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Abstract. We present a variational integration of nonlinear shape
statistics into a Mumford–Shah based segmentation process. The non-
linear statistics are derived from a set of training silhouettes by a novel
method of density estimation which can be considered as an extension
of kernel PCA to a stochastic framework.
The idea is to assume that the training data forms a Gaussian distri-
bution after a nonlinear mapping to a potentially higher–dimensional
feature space. Due to the strong nonlinearity, the corresponding density
estimate in the original space is highly non–Gaussian. It can capture
essentially arbitrary data distributions (e.g. multiple clusters, ring– or
banana–shaped manifolds).
Applications of the nonlinear shape statistics in segmentation and track-
ing of 2D and 3D objects demonstrate that the segmentation process can
incorporate knowledge on a large variety of complex real–world shapes.
It makes the segmentation process robust against misleading information
due to noise, clutter and occlusion.

Keywords: Segmentation, shape learning, nonlinear statistics, den-
sity estimation, Mercer kernels, variational methods, probabilistic kernel
PCA

1 Introduction

One of the challenges in the field of image segmentation is the incorporation of
prior knowledge on the shape of the segmenting contour. The general idea is
to learn the possible shape deformations of an object statistically from a set of
training shapes, and to then restrict the contour deformation to the subspace of
familiar shapes during the segmentation process. For the problem of segmenting
a known object — such as an anatomical structure in a medical image — this
approach has been shown to drastically improve segmentation results [15,8].

Although the shape prior can be quite powerful in compensating for mislead-
ing information due to noise, clutter and occlusion in the input image, most ap-
proaches are limited in their applicability to more complicated shape variations
of real–world objects. The permissible shapes are assumed to form a multivariate
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Gaussian distribution, which essentially means that all possible shape deforma-
tions correspond to linear combinations of a set of eigenmodes, such as those
given by principal component analysis (cf. [14,4,15]). In particular, this means
that for any two permissible shapes, the entire sequence of shapes obtained by
a linear morphing of the two shapes is permissible as well.

Once the set of training shapes exhibits highly nonlinear shape deformations
— such as different 2D views of a 3D object — one finds distinct clusters in
shape space corresponding to the stable views of an object. Moreover, each of
the clusters may by itself be quite non–Gaussian. The Gaussian hypothesis will
then result in a mixing of the different views, and the space of accepted shapes
will be far too large for the prior to sensibly restrict the contour deformation.

A number of models have been proposed to deal with nonlinear shape varia-
tion. However, they often suffer from certain drawbacks. Some involve a compli-
cated model construction procedure [3]. Some are supervised in the sense that
they assume prior knowledge on the structure of the nonlinearity [12]. Others
require prior classification with the number of classes to be estimated or specified
beforehand and each class being assumed Gaussian [13,5]. And some cannot be
easily extended to shape spaces of higher dimension [11].

In the present paper we present a density estimation approach which is based
on Mercer kernels [6] and which does not suffer from any of the mentioned draw-
backs. In Section 2 we review the variational integration of a linear shape prior
into Mumford–Shah based segmentation. In Section 3 we present the nonlinear
density estimate which was first introduced in [7]. We discuss its relation to ker-
nel PCA and to the classical Parzen estimator, give estimates of the involved
parameters and illustrate its application to artificial 2D data and to silhouettes
of real objects. In Section 4 this nonlinear shape prior is integrated into segmen-
tation. We propose a variational integration of similarity invariance. Numerous
examples of segmentation with and without shape prior on static images and
tracking sequences finally confirm the properties of the nonlinear shape prior: it
can encode very different shapes and generalizes to novel views without blurring
or mixing different views. Furthermore, it improves segmentation by reducing
the dimension of the search space, by stabilizing with respect to clutter and
noise and by reconstructing the contour in areas of occlusion.

2 Statistical Shape Prior in Mumford–Shah Segmentation

In [8] we presented a variational integration of statistical shape knowledge
in a Mumford–Shah based segmentation. We suggested modifications of the
Mumford–Shah functional and its cartoon limit [17] which facilitate the im-
plementation of the segmenting contour as a parameterized spline curve:

Cz : [0, 1] → Ω ⊂ IR2 , Cz(s) =
N∑

n=1

(
xn

yn

)
Bn(s) , (1)

where Bn are quadratic B–spline basis functions [10], and z =
(x1, y1, . . . , xN , yN )t denotes the control points. Shape statistics can then be ob-
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tained by estimating the distribution of the control point vectors corresponding
to a set of contours which were extracted from binary training images.

