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Abstract. In this paper, we study a family of analytical probability
models for images within the spectral representation framework. First
the input image is decomposed using a bank of filters, and probability
models are imposed on the filter outputs (or spectral components). A
two-parameter analytical form, called a Bessel K form, derived based
on a generator model, is used to model the marginal probabilities of
these spectral components. The Bessel K parameters can be estimated
efficiently from the filtered images and extensive simulations using
video, infrared, and range images have demonstrated Bessel K form’s fit
to the observed histograms. The effectiveness of Bessel K forms is also
demonstrated through texture modeling and synthesis. In contrast to
numeric-based dimension reduction representations, which are derived
purely based on numerical methods, the Bessel K representations
are derived based on object representations and this enables us to
establish relationships between the Bessel parameters and certain
characteristics of the imaged objects. We have derived a pseudo-
metric on the image space to quantify image similarities/differences
using an analytical expression for L2-metric on the set of Bessel
K forms. We have applied the Bessel K representation to texture
modeling and synthesis, clutter classification, pruning of hypotheses
for object recognition, and object classification. Results show that
Bessel K representation captures important image features, suggesting
its role in building efficient image understanding paradigms and systems.

Keywords: Image features, spectral analysis, Bessel K forms, clutter
classification, object recognition.

1 Introduction

In the last few decades, statistical approach has become one of the dominating
methods for computer vision and image understanding. Central to the promising
success of statistical techniques in image understanding are efficient probability
models for the observed images. To realize statistical inference algorithms ef-
ficiently, dimension reduction is required due to the high dimensionality of the
image space. There are in general two approaches for dimension reduction: purely
numerical, non-physical methods and physical-based methods. Purely numeri-
cal methods, which are closely related to the bottom-up approach for computer
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vision and image understanding, use one of the many techniques for dimension
reduction by treating images as elements of a vector space and seeking a low-
dimensional subspace that best represents those numbers under some chosen
criteria. Principal components [12], independent components [4,3], sparse cod-
ing [16], Fisher’s discriminant [2], local linear embedding [19], and many other
statistical learning algorithms are all instances of this idea. The main advantage
is the computational efficiency and the main drawback is knowledge deficiency.
Lack of physical or contextual information leads to a limited performance, spe-
cially in challenging situations. In the second approach, which is closely related
to the top-down approach for image understanding, images are characterized by
the physical characteristics of the objects and the resulting physical variables
are used to analyze images. An example of this idea is the deformable template
theory [6] where images are studied through the transformations that match the
templates to the observations. One drawback is that they are computationally
expensive to implement, since they require synthesis of hypothesized images for
image analysis.

In this paper, we study a framework that provides some interactions between
the numeric-based and the template-based approaches. Consider a deformable
template representation of the imaged objects, as laid out in [9,21]. The basic idea
is that images are made up of objects, and their variability can be represented by
physical variables. Using 3D models of objects, all occurrences of these objects
can be generated using similarity transformations. 3D scenes containing these
transformed objects lead to 2D images via occlusion and projection. To build
probability models on I, we seek analytical forms that retain some physical
considerations, although not as explicitly as the template approach. We replace
3D templates by their 2D profiles (called generators) and denote them as g’s.
Let G be the space of all possible generators associated with all objects, imaged
from all angles. Random translation of 3D objects in a scene is modeled by
random placements and scalings of g’s in an image.

Each object contributes to the pixel value I(z) according to aigi( 1
ρi
(z − zi)).

Here z ∈ W ≡ [0, L] × [0, L] is a variable for pixel location, gi : W �→ IR+ is a
generator of a randomly chosen object, ρi ∈ [0, L] is a random scale, and ai ∈ IR
is a random weight associated with gi, which is drawn from the generator set G
according to some measure dG. The image formation is now modeled by:

I(z) =
n∑
i

aigi(
1
ρi
(z − zi)), z, zi ∈ W, ai ∈ IR, ρi ∈ [0, L] . (1)

Since gi’s are assumed unknown, the related variables n, ρi’s and zi’s are also
indeterminable. We aim to derive probability models on I by implicitly incorpo-
rating their variability.

