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Abstract. In order to investigate the deep structure of Gaussian scale space im-
ages, one needs to understand the behaviour of spatial critical points under the
influence of blurring. We show how the mathematical framework of catastrophe
theory can be used to describe the behaviour of critical point trajectories when
various different types of generic events, viz. annihilations and creations of pairs
of spatial critical points, (almost) coincide. Although such events are non-generic
in mathematical sense, they are not unlikely to be encountered in practice. Further-
more the behaviour leads to the observation that fine-to-coarse tracking of critical
points doesn’t suffice. We apply the theory to an artificial image and a simulated
MR image and show the occurrence of the described behaviour.

1 Introduction

The concept of scale space has been introduced in the English image literature by Witkin
[16] and Koenderink [8]. They showed that the natural way to represent an image at finite
resolution is by convolving it with a Gaussian , thus obtaining a smoothened image at
a scale determined by the bandwidth. Consequently, each scale level only requires the
choice of an appropriate scale and the image intensity at that level follows linearly from
any previous level. It is therefore possible to trace the evolution of certain image entities,
e.g. critical points, over scale. The exploitation of various scales simultaneously has been
referred to as deep structure by Koenderink [8]. It pertains to the dynamic change of the
image from highly detailed –including noise – to highly smoothened. Furthermore, it
may be expected that large structures “live” longer than small structures (a reason that
Gaussian blur is used to suppress noise). Since multi-scale information can be ordered,
one obtains a hierarchy representing the subsequent simplification of the image with
increasing scale [10].

In one dimensional images critical points can only vanish. Investigation of these
locations has been done by several authors [7,15]. Higher dimensional images are more
complicated since extrema can be created in scale space This phenomenon has been
studied in detail by Damon, [2], proving that creations are generic in images of dimension
larger than one. That means that they are not some kind of artifact, introduced by noise or
numerical errors, but that they are to be expected in any typical case. This was somewhat
counterintuitive, since blurring seemed to imply that structure could only disappear,
thus suggesting that only annihilations could occur. Damon, however, showed that both
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annihilations and creations are generic catastrophes and gave a complete list of local
perturbations of these generic events. Whereas Damons results were stated theoretically,
application of these results were reported in e.g. [6,9,12]. The main outcome of the
investigation of the generic results is that in order to be able to use the topological
approach one necessarily needs to take into account both the annihilation and creation
events.

In images the location of critical points can be found up to the numerical precision
of the image. The same holds for the location of catastrophe points in scale space. So
although the appearance of catastrophe events can be uniquely separated in annihila-
tions or creations of pairs of critical points, due to e.g. numerical limitations, (almost)
symmetries in the image, or coarse sampling also indistinguishable compounds of these
annihilation and creation events can be found in practise. In this way a couple of nearby
generic events may well look like a single, non-generic one. In this paper we describe
these so-called non-generic catastrophes in scale space. The investigation is based on
the description of the evolution of critical points in scale space, called (scale space)
critical curves, in the neighbourhood of the catastrophe point(s). The compounds of
generic events can be modelled using descriptions of “Catastrophe Theory”. Obviously,
the models obey the property that assuming infinite precision, in non-generic compounds
the generic events can be distinguished.

Furthermore we investigate the appearance of creations as described by these models
in more detail and explain why they are, albeit generic, rarely found, probably the reason
for current applications to simply ignore them.

2 Theory

Gaussian Scale Space. Let L(x) denote an arbitrary n-dimensional image, the initial
image. Let L(x; t) denotes the (n + 1)-dimensional Gaussian scale space image of
L(x), obtained by convolution of an initial image with a normalised Gaussian kernel
of zero mean and standard deviation

√
2t. Differentiation is now well-defined, since an

arbitrary derivative of the image is obtained by the convolution of the initial image with
the corresponding derivative of a Gaussian. Consequently, L(x; t) satisfies the diffusion
equation:

∂tL(x; t) = ∆L(x; t)

Here ∆L(x; t) denotes the Laplacean. The type of a spatial critical point (∇L(x; t) = 0)
is given by the eigenvalues of the Hessian H , the matrix with the second order spatial
derivatives, evaluated at its location. The trace of the Hessian equals the Laplacean. For
maxima (minima) all eigenvalues of the Hessian are negative (positive). At a spatial
saddle point H has both negative and positive eigenvalues. Since L(x; t) is a smooth
function in (x; t)-space, spatial critical points are part of a one dimensional manifold
in scale space, called the critical curve, by virtue of the implicit function theorem.
Consequently, the intersection of all critical curves in scale space with a plane of certain
fixed scale t0 yields the spatial critical points of the image at that scale.

