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Abstract. In many vision problems, the observed data lies in a nonlin-
ear manifold in a high-dimensional space. This paper presents a generic
modelling scheme to characterize the nonlinear structure of the manifold
and to learn its multimodal distribution. Our approach represents the
data as a linear combination of parameterized local components, where
the statistics of the component parameterization describe the nonlinear
structure of the manifold. The components are adaptively selected from
the training data through a progressive density approximation proce-
dure, which leads to the maximum likelihood estimate of the underlying
density. We show results on both synthetic and real training sets, and
demonstrate that the proposed scheme has the ability to reveal impor-
tant structures of the data.

1 Introduction

In this paper we address the problem of learning the statistical representation of
multivariate visual data through parametric modelling. In many pattern recog-
nition and vision applications, an interesting pattern is measured or visualized
through multivariate data such as time signals and images. Its random occur-
rences are described as scattered data points in a high-dimensional space. To
better understand and use the critical information, it is important to explore
the intrinsic low dimensionality of the scattered data and to characterize the
data distribution through statistical modelling. The general procedure in learn-
ing parametric distribution models involves representing the data with a family
of parameterized density functions and subsequently estimating the model pa-
rameters that best fit the data.

Among the commonly used parametric models, principal component analysis
(PCA) [1,2] and linear factor analysis [3] are linear modelling schemes that de-
pict the data distribution either by a low-dimensional Gaussian or by a Gaussian
with structured covariance. These approaches can properly characterize distri-
butions in ellipsoidal shapes, but they are unable to handle situations where the
data samples spread into a nonlinear manifold that is no longer Gaussian. The
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nonlinear structure of a multivariate data distribution is not unusual even when
its intrinsic variables are distributed unimodally. For instance, the images of an
object under varying poses form a nonlinear manifold in the high-dimensional
space. Even with a fixed view, the variation in the facial expressions can still
generate a face manifold with nonlinear structures. A similar situation occurs
when we model the images of cars with a variety of outside designs. The non-
linearity can be characterized by multimodal distributions through mixtured
density functions. Such methods include local PCA analysis [5], composite anal-
ysis [4], transformed component and its mixture analysis [24,25]. Alternative
approaches have been proposed to describe the geometry of the principal mani-
fold [6,22,23]. However, no probabilistic model is associated with the geometric
representations.

This paper presents a new modelling scheme that characterizes nonlinear data
distributions through probabilistic analysis. This scheme is built on parametric
function representations and nonlinear factor analysis. Multivariate data is rep-
resented as a combination of parameterized basis functions with local supports.
We statistically model the random parameterization of the local components to
obtain a density estimate for the multivariate data. The probabilistic model de-
rived here can provide likelihood measures, which are essential for many vision
applications. We first introduced this idea in [26] to characterize the internally
unimodal distributions with standard basis functions. Here we extend our discus-
sion to cover multimodal distributions as well as the issue of basis selection. The
paper is organized as follows. In section 2, we introduce the idea of parametric
function representation. A family of multimodal distributions is formulated in
section 3 to characterize an arbitrary data-generating process. In section 4, we
solve the maximum likelihood (ML) density estimate through the procedure of
progressive density approximation and the expectation-maximization (EM) algo-
rithm. Related issues in basis selection and initial clustering are also addressed.
In section 5, we show the experimental results of modelling both synthetic and
real data. We finish with conclusions and discussions in section 6.

2 Data Representation with Parameterized Local
Functions

Parameterized function representation [26] is built on function association and
function parameterization (Fig. 1). In function association, an n-dimensional
data y = [y1, · · · , yn] ∈ Rn is associated with a function y(t) ∈ L2 : Rd →
R1(t ∈ Rd) such that

yi = y(ti) (i = 1, · · · , n)
For images, t is a two dimensional vector and y(t) is defined on R2 (t ∈ R2).
For time signals, t becomes a scalar and y(t) is defined on R1 (t ∈ R1). The
function y(t) is interpolated from the discrete components of y, and the vector
y is produced by sampling y(t). The function association applies a smoothing
process to the discrete data components. It is unique once the interpolation
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method is determined. Consequently, in the function space L2, there exits a
counterpart of the scattered multivariate data located in vector space Rn. The
advantage of function association lies in its ease to handle the non-linearity by
parametric effects embedded in the data. Its application to data analysis can
be found in [6,8,9,10,19]. In function parameterization, we represent y(t) with