Motivated by a growing understanding of animal vision, a popular strategy
has been to decompose images into their spectral components using a family
of bandpass filters. Similarly, our probability model on I will be through its
spectral representation. In the context of texture modeling, the marginal distri-
butions are often chosen as sufficient statistics as the frequencies of values in
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the filtered images are relevant and the location information is discarded [11,10,
25]. Simoncelli et al. [18] have suggested using the lower order statistics (mean,
variance, skewness, kurtosis) to specify the marginal densities of the wavelet co-
efficients of the images. Wainwright et al. [22] have studied a family of Gaussian
mixtures, for different mixing densities, for modeling the observed histograms.
Lee and Mumford [13] have presented a model for capturing the statistics in the
images of leaves.

Using a physical model for image formation, we have extended a two-
parameter probability model [8], to a full spectrum of bandpass filters and arbi-
trary images, called Bessel K forms [20]. We demonstrate the success of Bessel
K forms in modeling the spectral components for video, infrared (IR), and range
images of natural and artificial scenes and use the models for hypothesis pruning
and object classification.

This paper is organized as follows. Section 2 applies Bessel K forms to model
spectral components of images and associates the estimated Bessel K parameters
with the observed shapes. Section 3 derives an L2-metric on the Bessel K forms
and on the image space, while Section 4 applies these metrics to texture modeling
and synthesis, clutter classification, hypothesis pruning, and object classification.
Section 5 concludes the paper.

2 Analytical Probability Models for Image Spectra

Given an image I and a bank of filters {F (j), j = 1, 2, . . . ,K}, we compute,
for each filter F (j), a filtered image I(j) = I ∗ F (j), where ∗ denotes the 2D
convolution operation. In this paper, we mainly use Gabor and Laplacian of
Gaussian filters and do not address the issue of filter selection to best accomplish
a specific task. Other filters can also be used as long as the resulting marginals
are: (i) unimodal with the mode at zero, (ii) symmetric around zero, and (iii) are
leptokurtic, i.e. their kurtosis is larger than that of a Gaussian random variable
with the same variance.

2.1 Analytical Models

Applying 2D convolution to both sides of (1), we obtain a spectral component

I(j)(z) ≡ (I ∗ F (j))(z) =
∑

i

aig
(j)
i (

1
ρi
(z − zi)) , where g

(j)
i = F (j) ∗ gi . (2)

The conditional density of I(j)(z), given the Poisson points {zi}, the scales
{ρi}, and the profiles gi’s, is normal with mean zero and variance u, where
u ≡ ∑

i(g
(j)
i ( 1

ρi
(z − zi))2. Under this model and assuming u to be a scaled-

Gamma random variable, the density function of I(j)(z) has been shown to be
[8]: for p > 0, c > 0,

f(x; p, c) =
1

Z(p, c)
|x|p−0.5K(p−0.5)(

√
2
c
|x|) , (3)
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where K is the modified Bessel function1, Z is the normalizing constant given
by Z(p, c) =

√
πΓ (p)(2c)0.5p+0.25, and Γ is the gamma function. Let D be the

space of all such densities: D = {f(x; p, c)|p > 0, c > 0}. We refer to the ele-
ments of D as the Bessel K forms and the parameters (p, c) as the Bessel
parameters. The elements of D are symmetric and unimodal for the mode at
zero. For p = 1, f(x; p, c) is the density of a double exponential. In general, it
is the pth convolution power (for any p > 0) of a double exponential density.
Therefore, it is unimodal with the mode at x = 0. For the same reason, it is
symmetric around zero. One limitation of the Bessel K forms is that they are
square-integrable only for p > 0.25. This property is due to the choice of Gamma
density for u; as a result, the L2-metric of the Bessel K forms is applicable when
p-values are larger than 0.25.

As shown in [8], p and c can be estimated using moment estimator, which is
given by

p̂ =
3

SK(I(j)) − 3
, ĉ =

SV(I(j))
p̂

, (4)

where SK is the sample kurtosis and SV is the sample variance of the pixel
values in I(j). The computational task of estimating the marginal density is that
of computing the second and the fourth moments of the filtered image. This
moment estimator is sensitive to outliers and more robust estimators such as
maximum likelihood estimator or robust estimation techniques can be used if
needed.

We illustrate estimation results for a variety of images. Shown in the top
panels of Fig. 1 are some images taken from the Groningen database. The middle
panels display their specific filtered forms (or the spectral components) for Gabor
filters chosen at arbitrary orientations and scales, and the bottom panels plot
the marginal densities. On a log scale, the observed densities (histograms) are
plotted in solid lines with dots and the estimated Bessel K forms (f(x; p̂, ĉ)) are
plotted in solid lines.