In the present paper we focus on significantly improving the shape statistics.
We will therefore restrict ourselves to the somewhat simpler cartoon limit of
the modified Mumford–Shah functional. The segmentation of a given grey value
input image f : Ω → [0, 255] is obtained by minimizing the energy functional

EMS(C, uo, ui) =
1
2

∫
Ωi

(f − ui)2dx+
1
2

∫
Ωo

(f − uo)2dx + ν L(C) (2)

with respect to uo, ui and the segmenting contour C. This enforces a segmenta-
tion into an inside region Ωi and an outside region Ωo with piecewise constant
grey values ui and uo, such that the variation of the grey value is minimal within
each region.1

In [8] we proposed to measure the length of the contour by the squared L2–
norm L(C) = ∫ 1

0

(
dC
ds

)2
ds, which is more adapted to the implementation of the

contour as a closed spline curve than the usual L1–norm, because it enforces
an equidistant spacing of control points. Beyond just minimizing the length of
the contour, one can minimize a shape energy Eshape(C), which measures the
dissimilarity of the given contour with respect to a set of training contours.
Minimizing the total energy

E(C, uo, ui) = EMS(C, uo, ui) + α Eshape(C) (3)

will enforce a segmentation which is based on both the input image and the
similarity to a set of training shapes.

In order to study the interaction between statistical shape knowledge and
image grey value information we restricted the shape statistics in [8] to a com-
mon model by assuming the training shapes to form a multivariate Gaussian
distribution in shape space. This corresponds to a quadratic shape energy on
the spline control point vector z:

Eshape (Cz) = (z − z0)t Σ−1 (z − z0) , (4)

where z0 denotes the mean control point vector and Σ the covariance matrix
after appropriate regularization [8]. The effect of this shape energy in dealing
with clutter and occlusion is exemplified in Figure 1. For the input image f of a
partially occluded hand, we performed a gradient descent to minimize the total
energy (3) without (α = 0) and with (α > 0) shape prior.

3 Density Estimation in Feature Space

Unfortunately, the linear shape statistics (4) are limited in their applicability
to more complicated shape deformations. As soon as the training shapes form
1 The underlying piecewise–constant image model can easily be generalized to incor-
porate higher–order grey value statistics [27] or edge information [18]. In this paper,
however, we focus on modeling shape statistics and therefore do not consider these
possibilities.
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Fig. 1. Segmentation with linear shape prior on an image of a partially occluded
hand: initial contour (left), segmentation without shape prior (center), and segmenta-
tion with shape prior (right). The statistical shape prior compensates for misleading
information due to noise, clutter and occlusion. Integration into the variational frame-
work effectively reduces the dimension of the search space and enlarges the region of
convergence.

distinct clusters in shape space — such as those corresponding to the stable
views of a 3D object — or the shapes of a given cluster are no longer distributed
according to a hyperellipsoid, the Gaussian shape prior tends to mix classes and
blur details of the shape information in such a way that the resulting shape
prior is no longer able to effectively restrict the contour evolution to the space
of familiar shapes.

In the following we present an extension of the above method which incorpo-
rates a strong nonlinearity at almost no additional effort. Essentially we propose
to perform a density estimation not in the original space but in the feature space
of nonlinearly transformed data. The nonlinearity enters in terms of Mercer ker-
nels [6], which have been extensively used in the classification and support vector
community [1,2], but which have apparently been studied far less in the field of
density estimation. In the present section we present the method of density esti-
mation, discuss its relation to kernel principal component analysis (kernel PCA)
[23] and to the Parzen estimator [20,19], and propose estimates of the involved
parameters. Finally we illustrate the density estimate in applications to artificial
2D data and to 200–dimensional data corresponding to silhouettes of real–world
training shapes.

3.1 Gaussian Density in Kernel Space

Let z1, . . . ,zm ∈ IRn be a given set of training data. We propose to map the data
by a nonlinear function φ to a potentially higher–dimensional space Y . Denote
a mapped point after centering with respect to the training points by

φ̃(z) := φ(z) − φ0 = φ(z) − 1
m

m∑
i=1

φ(zi) , (5)
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and let the Mercer kernel [6] k(x,y) := (φ(x), φ(y)) denote the corresponding
scalar product for x,y ∈ IRn. Denote the centered kernels by

k̃(x,y) :=
(
φ̃(x), φ̃(y)

)
=k(x,y)− 1

m

m∑
k=1

(k(x,zk)+k(y,zk))+
1
m2

m∑
k,l=1

k(zk,zl).