Catastrophe Theory. The spatial critical points of a function with non-zero eigenvalues
of the Hessian are called Morse critical points. The Morse Lemma states that at these
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points the qualitative properties of the function are determined by the quadratic part of the
Taylor expansion of this function. This part can be reduced to the Morse canonical form
by a slick choice of coordinates. If at a spatial critical point the Hessian degenerates, so
that at least one of the eigenvalues is zero (and consequently the determinant is zero), the
type of the spatial critical point cannot be determined. Such a point is called a catastrophe
points.

The term catastrophe was introduced by Thom [14]. It denotes a (sudden) qualitative
change in an object as the parameters on which this object depends change smoothly. A
thorough mathematical treatment on this topic can be found in the work of Arnol’d, see
e.g. [1]. More pragmatic introductions and applications are widely published, e.g. [5].
The catastrophe points are also called non-Morse critical points, since a higher order
Taylor expansion is essentially needed to describe the qualitative properties. Although
the dimension of the variables is arbitrary, the Thom Splitting Lemma states that one can
split up the function in a Morse and a non-Morse part. The latter consists of variables
representing the k “bad” eigenvalues of the Hessian that become zero. The Morse part
contains the n− k remaining variables. Consequently, the Hessian contains a (n− k)×
(n − k) sub-matrix representing a Morse function. It therefore suffices to study the part
of k variables. The canonical form of the function at the non-Morse critical point thus
contains two parts: a Morse canonical form of n − k variables, in terms of the quadratic
part of the Taylor series, and a non-Morse part. The latter can by put into canonical form
called the catastrophe germ, which is obviously a polynomial of degree 3 or higher.

Since the Morse part does not change qualitatively under small perturbations, it
is not necessary to further investigate this part. The non-Morse part, however, does
change. Generally the non-Morse critical point will split into a non-Morse critical point,
described by a polynomial of lower degree, and Morse critical points, or even exclusively
into Morse critical points. This event is called a morsification. So the non-Morse part
contains the catastrophe germ and a perturbation that controls the morsifications. Then
the general form of a Taylor expansion f(x) at a non-Morse critical point of an n
dimensional function can be written as (Thom’s Theorem) f(x;λ) = CG + PT + Q,
where CG(x1, . . . , xk) denotes the catastrophe germ, PT (x1, . . . , xk;λ1, . . . , λl) the
perturbation germ with an l-dimensional space of parameters, and Q =

∑n
i=k+1 εix

2
i

with εi = ±1, the Morse part. Of the so-called simple real singularities we will discuss

the catastrophe germs given by the two infinite series A±
k

def= ±xk+1, k ≥ 1, and

D±
k

def= x2y ± yk−1, k ≥ 4. For notational convenience we will rewrite the latter to
xk−1 ± xy2.

Catastrophes and Scale Space. The number of equations defining the catastrophe point
equals n + 1 and therefore it is over-determined with respect to the n spatial variables.
Consequently, catastrophe points are generically not found in typical images. In scale
space, however, the number of variables equals n+1 and catastrophes occur as isolated
points.

Although the list of catastrophes starts very simple, it is not trivial to apply it directly
to scale space by assuming that scale is just one of the perturbation parameters.As Damon
[2] points out: “There are significant problems in trying to directly apply Morse theory
to solutions of to the heat equation. First, it is not clear that generic solutions to the
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heat equation must be generic in the Morse sense. Second, standard models for Morse
critical points and their annihilation and creation do not satisfy the heat equation. How
must these models be modified? Third, there is the question of what constitutes generic
behaviour. This depends on what notion of local equivalence one uses between solutions
to the heat equation.” For example, in one-dimensional images the A2 catastrophe
reduces to x3 + λx. It describes the change from a situation with two critical points (a
maximum and a minimum) for λ < 0 to a situation without critical points for λ > 0.
This event can occur in two ways. The extrema are annihilated for increasing λ, but the
opposite – creation of two extrema for decreasing λ – is also possible.

In scale space, however, there is an extra constraint: the germ has to satisfy the
diffusion equation. Thus the catastrophe germ x3 implies an extra term 6xt. On the
other hand, the perturbation term is given by λx, so by taking λ = 6t scale plays the role
of the perturbing parameter. This gives a directionality to the perturbation parameter, in
the sense that the only remaining possibility for this A2-catastrophe in one-dimensional
images is an annihilation. So the Fold catastrophe is adjusted such that it satisfies the
heat equation, but this adjustment only allows annihilations. However, it does not imply
that only annihilations are generic in scale space. In higher dimensional images also the
opposite – i.e. a A2 catastrophe describing the creation of a pair of critical points – is
possible. Then the perturbation λ = −6t with increasing t requires an additional term
of the form −6xy2 in order to satisfy the diffusion equation as we will see.