Fig. 2(a) shows estimation results for two IR face images when filtered by
Gabor filters. These results suggest the role of Bessel K forms in modeling images
beyond the case of video images of natural scenes.

Shown in Fig. 2(b) are two examples of estimating marginal densities for the
case of range images taken from the Brown range database. The images shown in
top panels are filtered using Gabor filters and the resulting densities are plotted
in the bottom panels.

A distinctive advantage of Bessel K representation, compared to numerical-
based low-dimensional representations, is that Bessel K parameters can be re-
lated to physical characteristics of objects consisting of the observed image.
Theoretically, the physical characteristics of the imaged objects, and the filter
used in generating a spectral component, should dictate the resulting Bessel K
1 Defined as

Kν(xy) =
Γ (ν + 0.5)(2y)ν

Γ (0.5)xν

∫ ∞

0

cos(xz)
(z2 + y2)ν+0.5 dz ,

for �(ν) > −0.5, x > 0, and |arg(y)| < π
2 .
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Fig. 1. Images (top panels), their Gabor components (middle panels), and the marginal
densities (bottom panels). The observed densities are drawn in solid lines with dots
and the estimated Bessel K forms are drawn in solid lines.

form. Since c is essentially a scale parameter relating to the range of pixels values
in I, its role is not as important as p in image understanding.

Under certain assumptions of the generator model given in (2), specifically
when ai ∼ N(0, 1), ρ1 is fixed to be 1.0, and all the gi ≡ g (i.e. a fixed generator),
then

p =
1

κ
3λ − 1

,where κ =

(∫
W

g(z1)4dz1
)

(∫
W

g(z1)2dz1
)2 . (5)

This equation provides an important relationship between a generator g and the
parameter p. According to (5), p < 1 occurs when λ < κ

6 . If the generator g has
sharp, distinct boundaries (i.e. κ is larger) then the p value is small unless the
frequency of occurrence (λ) is large. Specifically, if a filter F (j) is used to extract
a particular feature (e.g. oriented edges, junctions, bands, etc.) from the image I,
then p is dictated by the distinctness (κ) and the frequency of occurrence
(λ) of that feature in the image. For example, shown in Fig. 3 is a variation of p
value when the images are filtered for extracting vertical edges (θ = 90). The top
row shows images with increasing frequency of vertical edges in going from left
to right. Correspondingly, the estimated p value shows an increase (0.31, 0.77,
1.45, and 2.73). Summarizing the relation between p and κ, we have:

If
{

0 < λ < κ/6 then p < 1
κ/6 < λ < κ/3 then p > 1 .

2.2 Performance Analysis of Bessel K Forms

To quantify the performance in modeling observed histograms by estimated
Bessel K forms, a number of quantities can be used and we choose the Kullback-
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(a) (b)

Fig. 2. Observed and estimated marginal densities (bottom panels) for (a) the IR face
images (top panels) (b) range images of a forest of randomly chosen Gabor filters.
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Fig. 3. Variation of p-values for extracting vertical edges (θ = 90). Top panels are the
original images, middle panels are the filtered images, and the bottom panels are the
densities (log-scale). The estimated p-values are: 0.31, 0.77, 1.45, and 2.73, respectively.

Leibler (KL) divergence. For any two density functions f1 and f2, the divergence
is defined as the quantity: KL(f1, f2) =

∫
IR

f1(x) log(f1(x)/f2(x))dx . We have
computed it by discretizing at the center points of the histogram bins. To evalu-
ate match between the observed and the estimated densities, we have computed
the KL divergence for two large databases. In each case, for a large combination
of images and filters drawn randomly, we have averaged the KL divergence over
thousands of resulting filtered marginals. The first database is made up of 300
natural video images downloaded from Groningen natural image database, and
the second database is made up of 220 IR face pictures. Shown in Fig. 4 are
the convergence plots of the average KL divergence, plotted against the sam-
ple size. The top plot is for the natural video images with a limiting value of
0.0657 while the bottom plot is for the infrared images with a limiting value of
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0.0478. A comparison of these values underscores the degree of match between
the observed histograms and the estimated Bessel K forms.
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Fig. 4. Convergence of average KL-divergence between the observed and the estimated
densities as the sample size increases. The top plot is for the Groningen database of
natural images and the bottom plot is for the FSU IR face database.