Fig. 1. Parametric function representation through space mappings. Multivariate data
y is represented by function y(t) parameterized by {W, Θ}.

a basis of the function space L2. Assume that the set of functions {bθ(t) =
b(t; θ) : Rd → R(t ∈ Rd)}, each parameterized and indexed by θ, construct a
basis of L2. With the proper choice of b(t; θ), a function y(t) ∈ L2 can be closely
approximated with a finite number (N) of basis functions,

y(t) ∼= [w1, · · · , wN ] ·



b(t; θ1)

...
b(t; θN )


 (1)

In general, the basis function b(t; θ) is nonlinear in θ. If locally supported func-
tions such as wavelets are chosen to construct the basis {b(t; θ)}, then y(t) is
represented as a linear combination of nonlinearly parameterized local compo-
nents. In the following discussion, we useWN , ΘN , and ΘN to denote the linear,
nonlinear and overall parameter sets, where N is the number of basis functions
involved.

WN =



w1
...
wN


 ;ΘN =



θ1
...
θN


 ;ΘN =

[
WN

ΘN

]
(2)

Assume x ∈ Rm, in a vector form, to be the intrinsic quantities governing
the data-generating process. With parametric function association, the observed
data y is related to x through an unknown mapping gf : Rm → L2, or equiva-
lently, a mapping gp : Rm → RP from x to the parameter set,

gp(x) = [WN (x), ΘN (x)]T (3)
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By defining the matrix

B(ΘN ) = [b(θ1), · · · ,b(θN )]; b(θi) =



b(t1; θi)

...
b(tn; θi)


 (i = 1, · · · , N) (4)

multivariate data y is related to x through the linear combination of local basis
functions,

y = [y1, · · · , yn]T

= [b(θ1(x)), · · · ,b(θN (x))] ·WN (x) + nN

= B(ΘN (x)) ·WN (x) + nN (5)

nN is introduced to account for the noise in the observed data as well as the
representation error in (1). By choosing a proper set of basis functions, (5)
defines a compact representation for the multivariate data. Modelling the data
distribution can be achieved through modelling the parameter set ΘN (x).

3 Learning Data Distribution

In this section, we discuss the algorithms and the criteria for learning nonlinear
data distributions with parametric data representation. Fig. 2 shows an example
of how the parametric effect can cause the nonlinear structure of the data dis-
tribution. The observed multivariate data y = [y1, · · · , yn]T consists of n equally
spaced samples from the random realizations of a truncated raised cosine func-
tion y0(t),

yi = y(ti;w, θ) (ti = i · T )
y(t;w, θ) = w · y0( t−t0

s ) (θ = (s, t0))

y0(t) =
{ 1

2 (1 + cos(t)) (t ∈ [−π, π])
0 (t �∈ [−π, π]) (6)

where the generating parameters w, s and t0 have a joint Gaussian distribu-
tion. Even though these intrinsic variables are distributed as a Gaussian, the
conventional subspace Gaussian and Gaussian mixtures are either incapable or
inefficient in describing the nonlinearly spread data. Such phenomena are famil-
iar in many situations where the visual data is generated by a common pattern
and bears similar features up to a degree of random deformation. Parameter-
ized function representation decomposes the observed data into a group of local
components with random parameters, which facilitates the characterization of
locally deformed data.