The transfer of the catastrophe germs to scale space, taking into account the special
role of scale, has been made by many authors, [2,3,7,9,12], among whom Damon’s
account – answering his questions – is probably the most rigorous. He showed that
the only generic morsifications in scale space are the aforementioned A2 catastrophes
describing annihilations and creations of pairs of critical points. These two points have
opposite sign of the determinant of the Hessian before annihilation and after creation.

Definition 1. The generic scale space catastrophe germs are given [2] by

f A(x; t) def= x3
1 + 6x1t + Q(x; t) ,

f C(x; t) def= x3
1 − 6x1t − 6x1x

2
2 + Q(x; t) .

where Q(x; t) def=
∑n

i=2 εi(x2
i + 2t),

∑n
i=2 εi �= 0, and εi �= 0 ∀i.

Note that the scale space catastrophe germs fA and f C, and the quadratic term Q satisfy
the diffusion equation. The germs fA and f C correspond to the two qualitatively different
A2 catastrophes at the origin, an annihilation and a creation respectively. From Definition
1 it is obvious that annihilations occur in any dimension, but creations require at least
2 dimensions. Consequently, in 1D signals only annihilations occur. Furthermore, for
images of arbitrary dimension and less than three vanishing eigenvalues of the Hessian
at a degenerated point, it suffices to investigate the 2D case due to the Splitting Lemma.
All other catastrophe events in scale space are compounds of Fold catastrophes. It is
however possible that one may not be able to distinguish these generic events, e.g. due
to numerical limitations, coarse sampling, or (almost) symmetries in the image. For
instance, one may find at some scale three nearby critical points, e.g. two extrema and
a saddle, and at the subsequent scale only one extremum. Obviously, one pair of critical
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points is annihilated, but one may not be able to identify the annihilating extremum at
the former scale. This is illustrated in Figure 1.

Fig. 1. Left: Annihilation of two critical points in the neighbourhood of a third critical point. The
grey area represents the uncertainty in determining the catastrophe. Right: Non-generic represen-
tation and model of this event.

3 Scale Space Catastrophe Models

In this section we describe how catastrophes can be used to model events in (2 + 1)-
dimensional scale space. The catastrophes describe in canonical coordinates how critical
curves pass the origin yielding compounds of annihilations and / or creations of pairs of
critical points. We will see that although most of these catastrophes are non-generic, they
may still be relevant for modelling compounds of generic events that one is not capable
of, or willing to, segregate as such. Recall, for example, Figure 1. The catastrophe germs
are adjusted such that they satisfy the heat equation. Furthermore, by choosing the
perturbation terms non-zero and adjusting them in the same way, descriptions of critical
curves in scale space are obtained. These critical curves only contain the generic Fold
annihilation(s) and/or creation(s).

A2 Fold catastrophe. The Fold catastrophe in scale space is given by

L(x, y; t) = x3 + 6xt + δ(y2 + 2t) ,

where δ = ±1. One can verify that at the origin a saddle and an extremum (a minimum
if δ = 1, a maximum if δ = −1) moving in the y = 0 plane meet and annihilate while
increasing the scale parameter t.

A3 Cusp catastrophe. The Cusp catastrophe germ is given by x4. Its scale space addi-
tion is 12x2t+12t2. The perturbation term contains two terms: λ1x+λ2x

2. Obviously,
scale takes the role of λ2. Taking the dual Cusp gives the same geometry by changing
the sign of λ1, or by setting x = −x. The scale space Cusp catastrophe germ with
perturbation is thus defined by

L(x, y; t) = x4 + 12x2t + 12t2 + λ1x + δ(y2 + 2t) ,

with δ = ±1. Morsification by the perturbation λ1 �= 0 yields one Fold catastrophe and
one regular critical curve. One can verify that the Ak, k > 3 catastrophes describes the
(non-generic) simultaneous annihilations of critical points in one dimension under the
influence of blurring, albeit in more complicated appearances.
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D±
4 Umbilic catastrophes. The D±

4 Umbilic catastrophe germs are given by x3+δxy2,
where δ = ±1. The scale space addition is (6 + 2δ)xt, yielding x3 + xy2 + 8xt for the
Hyperbolic Umbilic catastrophe, and x3−xy2+4xt for the Elliptic Umbilic catastrophe.
The perturbation contains three terms: λ1x + λ2y + λ3y

2. Obviously, scale takes the
role of λ1.

D±
4 Hyperbolic Umbilic catastrophe. The scale space D+

4 Hyperbolic Umbilic catas-
trophe germ with perturbation is thus defined by

L(x, y; t) = x3 + xy2 + 8xt + λ3(y2 + 2t) + λ2y .