3 Pseudo-Metrics for Comparing Images

We have chosen to represent images via the Bessel parameters of their spec-
tral components. One distinct advantage, of having such analytical forms for
the marginals of the spectral components, is the resulting theoretical framework
for image analysis. To quantify the distance between two Bessel K forms, we
have chosen the L2-metric on D. It is possible that other metrics, such as the
Kullback-Leibler divergence or the L1 metric, may prove more useful in certain
situations. Since we are restricting ourselves to only D, and not the full set of
pdfs, we suggest that many of these choices will provide similar results, spe-
cially if the task is classification or hypothesis pruning. The main constraint
of choosing L2 is that Bessel K forms are not in L2 for p < 0.25. In cases
where the estimated p < 0.25, we can choose one of following: (i) drop that
filter, (ii) approximate p (perhaps badly) by 0.25 + ε, and then compute the
L2-metric, or (iii) compute the L2-metric numerically using the quadrature in-
tegration. For f(x; p1, c1) and f(x; p2, c2) in D, the L2-metric is d(p1, c1, p2, c2)

=
√∫

x
(f(x; p1, c1) − f(x; p2, c2))2dx. Given p1, p2 > 0.25, c1, c2 > 0, this metric

can be computed using the following closed form expression,
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d(p1, c1, p2, c2) =
(

1
2
√
2π

Γ (0.5)
(G(2p1)√

c1
+

G(2p2)√
c2

− 2G(p1 + p2)√
c1

(
c1

c2
)p2F

)) 1
2

(6)
where G(p) = Γ (p−0.5)

Γ (p) , F = F ((p1 + p2 − 0.5), p2; p1 + p2; 1 − c1
c2
), F is the

hypergeometric function, and Γ is the gamma function. The derivation involves
evaluation of the integral for the L2-metric. For a proof, see [20]. It should
be noted that the metric is symmetric with respect to parameters (p1, c1) and
(p2, c2) even though it does not appear that way.

Equation (6) provides a metric between two Bessel K forms, or between two
spectral marginals. It can be extended to a pseudo-metric on the image space
as follows. For any two images, I1 and I2, and the filters F (1), . . . , F (K), let
the parameter values be given by: (p(j)

1 , c
(j)
1 ) and (p(j)

2 , c
(j)
2 ), respectively, for

j = 1, 2, . . . ,K. Then, the L2-distance, between the spectral representations of
the two images, is defined as:

dI(I1, I2) =

√√√√√

 K∑

j=1

d(p(j)
1 , c

(j)
1 , p

(j)
2 , c

(j)
2 )2


 . (7)

Note that dI is not a proper metric on the image space because two different
images can have dI = 0 between them. Also, dI is dependent upon the choice
of filters. It has been established in the literature that different spectral com-
ponents of the same images are often correlated, and therefore, this Euclidean
form may not be appropriate. In such cases, another choice such as the max of
all components may be pursued.

4 Applications of Bessel K Representations

Now we present some examples of applying these Bessel K formulations and the
resulting metric to image understanding problems. We have selected examples
from: (i) texture modeling and synthesis, (ii) clutter classification, (iii) hypoth-
esis pruning, and (iv) object classification.

4.1 Texture Modeling and Synthesis

It has been shown [25,24] that homogeneous textures can be characterized suf-
ficiently using their spectral responses. Because Bessel K forms provide a low-
dimensional and analytical representation for spectral components, we use tex-
ture synthesis to further verify the effectiveness of Bessel K representation.

Given an observed image and K filters, we model the given texture by its
marginals, represented by the estimated Bessel K densities. Besides using fewer
numbers to represent a histogram, the density can be sampled to generate a
histogram of any number of bins. An advantage of this model is that it can be
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verified systematically through generating images with matched histograms. As
in [24], we impose a Gibbs-like distribution on the image space by:

P (I) =
1
Z
exp(−

K∑
j=1

L(j)∑
i=1

‖H(I(j))(i) − f(zi; p(j), c(j))‖2/T ) ,

where H(I(j)) denotes the histogram of the j-th filter response of I, L(j) is the
number of bins, and zi is the center value of i-th bin of the j-th histogram, T
is a parameter corresponding to temperature, and Z is a normalizing constant.
Here p(j), c(j) are estimated using an observed image. The texture synthesis is
then to generate typical samples from P (I). Here a Gibbs sampler [24] is used
to generate the following examples while other sampling algorithms can also be
used. Figure 5 shows three examples, where the histogram of the intensity filter is
used directly as it does not satisfy the assumptions of Bessel K forms and for all
other filters their estimated Bessel K densities are used. it is evident from these
examples that Bessel K forms capture the perceptual important characteristics of
textures. The basic elements are synthesized well as well as the global patterns.