3.1 Internally Unimodal Distribution

In most situations with a single pattern involved, the governing factor of the
data-generating process is likely unimodal although the observed data y may
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(a) (b)

Fig. 2. Nonlinearly distributed manifold. (a) Curve samples. (b) 2D visualization of the
data distribution. (P1 and P2 signify the sample projections on the top two principal
components derived from the data.)

disperse into a nonlinear manifold. For such an internally unimodal distribu-
tion, we assume a normal distribution for the intrinsic vector x, which, together
with a proper mapping gp, generates y. When the mapping gp is smooth, the
linearization of WN (x) and ΘN (x) is valid around the mean of x,

WN (x) =WN,0 +AW,N · x
ΘN (x) = ΘN,0 +AΘ,N · x (7)

hence WN (x) and ΘN (x) can be modelled as a multivariate Gaussian. Assume
nN is white Gaussian noise with zero mean and variance σ2N . From the repre-
sentation (5), the multivariate data y is effectively modelled as

p(y) =
∫
ΘN

p(ΘN ) · p(y|ΘN )dΘN (8)

(y|ΘN = b(ΘN ) ·WN + nN )

ΘN ∼ N(µN , ΣN ); nN ∼ N(0, σ2N · In) (9)

(8) defines a generative model of nonlinear factor analysis, where the parameter
set ΘN (x) has a unimodal Gaussian distribution.

3.2 Multimodal Distribution

The adoption of multimodal distribution for ΘN (x) is necessary for two reasons.
Firstly, if the process itself is internally multimodal, i.e. x can be modelled by
mixtures of Gaussian, then the linearization of gp around all the cluster means

W q(x) =W q
0 +Aq

W · x
Θq(x) = Θq

0 +A
q
Θ · x x ∈ q-th cluster (q = 1, · · · , C) (10)
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leads to a mixture distribution for ΘN (x). Secondly, even in the case of an
internally unimodal distribution, if the smoothness and the valid linearization
of gp do not hold over all the effective regions of x, piecewise linearization of gp
is necessary, which again leads to a Gaussian mixture model for ΘN (x).

Fig. 3. Multimodal distribution and the basis pool for parameterized data representa-
tion.

Let c denote the cluster index, the generative distribution model for the
observed data y is given by the multimodal factor analysis,

p(y) =
C∑

q=1

P (c = q)
∫
ΘNq

p(ΘNq |c = q) · p(y|ΘNq , c = q)dΘNq (11)

P (c = q) = πq (q = 1, · · · , C) (12)

p(ΘNq
|c = q) = N(µq,Nq

, Σq,Nq
) (13)

p(y|ΘNq
, c = q) = N(B(ΘNq

) ·WNq
, σ2q,Nq

· In) (14)

P (c = q) denotes the prior probability for the q-th cluster, p(ΘNq
|c = q) denotes

the density function of ΘNq in the q-th cluster, and p(y|ΘNq , c = q) denotes the
conditional density function of y given ΘNq in the q-th cluster. Define Φq,Nq =
{µq,Nq

, Σq,Nq
, σ2q,Nq

}, Φ = {πq, Φq,Nq
}C

q=1. Equations (11)-(14) define a family of
densities parameterized by Φ. The multivariate data y is statistically specified
by the family of densities p(y|Θ, c). The parameters {Θ, c}, which characterize
the cluster prior and the building components within each cluster, are specified
by the family of densities P (c)p(Θ|c) that depend on another level of parameters
Φ. Φ is therefore called the set of hyper-parameters [12]. The following discussion
is devoted to finding the particular set of Φ such that the generative distribution
p(y|Φ) best fits the observed data.

3.3 Learning through Maximum Likelihood (ML) Fitting
Given M independently and identically distributed data samples {y1, · · · ,yM},
the density estimate p̂(y), in the maximum likelihood (ML) sense, is then defined
by the ML estimate of Φ such that the likelihood

p(y1, · · · ,yM |Φ) =
M∏
i=1

p(yi|Φ) (15)

is maximized over the parameterized family (11)-(14),
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p̂(y) = p(y|Φ̂)

Φ̂ = argmaxΦ∈Ω

M∏
i=1
p(yi|Φ)

(16)

Ω denotes the domain of Φ. Further analysis suggests that the ML criterion
minimizes the Kullback-Leibler divergence between the density estimate and the
true density. Denote the true density function for the observed data by pT (y).
The Kullback-Leibler divergence D(pT ||p̂) measures the discrepancy between pT

and p̂,

D(pT ||p̂) =
∫
pT (y) · log pT (y)

p̂(y)
dy

= EpT
[log pT (y)] − EpT

[log p̂(y)] (17)