(6)
We estimate the distribution of the mapped training data by a Gaussian

probability density in the space Y — see Figure 2. The corresponding energy is
given by the negative logarithm of the probability, and can be considered as a
measure of the dissimilarity between a point z and the training data:

Eφ(z) = φ̃(z)t Σ−1
φ φ̃(z) . (7)

In general the covariance matrix Σφ is not invertible. We therefore regularize it
by replacing the zero eigenvalues by a constant λ⊥:

Σφ = V ΛV t + λ⊥
(
I − V V t

)
, (8)

where Λ denotes the diagonal matrix of nonzero eigenvalues λ1 ≤ . . . ≤ λr and
V is the matrix of the corresponding eigenvectors V1, . . . , Vr. By definition of
Σφ, these eigenvectors lie in the span of the mapped training data:

Vk =
m∑

i=1

αk
i φ̃(zi) , 1 ≤ k ≤ r . (9)

In [23] it is shown that the eigenvalues λk of the covariance matrix correspond
(up to the factor m) to the nonzero eigenvalues of the m × m–matrix K with
entries Kij = k̃(zi,zj), and that the expansion coefficients {αk

i }i=1,...,m in (9)
form the components of the k–th eigenvector of K.

Inserting (8) splits energy (7) into two terms:

Eφ(z) =
r∑

k=1

λ−1
k

(
Vk, φ̃(z)

)2
+ λ−1

⊥

(
|φ̃(z)|2 −

r∑
k=1

(
Vk, φ̃(z)

)2
)
. (10)

With expansion (9), we obtain the final expression for our energy:

Eφ(z) =
r∑

k=1

(
m∑

i=1

αk
i k̃(zi,z)

)2

· (λ−1
k − λ−1

⊥
)
+ λ−1

⊥ · k̃(z,z) . (11)

As in the case of kernel PCA, the nonlinearity φ only appears in terms of the
kernel function. This allows to specify an entire family of possible nonlinearities
by the choice of the associated kernel. For all our experiments we used the
Gaussian kernel:

k(x,y) =
1

(2πσ2)
n
2
exp

(
−||x − y||2

2σ2

)
, x,y ∈ IRn . (12)

We refer to Section 3.4 for a justification of this choice.
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Fig. 2. Nonlinear mapping into Y = F
⊕

F and the distances DIFS and DFFS.

3.2 Relation to Kernel PCA

Just as in the linear case (cf. [16]), the regularization (8) of the covariance matrix
causes a splitting of the energy into two terms (10), which can be considered as a
distance in feature space (DIFS) and a distance from feature space (DFFS) — see
Figure 2. For the purpose of pattern reconstruction in the framework of kernel
PCA, it was suggested to minimize a reconstruction error [22], which is identical
with the DFFS. This procedure is based on the assumption that the entire
plane spanned by the mapped training data corresponds to acceptable patterns.
However, this is not a valid assumption: already in the linear case, moving too
far along an eigenmode will produce patterns which have almost no similarity to
the training data, although they are still accepted by the hypothesis. Moreover,
the distance DFFS is not based on a probabilistic model. In contrast, energy
(11) is derived from a Gaussian probability distribution. It minimizes both the
DFFS and the DIFS; the latter can be considered a Mahalanobis distance in
feature space.

3.3 On the Regularization of the Covariance Matrix

A regularization of the covariance matrix in the case of kernel PCA — as done
in (8) — was first proposed in [7] and has also been suggested more recently in
[24]. The choice of the parameter λ⊥ is not a trivial issue. For the linear case,
such regularizations of the covariance matrix have also been proposed [4,16,21,
25,9]. There [16,25], the constant λ⊥ is estimated as the mean of the replaced
eigenvalues by minimizing the Kullback–Leibler distance of the corresponding
densities. However, we believe that this is not the appropriate regularization of
the covariance matrix. The Kullback–Leibler distance is supposed to measure the
error with respect to the correct density, which means that the covariance matrix
calculated from the training data is assumed to be the correct one. But this is
not the case because the number of training points is limited. For essentially the
same reason this approach does not extend to the nonlinear case considered here:
depending on the type of nonlinearity φ, the covariance matrix is potentially
infinite–dimensional such that the mean over all replaced eigenvalues will be



Nonlinear Shape Statistics in Mumford–Shah Segmentation 99

zero. As in the linear case [9], we therefore propose to choose 0 < λ⊥ < λr,
which means that unfamiliar variations from the mean are less probable than
the smallest variation observed on the training set. In practice we fix λ⊥ = λr/2.