4.2 Clutter Classification

An important application of this Bessel K representation is in the classification
of clutter for ATR (automated target recognition) scenarios. In particular, given
an observed image of a target, imaged in a cluttered environment, one would like
to characterize the clutter to the extent that it improves the ATR performance.
Some knowledge of clutter type, whether it is grass, buildings, trees, or roads, can
help improve the task of target recognition. In this section, we utilize the Bessel
K forms to represent the image spectra, and employ the metric defined in (7) to
classify the clutter types from their images. We will demonstrate the strength of
this model in the context of natural clutter classification. Consider the images
of natural clutter shown in Fig. 6. For a simple illustration, let the images in the
top row be training images that are already classified, and the bottom row be
images that are to be classified. Using 27 small-scale Gabor filters (K = 27), for
nine different orientations at three scales each, we have computed the pairwise
distances dI ’s.

Using the nearest neighbor approach, and the metric dI one can perform
clutter classification. To illustrate the classification of clutter types, we have
plotted a clustering chart in the left panel of Fig. 7 using the dendrogram func-
tion in matlab. This function generates a clustering tree for points in image
space when their pairwise distances are given. For comparison we run clustering
program using an Euclidean metric on a principal subspace of the image space.
We extracted non-overlapping patches of size 20 × 30 from the original images,
performed principal component analysis (PCA) in IR600, and retained only first
40 components. Images are then projected onto this linear subspace to compute
coefficients and the resulting pairwise Euclidean distances.
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Fig. 5. Texture synthesis examples using Bessel K forms. In each row, the left shows
the observed texture and the right a typical synthesized texture.

4.3 Hypothesis Pruning

The Bessel K forms also prove useful in pruning the hypothesis set in target
recognition. Recognition of objects from their observed images corresponds to
the selection of hypothesis in presence of the nuisance parameters [9]. As stated
in Section 1, this hypothesis selection is often performed using detailed models
involving physical shapes, texture, pose and motion [21,7,9]. Such methods are
based on low- and high-dimensional deformations of targets’ templates in order
to match their synthesized images with the observed images. The deformations
capture the variability in pose, motion, illumination, etc. and form the set of
nuisance parameters, call it S, for hypothesis selection; they typically are com-
putationally expensive to implement. Given an image, the task of searching over
all possible templates is demanding and can benefit from a pruning that places
significant probability only on a small subset.
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I1 I3 I5 I7 I9

I2 I4 I6 I8 I10

Fig. 6. Ten natural images from the Groningen database: top row are the training
images and bottom row are the test images.
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Fig. 7. Dendrogram clustering of images in Fig. 6 using dI (left panel) and using an
Euclidean metric on PCA (right panel). The labels on the horizontal axis correspond
to the ones in Fig. 6 and the vertical axis shows the corresponding distance.

Let A be the set of all possible objects. Define a probability mass function
on A according to:

P (α|I) =
exp

(
−mins∈S(

∑K
j=1 d(p

(j)
obs, c

(j)
obs, p

(j)
α,s, c

(j)
α,s)2)/T

)
∑

α′ exp
(
−mins∈S(

∑K
j=1 d(p

(j)
obs, c

(j)
obs, p

(j)
α′,s, c

(j)
α′,s)2)/T

) , (8)

where T controls our confidence (analogous to the temperature in Gibbs’ en-
ergies) in this probability. Here (p(j)

obs, c
(j)
obs) are the estimated parameters for

the image I and filter F (j), and (p(j)
α,s, c

(j)
α,s) are the estimated parameters for

the filter F (j) and the target α rendered at the nuisance variable s ∈ S.
Note that (p(j)

α,s, c
(j)
α,s) can be pre-computed offline for all α ∈ A, s ∈ S, and

j ∈ {1, 2, . . . ,K}.
To illustrate this idea, consider the following experiment. Shown in Fig. 8(a)

are some sample images of objects from the Columbia object image library
(COIL) [17]. This database consists of 72 images of each 100 objects, taken
at five degree separation in azimuth, and has been widely used in testing object
recognition algorithms. In this experiment, we have divide 7200 images into non-
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overlapping training and test sets. Some of the images are used as training and
the remaining for testing, similar to the work presented in [17]. We have used
K = 39 filters, including the gradient filters, the Laplacian of Gaussian filters,
and the Gabor filters. For each image of the object α at the pose s in the training
set, we estimate (p(j)