The critical curves and catastrophe points follow from


Lx = 3x2 + 8t + y2

Ly = 2xy + 2λ3y + λ2
det(H) = 12x(x + λ3) − 4y2.

In the unperturbed situation four critical points exist for each t < 0 on the x- and y-axes.
At t = 0 the four critical curves annihilate simultaneously at the origin, see Figure 2a.
Taking perturbation into account, the curves are separated into two critical curves each

Fig. 2. Critical paths a) D+
4 -Unperturbed. b) D+

4 -Perturbed. c) D−
4 -Unperturbed. d) D−

4 -Small
perturbation. e) D−

4 -Large perturbation. Again, if the perturbation is small we may not be able to
tell which configuration is the actual one.

containing a Fold catastrophe, see Figure 2b.

D−
4 Elliptic Umbilic catastrophes. The scale space elliptic Umbilic catastrophe germ

with perturbation is given by

L(x, y; t) = x3 − xy2 + 4xt + λ3(y2 + 2t) + λ2y . (1)

Again, the critical curves and the catastrophe points follow from


Lx = 6x2 + 4t − y2

Ly = −2xy + 2λ3y + λ2
det(H) = 12x(2λ3 − 2x) − 4y2.

The unperturbed equation gives two critical points for all t �= 0. At the origin a so-called
scatter event occurs: the critical curve changes from y-axis to x-axis with increasing t,
see Figure 2c. Just as in the hyperbolic case, in fact two Fold catastrophes take place; in
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this case both an annihilation and a creation. The morsification is shown in Figure 2d.
The critical curve on the right does not contain catastrophe points. The critical curve on
the left, however, contains two Fold catastrophe points: a creation and an annihilation.
So while increasing scale one will find two critical points, suddenly two extra critical
points appear, of which one annihilates with one of the already existing ones. Finally,
one end up with again two critical points. Clearly, if the samples in scale are taken too
large, one could completely miss the subsequent catastrophes, see e.g. Figure 2e. The
properties of the creations will be discussed in the next section.

Creations. As we showed, a creation event occurs in case of a morsified elliptic Um-
bilic catastrophe. In most applications, however, creations are rarely found, often giving
rise to the (false) opinion that creations are caused by numerical errors and should be
disregarded. The reason for their rare appearance lies in the specific requirements for
the parameters in the (morsified) Umbilic catastrophe germ. Its general formulation is
given by

L(x, y; t) =
1
6
Lxxxx3 +

1
2
Lxyyxy2 + Lxtxt +

1
2
Lyy(y2 + 2t) + Lyy (2)

In general, the spatial coefficients do not equal the derivatives evaluated in the coordinate
system of the image. They follow from the alignment of the catastrophe in the plane
defined by y = 0 and can have arbitrary value. Furthermore, the diffusion equation

implies Lxt
def= Lxxx + Lxyy . Then the scale space evolution of the critical curves

follow from 


∂xL = 1
2Lxxxx2 + Lxtt + 1

2Lxyyy2

∂yL = Lxyyxy + Lyyy + Ly

det(H) = Lxxxx(Lxyyx + Lyy) − L2
xyyy2.

Firstly we consider the case Ly = 0. Then Eq. (2) describes a Fold catastrophe (either
annihilation or creation) at the origin, where the critical curve is positioned in the (x, t)-
plane. A creation necessarily requires the constraint LxxxLxt < 0 at the catastrophe
point. This constraint is sufficient.

Theorem 1. At a catastrophe point in two spatial dimensions, if the third order deriva-
tives of the general local form as given by Eq. (2) with Ly = 0, are uncorrelated, the
number of creations has an a priori likelihood of 1/4 relative to the total number of
catastrophes. In n dimensions it is 1

π arccos 1√
n

.

Proof. The requirement LxxxLxt < 0 can be rewritten to Lxxx(Lxxx + Lxyy) < 0. In
the (Lxxx, Lxyy)-space this constraint is satisfied by all point sets in the area spanned by
the lines through the origin with direction vectors (1, 0) and (1,−1), which is a quarter of
the plane. For n−D this extends to the area Lxxx(Lxxx+Lxy1y1+. . .+Lxyn−1yn−1) < 0
in (Lxxx, Lxyiyi)-space, with dim(y) = n−1. This representing two intersecting planes
with normal vectors (1, 0, . . . , 0) and (1,−1, . . . ,−1). They make an angle of φ radians,
given by

cos φ =
(1, 0, . . . , 0) · (1,−1, . . . ,−1)

| (1, 0, . . . , 0) | · | (1,−1, . . . ,−1) | =
1√
n
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Then the fraction of the space follows by taking twice this angle and dividing by the
complete angle of 2π, i.e. 1

π arccos 1√
n

.