D(pT ||p̂) is nonnegative and approaches zero only when the two densities coin-
cide. Since the term EpT

[log pT (y)] is independent of the density estimate p̂(y),
an equivalent similarity measurement is defined as

L(p̂) = EpT
[log p̂(y)]

= −D(pT ||p̂) + EpT
[log pT (y)]

≤ EpT
[log pT (y)] (18)

L(p̂) increases as the estimated density p̂ approaches the true density pT . It is
upper bounded by EpT

[log pT (y)]. Since pT is unknown, L(p̂), the expectation
of log p̂(y), can be estimated in practice by its sample mean.

L̂(p̂) =
1
M

M∑
i=1

log p̂(yi) (19)

(19) defines the same target function as the ML estimate (16). Hence the ML
fitting rule minimizes the Kullback-Leibler divergence between pT and p̂.

4 Hyper-Parameter Estimation and Basis Selection

Fig. 4 illustrates the process of density estimation. To solve the ML density
estimate, we need to construct the local basis functions {bi} as well as their
parameter set Θ. For each cluster, the local building components are gradually
introduced through the progressive density approximation procedure. With a
set of local components {b1, · · · , bN} parameterized by ΘN , the multivariate
data y is represented as a linear combination of nonlinearly parameterized local
components. The expectation-maximization (EM) algorithm [12] is applied to
estimate the hyper-parameter set Φ that defines the distribution of ΘN , nN ,
and the cluster prior P (c). We first discuss the EM algorithm, and then address
the issues of basis selection and parameterization as well as initial clustering.
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(a) (b)

Fig. 4. Diagram of the EM-based modelling framework. (a) Iterative estimation of
cluster prior and cluster density. (b) Progressive density approximation for each cluster.

4.1 EM Algorithm and Numerical Implementations

Assume that the set of local basis functionsBq(ΘNq
) = {bq,1(θ1), · · · , bq,Nq

(θNq
)}

for the q-th cluster has already been established. Denote {ΘN,j , cj} as the hidden
parameter set for the observed data yj , andΦ(k) = {π(k)q , µ

(k)
q,Nq

, Σ
(k)
q,Nq

, σ
2(k)
q,Nq

}C
q=1

as the estimate of Φ from the k-th step. The EM algorithm maximizes the
likelihood p(y1, · · · ,yM |Θ) through the iterative expectation and maximization
operations.

E-Step: Compute the expectation of the log-likelihood of the complete data
log p({yj ,ΘN,j , cj}|Φ) given the observed data {yj} and the estimate Φ(k)

from the last round,

Q(Φ|Φ(k)) =
M∑

j=1

E[log p(yj ,ΘN,j , cj |Φ)|yj ,Φ(k)] (20)

M-Step: Maximize the expectation

Φ(k+1) = argmaxΦQ(Φ|Φ(k)) (21)

Denote
pq(yj |ΘNq,j , Φq,Nq

) = p(yj |ΘNq,j , cj = q, Φq,Nq
) (22)

pq(ΘNq,j |Φq,Nq
) = p(ΘNq,j |cj = q, Φq,Nq

) (23)

pq(yj |Φq,Nq ) = p(yj |cj = q, Φq,Nq ) (24)

(q = 1, · · · , C; j = 1, · · · ,M)
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Q(Φ|Φ(k)) can be expressed as

Q(Φ|Φ(k)) =
M∑

j=1

C∑
q=1

P (cj = q|yj ,Φ(k)) log πq +
C∑

q=1

Qq(Φq,Nq
|Φ(k)

q,Nq
) (25)

where

Qq(Φq,Nq |Φ(k)
q,Nq

) =
M∑

j=1

P (cj = q|yj ,Φ(k))

pq(yj |Φ(k)
q,Nq

)

∫
[log pq(yj |ΘNq,j , Φq,Nq ) +

log pq(ΘNq,j |Φq,Nq
)] · pq(yj |ΘNq,j , Φ

(k)
q,Nq

)pq(ΘNq,j |Φ(k)
q,Nq

)dΘNq,j (26)