α,s, c
(j)
α,s), for each filter F (j). Then, given a test image I, the

estimated parameters (p(j)
obs, c

(j)
obs) are used to compute the probability P (α|I) ac-

cording to (8). Shown in Fig. 9 are the plots of P (α|I) versus α (for T = 0.5) for

                                                                                                

(a)

(b)

Fig. 8. Sample images from (a) COIL image dataset and (b) Equinox long wave infrared
image dataset.

six different images I in the COIL database. All the objects with probabilities
larger than some threshold, say 0.01, can be shortlisted for detailed hypothesis
testing. As an example, the plot in left corresponds to an image of α = 1. In
the short-listing by thresholding, we are left with only 14 possible hypothesis,
a significant reduction from 100. The middle plot displays the worst case of the
whole experiment and still short-lists 35 objects. The right plot displays a best
case, where the probability mass function on A is focused on one object and the
hypothesis pruning gives a unique solution.
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Fig. 9. Plots of P (α|I) versus α for six test images in the COIL database. The test
images are of objects α1, α15, and α78, respectively, for arbitrary orientations. Dotted
lines suggest a threshold level for pruning.
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4.4 Object Classification Using Bessel K Representation

Because Bessel K representation defines a distance measure between any images,
it can also be used for object classification similar to purely numerical-based rep-
resentations. One distinctive advantage of Bessel K representation is that it puts
probability mass on images that may have large distance in the image-induced
Euclidean space. In other words, the probability model on images has multiple
modes in the image space, resulting in a more effective representation. Here we
have used P (α|I) for object recognition and have compared our results with some
other recently proposed procedures: principal component analysis (PCA), inde-
pendent component analysis (ICA), support vector machines (SVM), and SNoW.
Pontil and Verri [17] have applied SVM (Support Vector Machines) method to
3D object recognition and have tested it on a subset of the COIL-100 dataset
with half for training and the other half for testing. As pointed out by Yang et
al. [23], this dense sampling of training views simplifies the recognition problem.
Hence, we have presented recognition results for different training to test ratios
in splitting the COIL database. The number of components selected is such that
complexity remains similar to that of Bessel representations. As Table 1 summa-
rizes that Bessel representations, in addition to being analytic and parametric,
mostly outperform these other methods. The significant performance decrease of
the case with 4 training views per object is due to the nearest-neighbor classifier
used, which does not generalize well; we expect significant improvement using
more sophisticated classifiers, which will be investigated further.

Table 1. Correct recognition rate for the full COIL-100 dataset using PCA, ICA and
Bessel forms

Training/test per object PCA ICA SNoW [23] SVM [23] Bessel Forms
36 / 36 98.58% 98.47% 95.81% 96.03% 99.89%
18 / 54 96.67% 96.52% 92.31% 91.30% 99.00%
8 / 64 87.23% 87.91% 85.13% 84.80% 92.44%
4 / 68 75.82% 76.03% 81.46% 78.50% 78.65%

The Bessel K form has also been applied to a large infrared face dataset
generated by Equinox company2. Because the dataset is still under development,
here we use a subset consisting of 63 subjects with a total of 3,893 long-wave
infrared images of faces. Fig. 8(b) shows some examples in the dataset. Tab.
2 shows the recognition results using the nearest neighbor classifier, which are
almost perfect under all the conditions for this large dataset.

5 Conclusion

We have applied Bessel K forms to model the probability densities of the filtered
marginals. The estimated parametric forms are shown to match well with the
2 Available at http://www.equinoxsensors.com/products/HID.html
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Table 2. Correct recognition rate with different training images of the Equinox dataset.

Total training/ test images First correct First two correct First three correct
1948 / 1945 99.95% 100.0% 100.0%
993 / 2900 99.97% 100.0% 100.0%
527 / 3366 99.97% 100.0% 100.0%
343 / 3550 99.94% 99.97% 99.97%

observed histograms for a variety of images: video, IR, and range, for gradient,
Gabor and Laplacian of Gaussian filters. Given the assumptions behind this
construction, we expect this model to perform well in other imaging modalities
such as MRI, PET, and radar imaging. We have used L2 metric on the set of
Bessel forms (restricted to p > 0.25) to derive a pseudo-metric on the image
space. This metric can be used for, among other things, clutter classification
and object recognition. Although the performance of Bessel representations in
challenging object recognition situations remains to be tested, their ability to
prune possible hypotheses, to feed to a more detailed model, seems promising.
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