Note that if n = 1, the fraction of the space where creations can occur is zero, for n = 2
it is a quarter. The also interesting case n = 3 yields a fraction that is slightly more than
a quarter, whereas for n → ∞ the fraction converges to a half, see Figure 3a. That is:
the higher the dimensions, the easier critical points can be created. The reason that in
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Fig. 3. a) The fraction of the space of the third order derivatives in which creations can occur
as a function of the dimension according Theorem 1. b) Intersections of the curves det(H) = 0
and ∂yL = 0 with different values for Ly . For the value given by Theorem 2 the curves touch. c)
Difference in intensity between the creation and the annihilation event for Ly increasing from 0
to its critical value.

practice in two dimensional images the number of creations observed is (much) smaller
than a quarter, is caused by the role of the perturbation parameters. It is possible to give
a tight bound to the perturbation of Equation (2) in terms of Ly:

Theorem 2. A creation and subsequent annihilation event occur in Equation (2) if and
only if

| Ly |≤ 3
16

L2
yy

√
−3Lxxx

L3
xyy

(3)

Proof. The catastrophes satisfy ∂xL = ∂yL = detH = 0. Since the solution of the
system

∂yL = Ly + y(Lyy + Lxyyx) = 0
det H = Lxxxx(Lyy + Lxyyx) − L2

xyyy2 = 0 (4)

only contains spatial coordinates, their intersections define the spatial coordinates of
the catastrophes. The catastrophe points form the local extrema of the critical curve
in (x, y; t)-space, i.e. at these points the tangent vector has no scale component. If the
curves given by Eq. (4) touch, there is only a point of inflection in the critical curve,
i.e. the critical curve in (x, y; t)-space has a (Fold) catastrophe point. At this point of
inflection, the spatial tangent vectors of the curves defined by Eq. (4) are equal. Solving
the system Eq. (4) with respect to y results in

y = − Ly

Lyy + Lxyyx
= ± 1

Lxyy

√
Lxxxx(Lyy + Lxyyx) .

The equality of the tangent vectors at the point of inflection xi, yi yields

∂

∂x

(
− Ly

Lyy + Lxyyx

)
|xi,yi=

∂

∂x

(
± 1

Lxyy

√
Lxxxx(Lyy + Lxyyx)

)
|xi,yi
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Solving both equalities results in

(xi, yi, Ly) = (− Lyy

4Lxyy
,±

√
−3LxxxL2

yy

16L3
xyy

,∓ 3L2
yy

16Lxyy

√
−3Lxxx

Lxyy
) ,

which gives the boundary values for Ly .

Note that Eq. (3) has only real solutions if LxxxLxyy < 0, i.e. at the D−
4 (morsified)

catastrophe. As a consequence of Theorem 2, creations only occur if the perturbation is
small enough. Again, this perturbation occurs in the coordinate system, obtained by the
alignment of the catastrophe in the plane defined by y = 0.

Example 1. Taking Lxxx = 6, Lxyy = −12, Lyy = 2 yielding L = x3 − 6xy2 −
6xt+ y2 +2t+Ly , we obtain the “generic creation example” as given in section 2 with
perturbation. Then Theorem 2 gives | Ly |≤ 1

32

√
6 as a – relatively small compared to the

other derivative values– bound for the occurrence of a creation – annihilation couple. In
Figure 3b the ellipse det(H) = 0 is plotted, together with the curves ∂yL = 0 for Ly = 0
(resulting in two straight lines at y = 0 and x = 1

6 , intersecting at (x, y) = ( 1
6 , 0)),

and Ly = 2−i
√

6, i = 4, . . . , 7. For i > 5, the perturbation is small enough and the
intersection of ∂yL = 0 and det H = 0 contains two points. Thus a creation-annihilation
is observed. If i = 5, Ly has its critical value and the curves touch. For larger values the
curves do not intersect each other.

Obviously the perturbation Ly can be larger if Lyy increases. If so, the structure becomes
more elongated. It is known by various examples of creations given in literature that
elongated structures play an important role. In fact, the quintessential property is scale
anisotropy. Another reason that creations are rarely found is that their lifetime is rather
limited: with increasing t the created critical points annihilate. If the scale steps are taken
too large, one simply misses the creation – annihilation couple. This may be regarded
as a dual expression for the previous explanation. In the chosen coordinate system this
can be calculated explicitly.

Theorem 3. The maximum lifetime of a creation given by Equation (2) is

tlifetime =
−LxxxL2

yy

2L2
xyy(Lxxx + Lxyy)

.

The difference in intensity of the critical point that is created and subsequently annihi-
lated is

Lxxx(2Lxxx − Lxyy)L3
yy

6L3
xyy(Lxxx + Lxyy)

.