(25) indicates that the cluster prior {πq} and the hyper-parameter set Φq,Nq

for each cluster can be updated separately in the M-step. Generally, (26) has no
closed form expression since the local component functions Bq(ΘNq ) is nonlinear
in ΘNq

. The numerical approach can be adopted to assist the evaluation of the Q
function. We detail the update rule for the hyper-parameters in the Appendix.
The process of hyper-parameter estimation to maximize p(y1, · · · ,yM |Φ) is then
summarized as follows:

1. Initially group {y1, · · · ,yM} into C clusters. The initial clustering is ad-
dressed in later discussions. The number of clusters is preset. Set π(0)q = Mq

M ,
whereMq is the number of samples in the q-th cluster. Set P (cj = q|yj ,Φ(0))
to 1 if yj is assigned to the q-th cluster, 0 otherwise.

2. Construct local basis functions {b1, · · · , bNq}. Estimate the hyper-parameters
{Φq,Nq

} separately for each cluster. In later discussions, the progressive den-
sity approximation algorithm is proposed to gradually introduce local com-
ponents and the EM algorithm is carried out to find the ML estimate of
{Φq,Nq}.

3. Use the EM procedure to iteratively update the cluster prior {πq} and the
hyper-parameters {Φq,Nq

} through (38)-(41) in the appendix .

4.2 Progressive Density Approximation and Basis Selection

Unlike other modelling techniques with a fixed representation, the proposed
generative model actively learns the component functions to build the data rep-
resentation. The procedure is carried separately for each cluster. By introducing
more basis components, the density estimate gradually approaches the true dis-
tribution. The progressive density approximation for the q-th cluster is stated
as follows:

1. Start with Nq = 1.
2. Find the ML density estimate p̂q(y) = pq(y|Φ̂q,Nq ) by iteratively maximizing
Qq(Φq,Nq

|Φ(k)
q,Nq

) with (39)-(41) in the appendix.
3. Introduce a new basis function, increase Nq by 1, and repeat step 2 and 3

until the increase of Qq saturates as Nq increases.
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Since the domain of Φq,Nq
is contained in the domain of Φq,Nq+1, the introduction

of the new basis function increases Qq, Qq(Φ̂q,Nq+1|Φ̂q,Nq ) ≥ Qq(Φ̂q,Nq |Φ̂q,Nq ),
which leads to the increase of the likelihood p(y1, · · · ,yM |Φ̂) and the decrease
of the divergence D(pT ||p̂).

Two issues are involved in basis selection. First, we need to choose the basis
and its form of parameterization to construct an initial pool of basis functions
(Fig. 3). Second, we need to select new basis functions from the pool for efficient
data representation. Standard basis for the function space L2, such as wavelets
and splines with proper parameterization, is a natural choice to create the ba-
sis pool. In [26], we adopted wavelet basis (the Derivative-of-Gaussian and the
Gabor wavelets) with its natural parameterization to represent the data:

Time signal (y(t) : R → R):

b(t; θ) = ψ0( t−T
s );

ψ0(t) = t · exp(− 1
2 t

2); θ = {T, s} ∈ R×R+ (27)

Image (y(t) : R2 → R):

b(t; θ) = ψ0(SRα(t − T )
ψ0(t) = tx · exp(− 1

2 (t
2
x + t2y)) (t = [tx, ty]T )

S =
[
sx 0
0 sy

]
, Rα =

[
cos(α) sin(α)

− sin(α) cos(α)

]
, T =

[
Tx

Ty

]

θ = {sx, sy, α, Tx, Ty} ∈ (R+)2 × [0, 2π] ×R2 (28)

The parameters naturally give the location, scale and orientation of the local
components. Details on selecting new basis functions from the pool are provided
in [26], where the new basis function is selected to maximize the Q function used
by the EM procedure. Its actual implementation minimizes a term of overall
residual energy evaluated with the current density estimate p(y|Φ̂q,Nq ).

