |¢|, see figure 2(a).

2. The two-times differentiable Gaussian like function: o () = 0.5 +
0.5 cos (7t), see figure 2(b).

0s 1

(a) (b)

Fig. 2. Interpolation functions, Phi, corresponding to(a) ¢1 (t) = 1 — |¢| and (b)
2 (t) = 0.5 + 0.5 cos (7t) ,.

0s 1

3 Related Work

Segmentation algorithms are, in general, implemented, as iterative, two—step
procedures of the following form:
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1. Compute a classification keeping fixed the parameters of the models.
2. Compute the parameters of the models keeping fixed the classification.

The specific implementation of each step depends on the algorithm. It is ev-
ident that a more accurate classification is obtained when the models on which
the classification is based are themselves accurately estimated. In this work we
compute the model parameters using robust methods and adapt the values ac-
cording to intensity variations in the image.

Ref. [15] presents an MPM-MAP segmentation method in which the classi-
fication step is computed by maximizing the posterior marginals using a Gauss—
Markov random field (GMMF) [12]. A probability measure field representing the
class membership of each pixel for every class is computed. The label field is then
obtained by choosing the maximally probable class at each pixel. The advantage
of the formulation is that the probability measure field can be computed using
deterministic means, but at the cost of storing in memory the measure field for
each class. The implementation in [15] uses a coarse membrane based on the
finite basis functions (FE) to represents each class. Thus the parameters of the
models are the nodal values of the FE model. The deformation energy of the
membrane is used as the regularization term. The nodes of the FE—mesh are
distributed in a regular lattice. Since linear interpolation functions are used, the
model corresponds to the use of linear splines or 47 in our RN formulation.

Specifically, the classification stage in the MPM-MAP was implemented as
follows:

T
r = ) 10
¢ = argmaxp; () (10)

where p” is the result at the T%" iteration of the Gauss-Seidel homogeneous
diffusion over the likelihood p° (see [12]):

@) = 15 Y bhle) fort=01,..7 -1 ()
"l seN,

where—by assuming Gaussian noise,—p° is the likelihood of the data g given

the models ¢:
exp( (6 (B 0) = gr>2>7 12)

piq) =

2mo o

where the variance, o, is a parameter (that in general depends on the class,
ie., 0 = 04). Then, in the MAP step the models ¢, (0,,c,) are updated by
minimizing (@) with the regularization term:

=D (e (64.0) — b5 (04,9))° (13)
qgeC reL seN,

The parameters of the algorithm are the variance of the noise o2, the number of
iterations T, and the smoothness of the FE-membrane ~.
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In the next section, we present numerical experiments demonstrating that
our formulation, based on a RRN, produces better results that the MPM-MAP
method, even when the classification step is computed with a simple local opti-
mization method (ICM algorithm).

4 Experiments

In this section, we show numerical experiments that demonstrate the perfor-
mance of the presented method on the segmentation and restoration of real
data.

The first set of experiments present a comparison of the proposed algorithm
and the MPM—MAP method with flexible models. Specifically, the flexible model
is identical for the two algorithms (but with a quasi-robust potential in the RN
in our case). The task is to segment a noisy image containing bright and dark
objects. We assume that the objects have a relatively large size and smooth
variations in their gray level. Figure 3 shows the test data: (a) the original image
(128 x 128 pixels and normalized to the interval [0,1]), (b) the hand segmented
mask (for comparison purposes); (¢) the noisy test image generated by adding
gaussian noise with o equal to the 10% of the original dynamic range. Panel
3-(d) shows the “ideal” segmented data. Figure 4 shows the computed results,
the top row shows the results of the MPM—-MAP algorithm and the bottom row
corresponds to the results of our method. The interpolation nodes of the RN were
distributed in a regular 17x17 grid. For the case of the MPM-MAP the likelihood
was computed using the true value of the variance of the noise (¢ = 0.1) and
the regularization parameter was set v = 15. The smoothing for each measure
field was performed by computing 10 iterations (7') of homogeneous diffusion.
For the proposed algorithm, the parameters were k; = 1, ks = 0.1, A\; = 0.24,
A2 = 0.3 and A3 = 3. Images in the first column of figure 4 correspond to the
“restorations” computed with the two methods, while the second column shows
the computed segmentation masks. The third column shows the masked data,
and finally, the error maps for the computed segmentation masks are shown in
the last column. The percent of misclassified pixels was 4.9% and 1.8% for the
MPM-MAP and the proposed algorithm, respectively. Note that the error of
the reported method is mainly located within a thin region close to the assumed
“true border”, where many of the pixels were difficult to classify manually. In
contrast, MPM-MAP fails in areas where the gray levels of two regions are
similar (for example, the bottom of the ball), while the proposed method takes
better account of the gradients present in the image. Indeed, the error at the top
of the ball is the result of a gradient in the gray level. Furthermore, the borders
are not well located using MPM-MAP, because of the tendency of the algorithm
to over—smooth shapes.

In order to explain the last result, we note that the Gauss—Markov random
field (GMMF) approach to maximizing of the a posteriori marginals (MPM step
in MPM-MAP) smooths the shape of regions. As a consequence, region borders
do not coincide with the edges in the image. This effect is more noticeable for
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@ ) © @

Fig. 3. Test data: (a) Original image, (b) manual segmentation mask, (c) noisy version
of the original data, and (d) masked version of (c).

Fig. 4. Restoration—segmentation computed using two models. Results of the MPM-
MAP (Top row): Restoration, Segmentation mask , Masked data using the segmenta-
tion mask and Errors in the mask. Second row: Results computed with the proposed
method

large values of the regularization parameter in the GMMF algorithm. In figure
5, we illustrate this effect. The task consists of segmenting the image into three
constant levels with simplified shapes (i.e., for a large value of the regularization
parameter). Figure 5(a) shows the initial guess (maximum likelihood estimate for
the MPM-MAP). Figure 5(b) shows the computed segmentation using MPM-
MAP, and 5(c), the corresponding segmentation computed with the proposed
method (specifically, functional () with a robust data term, given that we are
using constant models).
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Fig. 5. Segmentation with constant levels: (a) Initial guess (maximum likelihood esti-
mate), (b) MPM-MAP and (c) proposed method.

5 Conclusion

We have presented a novel and general variational approach to segmentation
and restoration based on the use of robust regularized networks (adaptive flex-
ible models). The introduction of a robust potential in the data term allows us
to use fast deterministic algorithms for estimating the segmentation (support
region for each model), by compensating for outliers that typically confound
such algorithm. Moreover, the quasi-robust potential in the regularization term
allows us to adapt the stiffness of the flexible model according to the data image
gradient, which results in more accurate segmentation along edges in the image.
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