Proof. Observe that the lifetime is bounded by the two intersections of ∂yL = 0 and
det(H) = 0, see Figure 3b. As | Ly | increases from zero, the two points move towards
each other over the arch det(H) = 0 until they reach the value given by theorem 2
with lifetime equal to zero. The largest arch length is obtained for Ly = 0. Then the
spatial coordinates are found by ∂yL(x, y; t) = y(Lxyyx + Lyy) = 0 and det H =
Lxxxx(Lxyyx + Lyy) − L2

xyyy2 = 0 i.e. (x, y) = (0, 0) and (x, y) = (− Lyy

Lxyy
, 0) The
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location in scale space is given by ∂xL(x, y; t) = 1
2Lxxxx2 − 1

2Lxyyy2 + Lxtt = 0.
Consequently, the first catastrophe takes place at the origin - since also t = 0 - with zero
intensity. The second one is located at

(x, y; t) = (− Lyy

Lxyy
, 0;

−LxxxL2
yy

2L2
xyy(Lxxx + Lxyy)

)

with intensity

Lcat =
Lxxx(2Lxxx − Lxyy)L3

yy

6L3
xyy(Lxxx + Lxyy)

.

Then the latter is also the maximum difference in intensity.

Example 2. To show the effect of the movement along the arch det(H) = 0, see Figure
3c. Without loss of generality we took again Lxxx = 6, Lxyy = −12, Lyy = 2. Firstly,
the two solutions to ∇L = 0∧det(H) = 0 were calculated as function of Ly . Secondly,
the difference of the intensity of the solutions was calculated for 766 subsequent values
of Ly , Ly ∈ [0, . . . , 1

32

√
6]. It is clearly visible that the intensity decreases monotonously

with an increase of Ly . For this example we find that the lifetime is 1
72 , the difference

in intensity 1
18 .

From the proof of Theorem 3 it is again apparent that Lyy plays an important role in
enabling a (long)lasting creation. To observe this in more detail, note that the curve
det H = 0 is an ellipse (see also Figure 3b). Replacing x by x − Lyy

2Lxyy
, it is centred at

the origin. Setting Lxyy = 1
b and LxxxLxyy = − 1

a2 , we find

det H = 0 ⇔ x2 +
a2

b2 y2 = L2
yy

b2

4
.

Assuming that we have a creation, a2 > 0. The ellipse is enlarged with an increase of
L2

yy . Obviously, at the annihilations of the Hyperbolic Umbilic catastrophe a2 < 0, so
det H = 0 then describes a hyperbola.

D±
5 Parabolic Umbilic catastrophes. In the previous section we saw that the geometry

significantly changed by taking either the term −xy2, or the term +xy2. Let us therefore,
ignoring the perturbation terms λ1, λ2, and λ3, define the scale space Parabolic Umbilic
catastrophe germ by

L(x, y; t) =
1
4!

x4 +
1
2!

x2t +
1
2!

t2 + δ(
1
2
xy2 + xt) (5)

where δ = ±1 and t takes the role of λ4. Its critical curves and catastrophes follow from


Lx = 1
6x3 + xt + δ(t + 1

2y2)
Ly = δxy

det(H) = δx( 1
2x2 + t) − y2
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So the catastrophe points are located at the origin (a double point) and at (x, y; t) =
(− 3

2δ, 0;− 9
8δ2). The latter is a simple annihilation (a fold catastrophe), the former is

a cusp catastrophe (three critical point change into one) for both values of δ. Adding
small perturbations by choosing the parameters λ1, λ2, and λ3, the morsified Cusp
catastrophe remains. The critical curves at the Cusp breaks up into two curves, one with
a Fold catastrophe, one without a catastrophe.

D±
6 Second Umbilic Catastrophes. Ignoring the perturbation terms λ1, . . . , λ4 for the

moment, the scale space expression of the D±
6 -catastrophes are given by

L(x, y; t) =
1
5!

x5 +
1
3!

x3t +
1
2!

xt2 + δ(
1
2
xy2 + xt) , (6)

where t takes the role of λ5 and δ = ±1. Its critical curves and catastrophes follow from


Lx = 1
4!x

4 + 1
2x2t + 1

2 t2 + δ(t + 1
2y2)

Ly = δxy
det(H) = 1

6δx2(x2 + 6t) − y2

Setting y = 0, several catastrophes occur: At (x, y; t) = (±√−6δ, 0; δ) two Fold
annihilations if δ = −1, at the origin a creation and at (x, y; t) = (0, 0;−2δ) again
an annihilation, see Figure 4a for δ = 1 and Figure 4b for δ = −1. It is clear that