3.4 Relation to Classical Density Estimation

Why should the training data after a nonlinear mapping corresponding to the
kernel (12) be distributed according to a Gaussian density? The final expression
of the density estimate (11) resembles the well–known Parzen estimator [20,19],
which estimates the density of a distribution of training data by summing up the
data points after convolution with a Gaussian (or some other kernel function).

In fact, the energy associated with an isotropic (spherical) Gaussian distri-
bution in feature space is (up to normalization) equivalent to a Parzen estimator
in the original space. In the notations of (5) and (6), this energy is given by the
Euclidean feature space distance

Esphere(z) = |φ̃(z)|2 = k̃(z, z) = − 2
m

m∑
i=1

k(z,zi) + const.

Up to scaling and a constant, this is the Parzen estimator.
Due to the regularization of the covariance matrix in (8), the energy asso-

ciated with the more general anisotropic feature space Gaussian (7) contains a
(dominant) isotropic component given by the last term in (11). We believe that
this connection to the Parzen estimator justifies the assumption of a Gaussian
in feature space and the choice of localized kernels such as (12).

Numerical simulations show that the remaining anisotropic component in
(11) has an important influence. However, a further investigation of this influence
is beyond the scope of this paper.

3.5 On the Choice of the Hyperparameter σ

The last parameter to be fixed in the proposed density estimate is the hyperpa-
rameter σ in (12). Let µ be the average distance between two neighboring data
points:

µ2 :=
1
m

m∑
i=1

min
j �=i

|zi − zj |2 . (13)

In order to get a smooth energy landscape, we propose to choose σ in the order
of µ. In practice we used

σ = 1.5µ (14)

for most of our experiments. We chose this somewhat heuristic measure µ for
the following favorable properties: µ is insensitive to the distance of clusters as
long as each cluster contains more than one data point, µ scales linearly with
the data points, and µ is robust with respect to the individual data points.

Given outliers in the training set, i.e. clusters with only one sample, one could
refer to the more robust L1–norm or more elaborate robust estimators in (13).
Since this is not the focus of our contribution, it will not be pursued here.
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Fig. 3. Density estimate (7) for artificial 2D data. Distributions of variable shape
are well estimated by the Gaussian hypothesis in feature space. We used the kernel (12)
with σ = 1.5µ — see definition (13).

3.6 Density Estimate for Silhouettes of 2D and 3D Objects

Although energy (7) is quadratic in the space Y of mapped points, it is generally
not convex in the original space, showing several minima and level lines of essen-
tially arbitrary shape. Figure 3 shows artificial 2D data and the corresponding
lines of constant energy Eφ(z) in the original space.

For a set of binarized views of objects we automatically fit a closed quadratic
spline curve around each object. All spline curves have N=100 control points,
set equidistantly. The polygons of control points z = (x1, y1, x2, y2, . . . , xN , yN )
are aligned with respect to translation, rotation, scaling and cyclic permutation.
This data was used to determine the density estimate Eφ(z) in (11).

For the visualization of the density estimate and the training shapes, all data
was projected onto two of the principal components of a linear PCA. Note that
due to the projection, this visualization only gives a very rough sketch of the
true distribution in the 200–dimensional shape space.

Figure 4 shows density estimates for a set of right hands and left hands.
The estimates correspond to the hypotheses of a simple Gaussian in the original
space, a mixture of Gaussians and a Gaussian in feature space. Although both

Aligned contours Simple Gaussian Mixture model Feature space
Gaussian

Fig. 4. Model comparison: density estimates for a set of left (+) and right (•)
hands, projected onto the first two principal components. From left to right: aligned
contours, simple Gaussian, mixture of Gaussians, Gaussian in feature space (7). Both
the mixture model and the Gaussian in feature space capture the two–class structure
of the data. However, the estimate in feature space is unsupervised and produces level
lines which are not necessarily ellipses.
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two objects aligend contours
projection onto
1st and 2nd

principal comp.

projection onto
2nd and 4th

principal comp.