The standard basis provides a universal and overcomplete basis pool for all L2

functions [14]. However, it does not necessarily give an efficient representation,
especially when the data contains structures substantially different from the base
function ψ0. In this case, the representation can have a low statistical dimension
but high complexity in terms of large number of basis functions involved. Here
we propose an adaptive basis selection scheme that keeps the parameterization
of the standard basis and replaces the base function ψ0 by the base templates
extracted from the data. Denote the n-th base template by b̄q,n, and use (28) to
define the parameters. The building components are constructed as transformed
base templates,

bq,n(t; θ) = b̄(Tr(t; θ)) (29)

Tr(t; θ) = SRα(t − T )
The hyper-parameter estimate Φ̂q,Nq with Nq components can be viewed as a
special configuration of Φq,Nq+1 where the (Nq + 1)-th component is zero with
probability 1. To select a new base template, (wNq+1, θNq+1) is initially assumed
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to be independent of ΘNq
and uniformly distributed over its domain. From (37)

and (22)-(24), we can approximate Qq with the ML estimate of the sample
parameters (Θ̂Nq,j , ŵNq+1,j , θ̂Nq+1,j),

Qq(Φq,Nq+1|Φ̂q,Nq
) ∼= κ− 1

2σ̂2
q,Nq

M∑
j=1

aq,j ‖ r̂Nq,j − ŵNq+1,jbq,Nq+1(θ̂Nq+1,j) ‖2

Θ̂Nq,j = argmaxΘNq,j
pq(yj |ΘNq,j , Φ̂q,Nq )pq(ΘNq,j |Φ̂q,Nq )

r̂Nq,j = yj − B(Θ̂Nq,j) · ŴNq,j

aq,j =
P (cj=q|yj ,Φ(k))

pq(yj |Φ(k)
q,Nq

)
pq(yj |Θ̂Nq,j , Φ̂q,Nq )pq(Θ̂Nq,j |Φ̂q,Nq )

The new basis is selected to maximize Qq, or equivalently, to minimize the
weighted residue energy

(b̄q,Nq+1, {ŵNq+1,j , θ̂Nq+1,j}M
j=1)

= argmin
M∑

j=1

aq,j ‖ r̂Nq,j − ŵNq+1,jbq,Nq+1(θ̂Nq+1,j) ‖2 (30)

From (29), the right hand term in (30) is evaluated as

M∑
j=1

aq,j ‖ r̂Nq,j(t) − ŵNq+1,j b̄q,Nq+1(Tr(t; θ̂Nq+1,j)) ‖2

=
M∑

j=1

aq,jω̂j ‖ r̂Nq,j(Tr−1(t; θ̂Nq+1,j)) − ŵNq+1,j b̄q,Nq+1(t) ‖2

(Tr−1(t; θ) = R−αS
−1t+ T ; ω̂j = ŝ−1

x,q,Nq+1,j ŝ
−1
y,q,Nq+1,j) (31)

The new basis selection procedure is stated as follows:

Fig. 5. Adaptive basis selection.

1. Locate the subregion where the residue
∑M

j=1 aq,j ‖ r̂Nq,j(t) ‖2 is most
significant. Position the new base template to cover the subregion, and set
b̄q,Nq+1 to be the subregion of r̂Nq,j0 with j0 = argmaxjaq,j ‖ r̂Nq,j(t) ‖2.
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2. Iteratively update b̄q,Nq+1 and (ŵNq+1,j , θ̂Nq+1,j) to minimize (31).

(ŵNq+1,j , θ̂Nq+1,j) = argmin(w,θ) ‖ r̂Nq,j(t) − wb̄q,Nq+1(Tr(t; θ)) ‖2 (32)

b̄q,Nq+1(t) =
1

M∑
j=1

aq,jω̂jŵ2
Nq+1,j

M∑
j=1

[aq,jω̂jŵNq+1,j r̂Nq,j(Tr−1(t; θ̂Nq+1,j))]

(33)
3. Compute the hyper-parameters for ΘNq+1 by (39)-(40), where Θ(k)

Nq,j,i,qis

replaced by the ML estimate Θ̂Nq+1,j and K(k)
j,i,q is replaced by the term

derived from Θ̂Nq+1,j .