Fig. 4. Critical paths of the D±
6 -catastrophe. a) Unperturbed, δ = 1. b) Unperturbed, δ = −1. c)

Perturbed, δ = 1. d) Perturbed, δ = −1.

the morsification by t of the D+
6 yields a D−

4 scatter followed (while increasing scale)
by a D+

4 double annihilation at the origin. The D−
6 shows a D−

4 scatter at the origin,
followed by again a D−

4 scatter at some higher scale. Both images show that a part of
the critical curve forms a loop: The created critical points annihilate with each other.
So if the perturbations are small (or if the measurement contains some uncertainty),
one might not be able to distinguish between the involved Fold catastrophes. However,
the scale space representation causes a separation into two non-generic catastrophes
already mentioned. Further morsification gives more insight in the way critical curves
can behave. By taking λ1, . . . , λ4 �= 0, the generic critical curves shown in Figure 4c-d
are obtained. The morsification of the D+

6 shows two critical curves behaving in an
aesthetic way, combining the morsifications of the D±

4 catastrophes, i.e. containing Fold
annihilations and creations. Both created critical points on the right critical curve in
Figure 4c annihilate at some larger scale. The morsification of the D−

6 , on the other
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hand, still shows the loop close to the origin. Consequently, in contrast to the elliptic
Umbilic catastrophe, now both created branches annihilate with each other: the critical
curve in the centre of Figure 4d is a closed loop in scale space.

Morsification summary. All non-Fold catastrophes morsify to Fold catastrophes and
Morse critical points. The morsification gives insight in the structure around the catas-
trophe point regarding the critical curves. The morsification of the Umbilic catastrophes
(the Dk) show that the trajectories in scale space of the created critical points fall into
several classes. The morsified D+

4 -catastrophes describes two Fold annihilations. The
morsified D−

4 catastrophe describes the creation of a pair of critical points and the an-
nihilation of one of them with another critical point. So while tracing a critical branch
of a critical curve both an annihilation and a creation event are traversed. The morsified
D+

6 catastrophe describes the creation of a pair of critical points and the annihilation
of both of them with two other critical points. So while tracing a critical branch of a
critical curve successively an annihilation, a creation and again an annihilation event
are traversed. The morsified D−

6 -catastrophe describes an isolated closed critical curve,
appearing ex nihilo with two critical branches that disappear at some larger scale. So
the morsified D−

4 (and its extension, the D+
6 ) and D−

6 -catastrophes describe essentially
different creation events.

An important result lays on the area of tracing critical points. If one traces only
critical points starting from the initial image, one will find the “D−

4 ” creations, since
they emerge as the starting point of a part of a critical curve that annihilates with one of
the initial critical points. However, one will miss the “D−

6 ” loops that occur somewhere
in scale space, since they have no relation whatsoever to the critical points in the initial
image. So fine-to-coarse tracing of critical points will not always yield the right result.
Note that the full morsification of the non-generic catastrophes always yields the generic
Fold annihilations and creations and Morse critical points.

4 Applications

In this section we give some examples to illustrate the theory presented in the previous
sections. We will focus on the critical curves emerging from a creation event. Firstly,
we will show the actual presence of a sequence of creation and annihilation events,
modelled by the D−

4 -catastrophe, on the (artificial) MR image of Figure 5a. This image
is taken from the web site http://www.bic.mni.mcgill.ca/brainweb. Secondly, an example
of creation ex nihilo, the D−

6 -catastrophe, is shown by means of the classic “bridge”-
image of Figure 6a and the MR image. The practical usefulness of critical curves (as
they provide the ability for an uncommitted hierarchical structure and segmentation), as
well as their non-generic modelling, is described by the authors in several papers, e.g.
[10]. Results on an MR, a CT and a noise image with respect to the area where creations
are possible have been presented elsewhere [9].

The artificial MR image of Figure 5a was used as initial image for the scale space
image. For visualisation purposes, we restricted to the scale range 8.37 − 33.1. The
image at scale 8.37 (with only the large structures remaining) is shown in Figure 5b.
This image contains 7 extrema.
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Fig. 5. a: 181 x 217 artificial MR image. b) Image on scale 8.37 c) Critical paths of the MR image
in scale range 8.37 − 33.1. d) Close-up of one of the critical paths of the MR image, showing a
subsequent annihilation – creation event. e) Close-up, showing subsequent annihilation – creation
events and loop events.