Fig. 5. Density estimate for views of two 3D objects: the training shapes of the
duck (white +) and the rabbit (black •) form distinct clusters in shape space which
are well captured by the energy level lines shown in apropriate 2D projections.

the mixture model and our estimate in feature space capture the two distinct
clusters, there are several differences: firstly the mixture model is supervised —
the number of classes and the class membership must be known — and secondly
it only allows level lines of elliptical shape, corresponding to the hypothesis that
each cluster by itself is a Gaussian distribution. The model of a Gaussian density
in feature space does not assume any prior knowledge and produces level lines
which capture the true distribution of the data even in the case that it does not
correspond to a sum of hyperellipsoids.

This is demonstrated on a set of training shapes which correspond to different
views of two 3D objects. Figure 5 shows the two objects, their contours after
alignment and the level lines corresponding to the estimated energy density (7)
in appropriate 2D projections.

4 Nonlinear Shape Statistics in Mumford–Shah Based
Segmentation

4.1 Minimization by Gradient Descent

Energy (7) measures the similarity of a shape C(z) parameterized by a con-
trol point vector z with respect to a set of training shapes. For the purpose
of segmentation, we combine this energy as a shape energy Eshape with the
Mumford–Shah energy (2) in the variational approach (3).

The total energy (3) must be simultaneously minimized with respect to the
control points defining the contour and with respect to the segmenting grey
values ui and uo. Minimizing the modified Mumford–Shah functional (2) with
respect to the contour C (for fixed ui and uo) results in the evolution equation

∂C(s, t)
∂t

= −dEMS

dC
= −(e+s − e−

s ) · ns + ν
d2C

ds2
, (15)

where the terms e+s and e−
s denote the energy density e+/−

s = (f −ui/o)2, inside
and outside the contour C(s), respectively, and ns denotes the outer normal
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vector on the contour. The two constants ui and uo are updated in alternation
with the contour evolution to be the mean grey value of the adjoining regions Ωi

and Ωo. The contour evolution equation (15) is transformed into an evolution
equation for the control points z by introducing definition (1) of the contour as
a spline curve. By discretizing on a set of nodes sj along the contour we obtain
a set of coupled linear differential equations. Solving for the x–coordinate of the
i-th control point and including the term induced by the shape energy we obtain:

dxi(t)
dt

=
(
B−1)

ij

[
(e+sj

−e−
sj
)nx − ν(xj−1−2xj+xj+1)

]− α

[
dEshape(z)

dz

]
2i−1
, (16)

where summation over j is assumed. The cyclic tridiagonal matrixB contains the
spline basis functions evaluated at these nodes, and nx denotes the x–component
of the normal vector on the contour. An expression similar to (16) holds for the
y–coordinate of the i–th control point.

The three terms in the evolution equation (16) can be interpreted as follows:
the first term pulls the contour towards the object in the image, thus minimizing
the grey value variance in the adjoining regions. The second term pulls each
control point towards its respective neighbors, thus minimizing the length of the
contour. And the third term pulls the control point vector towards the nearest
cluster of probable shapes, which minimizes the shape energy.

4.2 Invariance in the Variational Framework

By construction, the density estimate (7) is not invariant with respect to transla-
tion, scaling and rotation of the shape C(z). We therefore propose to eliminate
these degrees of freedom in the following way: since the training shapes were
aligned to their mean shape z0 with respect to translation, rotation and scaling
and then normalized to unit size, we shall do the same to the argument z of the
shape energy before applying our density estimate Eφ.

We therefore define the shape energy by

Eshape(z) = Eφ(z̃) , with z̃ =
Rθ zc

|Rθ zc| , (17)

where zc denotes the control point vector after centering, and Rθ denotes the
optimal rotation of the control point polygon zc with respect to the mean shape
z0. We will not go into details about the derivation of Rθ. A similar derivation
can be found in [26]. The final result is given by the formula:

z̃ =
M zc

|M zc| , with M = In ⊗
(

zt
0 zc −z0 × zc

z0 × zc zt
0 zc

)
,

where ⊗ denotes the Kronecker product and z0 × zc = zt
0Rπ/2zc.