The base template and the ML sample parameters are derived simultaneously
through iterative procedures (Fig. 5). The base template is updated by the
weighted average of the inversely transformed samples, where samples with
higher likelihood are weighted more. The sample parameters are updated by
the transformation that most closely maps the base template to the sample.

4.3 Initial Clustering

Initial clustering groups together the data samples that share dominating global
structures up to a certain transformation. Through the expansion

b̄q,n(Tr(t; θq,n)) = b̄q,n(t) + [�tb̄q,n(t)]T · (Tr(t; θq,n) − t) + · · · (34)

we notice that transformation effects are prominent in places where the local
components have high-frequency (gradient) content. To emphasize the global
structures for initial clustering, samples are smoothed by lowpass filters to reduce
the effects of local deformations. Meanwhile, the sample intensity is normalized
to reduce the variance of the linear parameters. Denote {ys,1, · · · ,ys,M} as the
smoothed and normalized data, the distance from ys,i to ys,j is defined as

d(ys,i,ys,j) = min(w,θ)∈{(wi,θi)}i
‖ ys,j(t) − wiys,i(Tr(t; θi)) ‖2 (35)

where {(wi, θi)} parameterize the global transformations. The cluster centers
are first set to be the samples that have the minimum distance to a number of
their nearest neighbors and that are distant from each other. Then the following
procedure of clustering is performed iteratively until convergence.

1. Assign each sample to the cluster that has the minimal distance from its
center to the sample.

2. For each cluster, find the new cluster center.

ys,q = argminys,j∈Cq

∑
ys,i∈Cq

d(ys,j ,ys,i) (36)



Multimodal Data Representations with Parameterized Local Structures 185

5 Experiments

Examples of progressive density approximation with standard basis have been
shown in [26] to learn unimodal distributions, where wavelet basis is used to
model curves as well as pose manifolds for object identification. Here we show
two examples of learning multimodal distribution with adaptive basis selection.

5.1 Multimodal Distribution of Synthetic Data

In this experiment, 200 images with 30x30 pixels have been synthesized as the
training data, each containing a cross with its vertical bar shifted randomly. The
shift is around one of two centers shown by the examples in Fig. 6(a). The data
cannot be efficiently modelled by the transformed component analysis [24] with
only global transformations. The proposed modelling scheme has been performed
to estimate the multimodal distribution with 2 clusters. Adaptive basis selection
is implemented by positioning rectangular base templates to cover the regions
with significant residue. The parameterization of the base template is defined by
the horizontal translation and scaling parameters (sx, Tx) (28). As shown in Fig.
6(b), the two cluster centers have been successfully recovered. In each cluster,
three local components have been selected to represent the data. Meanwhile, the
intrinsic dimension 1 for both clusters has been identified. Fig. 6(c) shows the
synthesized realizations along the nonlinear principal manifold of each cluster.

(a)

(b)

(c)

Fig. 6. Modelling synthetic data. (a) Training samples. (b) Cluster means and the
three base templates selected for each cluster. (c) Synthesized samples on the principal
manifolds learnt by the model. (one cluster in each row).
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(a)

(b)

(c)

Fig. 7. Modelling mouths images. (a) Training samples defined by the subregions of
the lower half face images. (b) From left to right: residue images, base templates and
cluster means (one cluster in each row). (c) Images synthesized along the nonlinear
principal components (the first and the second rows for the first cluster, the third and
the fourth rows for the second cluster, and the last row for the third cluster).

5.2 Multimodal Distribution of Mouth Images

In this experiment, we are interested in modelling the mouth area with a multi-
modal distribution. A fixed region of 40x20 pixels was taken from the lower half
of 100 face images to form the training set. Fig. 7(a) shows a few examples with
open (smiling) and closed mouths. Since the region is fixed, there is no alignment
information about the content inside it. We can extend the region for the entire
face modelling. The parameterization defined in (28) is used with elliptical base
templates adaptively selected to cover the areas with significant residue. The
training images have been normalized before initial clustering. Three clusters
and their nonlinear principal components identified by the model are shown in
Fig. 7(b) and (c). The first cluster describes closed mouths from upright faces.
Two local components have been selected to cover the mouth and the nose tip.
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The second cluster describes closed mouths from slightly upward faces, and the
third cluster describes the open mouths from smiling faces. Both the second and
the third clusters use one component for the data representation. Fig. 7(c) indi-
cates that horizontal and vertical translations are dominant deformations within
the training set and they are represented by the nonlinear principal components.