The scale space image in this scale range contains 161 logarithmically sampled
scales. At all scales the spatial critical points were calculated and connected, forming
the critical paths. Figure 5c shows these critical paths in the (x, y; t)-space. The bright
curves represent the extrema, the dark ones the saddles.At the (approximate) catastrophe
locations the curves are connected. Globally, the image shows annihilating pairs of crit-
ical points. Locally, however, the presence of extra branches of critical curves is visible.
A close-up of one of the critical paths is shown in Figure 5d. It clearly shows a critical
curve containing two subsequent Fold annihilation – creation events. The critical curve
evidently shows the the appearance of an annihilation-creation-pair described by the
D−

3 morsification. Note that the creation events would have been missed if the sampling
was taking coarser, yielding one critical curve without protuberances in scale direction.
Sampling without connecting critical paths yields the observation of temporarily created
extrema (and saddles).

Fig. 6. a: Artificial bridge image. b) Critical paths of the bridge image.

Figure 6a shows the classical “bridge”-image: two mountains of different height
(blobs with different intensity) connected by a small ramp and a deep valley between
the mountains. This image was described by Lifshitz and Pizer [11] as possible initial
image yielding a creation event in scale space. Firstly, there is only one maximum of the
left blob. The right blob is not a maximum, since it is connected to the other blob by the
ramp. Secondly, at some scale the ramp changes into a bridge with a deep dip in it due
to the surrounding deep valleys: a maximum (right blob) – saddle (dip of the bridge)
pair is created. Finally, at a large scale a saddle – extremum annihilation occurs. If the
saddle annihilates with the left extremum, it can be modelled by the D−

4 catastrophe, as
in the previous section. However, as shown by Figure 6b, it can also annihilate with the
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newly created extremum. This figure shows the critical paths of the scale space image of
6a. The left string represents the extremum of the brightest blob, the loop represents the
created and annihilated maximum-saddle pair. The same behaviour is observed at the
MR scale space image. Figure 5e shows a close-up of one of the critical curves. Besides
several aforementioned subsequent Fold annihilation – creation events along the critical
curve, here clearly also several “loop events” occur.

5 Discussion

In this paper we investigated the (deep) structure on various catastrophe events in Gaus-
sian scale space. Although it is known that pairs of critical points are annihilated and
created (the latter if the dimension of the image is 2 or higher), it is important to describe
also the local structure of the image around the non-generic events. These events might
be encountered in practical usage of scale spaces and the non-generic catastrophes can
be used to model these occurrences. We therefore embedded catastrophes in scale space.
Scale acts as one of the perturbation parameters. The morsification of the catastrophes
yields generic Fold annihilations and creations of pairs of critical points.

The Ak series can be used to model (almost) simultaneous annihilations of pairs of
critical points at a location (or indistinguishable region) in scale space. If k is even, it
models the annihilation of k critical points, if k is odd, it models the collision of k critical
points where k − 1 annihilate and one remains.

For creations the Dk series can be used. Creations occur in different types. Critical
paths in scale space can have protuberances, a subsequent occurrence of an annihilation
and a creation. In scale space images this is visible by the creation of an extremum-
saddle pair, of which one critical point annihilates at some higher scale with an already
present critical point, while the other remains unaffected. It is also possible that critical
paths form loops: the created pair annihilates at some higher scale. The possibility for
both types to occur in practice was shown in the artificial MR image. This phenomena is
known from physics, where it is used to describe the creation and successive annihilations
of “virtual” elementary particles (and even the universe). Furthermore we showed that
the protuberances in the critical paths, expressed in canonical coordinates, occur only in
case of a small local perturbation. In addition, creations are less likely to happen due to
a special constraint on the combination of third order derivatives and local perturbation.
We gave a dimension dependent expectation of this event and an upper bound for the
perturbation in canonical coordinates.

The lifetime of a created pair is enlarged if the local structure is elongated. This was
derived from the canonical formulation and visualised by the example of the bridge image
in section 4. Since the number of possible catastrophes is infinite, there is an infinite
number of possible non-generic constellations in which (“infinite”) critical points are
annihilated and created. We restricted ourselves to the situations in which at most 6
critical points annihilate and in which critical points are created, the latter divided into
models representing protuberances and loops.

Finally, the calculations were based on the canonical coordinates. In general, it is
not trivial to transform the local coordinate system to these nice formulated catastrophe
germs. In that sense, the numerical values have no direct meaning. They do describe,
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however, the qualitative behaviour of the critical curves close to the location of the
catastrophes and can therefore be used to model the type of behaviour encountered in
practical usage of a scale space. We gave examples of the appearances of this behaviour
in section 4 based on an artificial MR image.

The theory described in this paper extends the knowledge of the deep structure of
Gaussian scale space, especially with respect to the behaviour of critical curves in the
vicinity of creation events and the scale space lifetime of the created critical points. It
emphasises the relevance of investigating the complete scale space image, instead of a
series of images at different scales.
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