The last term in the contour evolution equation (16) is now calculated by
applying the chain rule:

dEshape(z)
dz

=
dEφ(z̃)
dz̃

· dz̃
dz

.
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3 objects initial no prior with prior with prior density estimate

Fig. 6. Segmentation of artificial objects (left) with nonlinear shape prior:
the same prior can encode very different shapes. Introduction of the shape prior upon
stationarity of the contour causes the contour to evolve normal to the level lines of
constant energy into the nearest local minimum, as indicated by the white curves in
the projected density estimate (right).

Since this derivative can be calculated analytically, no additional parameters
enter the above evolution equation to account for scale, rotation and translation.

Other authors often propose to explicitly model a translation, an angle and
a scale and minimize with respect to these quantities (e.g. by gradient descent).
In our opinion this has several drawbacks: firstly it introduces four additional
parameters, which makes numerical minimization more complicated — param-
eters to balance the gradient descent must be chosen. Secondly this approach
mixes the degrees of freedom corresponding to scale, rotation and shape defor-
mation. And thirdly potential local minima may be introduced by the additional
parameters. On several segmentation tasks we were able to confirm these effects
by comparing the two approaches.

Since there exists a similar closed form solution for the optimal alignment
of two polygons with respect to the affine group [26], the above approach could
be extended to define a shape prior which is invariant with respect to affine
transformations. However, we do not elaborate this for the time being.

4.3 Coping with Multiple Objects and Occlusion

Compared to the linear case (4), the nonlinear shape energy (7) is no longer
convex. In general it has several minima corresponding to different clusters of
familiar contours. Minimization by gradient descent will end up in the nearest
local minimum. In order to obtain a certain independence of the shape prior
from the initial contour, we propose to first minimize the image energy EMS

by itself until stationarity and to then include the shape prior Eshape, after
performing the cyclic permutation of control points which — given the optimal
similarity transformation — best aligns the current contour with the mean of
the training shapes. This approach guarantees that we will extract as much
information as possible from the image before “deciding” which of the different
clusters of accepted shapes the obtained contour resembles most.

Figure 6 shows a simple example of three artificial objects. The shape prior
(17) was constructed on the three aligned silhouettes shown on the left. The next
images show the initial contour for the segmentation of a partially occluded
image of object 1, the final segmentation without prior knowledge, the final
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Segmentation without prior Segmentation with prior Projected density estimate

Fig. 7. Segmentation with a nonlinear shape prior containing right (+) and
left (•) hands— shown in the projected energy plot on the right. The input image is
a right hand with an occlusion. After the Mumford–Shah segmentation becomes sta-
tionary (left image), the nonlinear shape prior is introduced, and the contour converges
towards the final segmentation (center image). The contour evolution in its projection
is visualized by the white curve in the energy density plot (right). Note that the final
segmentation (white box) does not correspond to any of the training silhouettes, nor
to the minimum (i.e. the most probable shape) of the respective cluster.

segmentation after introducing the prior, and a segmentation with the same
prior for an occluded version of object 2.

The final image (Figure 6, right) shows the training shapes and the density
estimate in a projection onto the first two axes of a PCA. The white curves
correspond to the path of the segmenting contour from its initialization to its
converged state for the two segmentation processes respectively. Note that upon
introducing the shape prior the corresponding contour descends the energy
landscape in direction of the negative gradient to end up in one of the minima.
The example shows that the nonlinear shape prior can well separate different
objects without mixing them as in the simple Gaussian hypothesis. Since each
cluster in this example contains only one view for the purpose of illustration,
the estimate (14) for the kernel width σ does not apply; instead we chose a
smaller granularity of σ = µ /4.

4.4 Segmentation of Real Objects

The following example is an application of the nonlinear shape statistics to
silhouettes of real objects. The training set consisted of nine right and nine left
hands, shown together with the estimated energy density in a projection onto
the first two principal components in Figure 7, right side.

Rather than mixing the two classes of right and left hands, the shape prior
clearly separates several clusters in shape space. The final segmentations without
(left) and with (center) prior shape knowledge show that the shape prior com-
pensates for occlusion by filling up information where it is missing. Moreover, the
statistical nature of the prior is demonstrated by the fact that the hand in the
image is not part of the training set. This can be seen in the projection (Figure
7, right side), where the final segmentation (white box) does not correspond to
any of the training contours (black crosses).
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2 views of a rabbit binarized aligned contours

Fig. 8. Example views and binarization used for estimating the shape density.