6 Conclusions

In this paper, we have extended the idea of parameterized data representation
to the statistical learning of multimodal data distributions. The building basis
is adaptively selected from the training data to account for relevant local struc-
tures. The parameterized data representation by local components provides more
flexibility than linear modelling techniques in describing the local deformations
within the data. In addition, the EM-based generative model also provides a
probabilistic description of the underlying data distribution. This allows various
statistical approaches to be applied to vision problems. Both synthetic and real
data are used to demonstrate the ability of the proposed modelling scheme to re-
veal the data structure and to obtain a good density estimate of the distribution
manifold.

Through adaptive basis selection, the basis pool is adaptively defined by the
data. It comprises the local patterns that are derived from the data. Compared
with standard universal basis, the adaptive basis greatly reduces the complex-
ity of the data representation. The algorithm finds, in a progressive and greedy
fashion, the most efficient basis functions for the best modelling accuracy. Var-
ious applications of the proposed modelling scheme can be explored in further
studies.
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Appendix

Using the idea of importance sampling, for each cluster, a group of random real-
izations of ΘNq,j , Θ

(k)
Nq,j,i,q = [W (k)

Nq,j,i,q, Θ
(k)
Nq,j,i,q]

T

i
, is chosen within the volume

where the value of pq(yj |ΘNq,j , Φ
(k)
q,Nq

)pq(ΘNq,j |Φ(k)
q,Nq

) is significant, and Qq is
evaluated as

Qq(Φq,Nq |Φ(k)
q,Nq

)∼=
M∑

j=1
K

(k)
j,i,q[log pq(yj |Θ(k)

Nq,j,i,q, Φq,Nq )+log pq(Θ
(k)
Nq,j,i,q|Φq,Nq )]

K
(k)
j,i,q =

P (c=q|yj ,Φ
(k)
q,Nq

)

pq(yj |Φ(k)
q,Nq

)
pq(yj |Θ(k)

Nq,j,i,q, Φ
(k)
q,Nq

)pq(Θ
(k)
Nq,j,i,q|Φ(k)

q,Nq
) · κ(k)q,j

κ
(k)
q,j =

pq(yj |Φ(k)
q,Nq

)∑
i
pq(yj |Θ(k)

Nq,j,i,q
,Φ

(k)
q,Nq

)pq(Θ
(k)
Nq,j,i,q

|Φ(k)
q,Nq

)
(37)

Substitute the density function in (37) with (12)-(14), the cluster prior {πq}
and the hyper-parameter set Φq for each cluster are updated separately in the
M-step.

π(k+1) =

M∑
j=1

P (c = q|yj , Φ
(k)
q,Nq

)

C∑
q=1

M∑
j=1

P (c = q|yj , Φ
(k)
q,Nq

)
(38)

µ
(k+1)
q,Nq

=
1

M∑
j=1

∑
i

K
(k)
j,i,q

M∑
j=1

∑
i

K
(k)
j,i,qΘ

(k)
Nq,j,i,q (39)

Σ
(k+1)
q,Nq

=
1

M∑
j=1

∑
i

K
(k)
j,i,q

M∑
j=1

∑
i

K
(k)
j,i,q · (Θ(k)

Nq,j,i,q − µ(k+1)
q,Nq

) · (Θ(k)
Nq,j,i,q − µ(k+1)

q,Nq
)T

(40)

σ
2(k+1)
q,Nq

=
1

Card(y) ·
M∑

j=1

∑
i

K
(k)
j,i,q

M∑
j=1

∑
i

K
(k)
j,i,q ‖ yj −Bq(Θ

(k)
Nq,j,i,q) ·W (k)

Nq,j,i,q ‖2

(41)
Card(y) denotes the cardinality of the multivariate data y.
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