4.5 Tracking 3D Objects with Changing Viewpoint

In the following we present results of applying the nonlinear shape statistics for
an example of tracking an object in 3D with a prior constructed from a large set
of 2D views. We binarized 100 views of a rabbit — two of them and the respective
binarizations are shown in Figure 8. For each of the 100 views we automatically
extracted the contours and aligned them with respect to translation, rotation,
scaling and cyclic reparameterization of the control points. We calculated the
density estimate (7) and the induced shape energy (17).

In a film sequence we moved and rotated the rabbit in front of a cluttered
background. Moreover, we artificially introduced an occlusion afterwards. We
segmented the first image by the modified Mumford–Shah model until conver-
gence before the shape prior was introduced. The initial contour and the segmen-
tations without and with prior are shown in Figure 9. Afterwards we iterated 15
steps in the gradient descent on the full energy for each frame in the sequence.2

Some sample screen shots of the sequence are shown in Figure 10. Note that
the viewpoint changes continuously.

The training silhouettes are shown in 2D projections with the estimated
shape energy in Figure 11. The path of the evolving contour during the entire
sequence corresponds to the white curve. The curve follows the distribution of
training data well, interpolating in areas where there are no training silhouettes.
Note that the intersections of the curve and of the training data in the center
(Figure 11, left side) are only due to the projection on 2D. The results show
that — given sufficient training data — the shape prior is able to capture fine
details such as the ear positions of the rabbit in the various views. Moreover,
it generalizes well to novel views not included in the training set and permits a
reconstruction of the occluded section throughout the entire sequence.

2 The gradient of the shape prior in (16) has a complexity of O(rmn), where n is
the number of control points, m is the number of training silhouettes and r is the
eigenvalue cutoff. For input images of 83 kpixels and m=100, we measured an average
runtime per iteration step of 96ms for the prior, and 11ms for the cartoon motion
on a 1.2 GHz AMD Athlon. This permitted to do 6 iterations per second. Note,
however, that the relative weight of the cartoon motion increases with the size of
the image: for an image of 307 kpixels the cartoon motion took 100ms per step.
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initial contour no prior with prior

Fig. 9. Begin of the tracking sequence: initial contour, segmentation without prior,
segmentation upon introducing the nonlinear prior on the contour.

Fig. 10. Sample screen shots from the tracking sequence.

Projection onto 1st and 2nd
principal component

Projection onto 2nd and 4th
principal component

Fig. 11. Tracking sequence visualized: Training data (•), estimated energy density
and the contour evolution (white curve) in apropriate 2D projections. The contour
evolution is restricted to the valleys of low energy induced by the training data.

5 Conclusion

We presented a variational integration of nonlinear shape statistics into a Mum-
ford–Shah based segmentation process. The statistics are derived from a novel
method of density estimation which can be considered as an extension of the



Nonlinear Shape Statistics in Mumford–Shah Segmentation 107

kernel PCA approach to a probabilistic framework. The original training data
is nonlinearly transformed to a feature space. In this higher dimensional space
the distribution of the mapped data is estimated by a Gaussian density. Due
to the strong nonlinearity, the corresponding density estimate in the original
space is highly non–Gaussian, allowing several shape clusters and banana– or
ring–shaped data distributions.

We integrated the nonlinear statistics as a shape prior in a variational ap-
proach to segmentation. We gave details on appropriate estimations of the in-
volved parameters. Based on the explicit representation of the contour, we pro-
posed a closed–form, parameter–free solution for the integration of invariance
with respect to similarity transformations in the variational framework.

Applications to the segmentation of static images and image sequences show,
that the nonlinear prior can capture even small details of shape variation with-
out mixing different views. It copes for misleading information due to noise and
clutter, and it enables the reconstruction of occluded parts of the object silhou-
ette. Due to the statistical nature of the prior, a generalization to novel views
not included in the training set is possible. Finally we showed examples where
the 3D structure of an object is encoded through a training set of 2D projections.

By projecting onto the first principal components of the data, we managed
to visualize the training data and the estimated shape density. The evolution of
the contour during the segmentation of static images and image sequences can
be visualized by a projection into this density plot and by animations. In this
way we verified that the shape prior effectively restricts the contour evolution
to the submanifold of familiar shapes.
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