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Abstract. Many approaches have been proposed to locate faces in an
image. There are, however, two problems in previous facial shape models
using feature points. First, the dimension of the solution space is too
big since a large number of key points are needed to model a face. Sec-
ond, the local features associated with the key points are assumed to be
independent. Therefore, previous approaches require good initialization
(which is often done manually), and may generate inaccurate localiza-
tion. To automatically locate faces, we propose a novel hierarchical shape
model (HSM) or multi-resolution shape models corresponding to a Gaus-
sian pyramid of the face image. The coarsest shape model can be quickly
located in the lowest resolution image. The located coarse model is then
used to guide the search for a finer face model in the higher resolution
image. Moreover, we devise a Global and Local (GL) distribution to
learn the likelihood of the joint distribution of facial features. A novel
hierarchical data-driven Markov chain Monte Carlo (HDDMCMC) ap-
proach is proposed to achieve the global optimum of face localization.
Experimental results demonstrate that our algorithm produces accurate
localization results quickly, bypassing the need for good initialization.

1 Introduction

Face detection and face localization have been challenging problems in computer
vision and machine perception. Face detection, for example, explores possible
locations of faces from an input image, and face localization accurately locates
the facial shape and parts, often from an initialized model. Appearance models
have been successfully used for face detection, where typically a square region
with an elliptic mask is used to represent a face image. Based on a large amount
of positive (face) and negative (non-face) samples, machine learning techniques
such as PCA [13], neural networks [9,11], support vector machines [6], wavelets
[10] and decision trees [14], are always used to learn the separating manifold of
faces and non-faces. By verifying patterns in a shifting window, the position of
a face can be derived.

However, an appearance model alone is not flexible enough to model shape
deformations and pose or orientation variations. Shape models, in particular
deformable shape models such as deformable template matching [15] and graph
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matching [4], have been used for face localization, i.e., finding accurate facial
shape and parts. A good example is the active shape model (ASM) [1] where
a Bayesian approach using a mixture of Gaussians is adopted. The prior of
shape and the likelihood of local features given each point are separately learnt,
and Bayesian inference is chosen to obtain the maximum a posteriori (MAP)
solution. They also developed and improved active appearance models (AAM)
[2] to locate faces.

There are, however, two problems with previous shape models for locating
faces. First, face localization is not automatic because of the huge solution space
of shape and position. Typically we have to use a large number of feature points
(e.g., around 80 in [1]) to represent faces. Good initialization must be provided
so that the optimization with MAP would converge to the global optimum.
Often manual initialization is required. Second, even if a good initialization is
provided, the localization results may not be accurate because the likelihood for
local features was not modeled properly in previous approaches. For instance,
distributions for features are assumed to be independent in the ASM model.

To address these two problems, we propose a hierarchical shape model (HSM)
for automatic face localization. Multiple levels of shapes (with feature points)
from coarse to fine, are employed to represent faces in a face image pyramid from
low-resolution to high-resolution. First, the coarsest shape model is located in
the lowest resolution image. Then we can gradually infer a finer shape in a
higher-resolution image from the located coarse shape in lower-resolution image.
Therefore, the uncertainty of the solution space is significantly reduced. Our
system can automatically find the face shape and location robustly and quickly.

In HSM, we model two types of priors: single-level distribution and condi-
tional distribution of a lower level given its higher level. Both of them are mod-
eled and learnt by a mixture of Gaussians. A key idea in HSM is the likelihood
modeling. The local image patterns associated with the feature points are NOT
assumed independent, but conditionally independent with respect to a hidden
variable. Specifically, we propose a novel global and local (GL) distribution to
model the joint distribution, also with a mixture of Gaussians. In addition, we
need to learn the data driven proposal density to guess the location of face based
on local image evidence.

To pursue global convergence of the solution, we employ a hierarchical data
driven Markov chain Monte Carlo (HDDMCMC) [12] method to explore the
solution space effectively. It is not only globally optimal compared with tra-
ditional gradient descent methods, but also efficient compared with common
Monte Carlo methods. All the distributions in HSM are modeled with Gaussian
mixtures, which can be reliably learnt by a reversible jump Markov chain Monte
Carlo method [8,3].

This paper is organized as follows. Section 2 introduces the framework of
HSM, including its formulation, Bayesian inference and the main concept of
HDDMCMC. The sampling details of HDDMCMC are introduced in Section
3. Section 4 talks about how to model four types of distributions in HSM and
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Fig. 1. Illustration of hierarchical shape model with three levels. Left is a Gaussian
pyramid of a face image. Right is the hierarchical shapes explaining the image in
corresponding levels.

briefly introduces the learning strategy. Experiments are shown in Section 5.
Section 6 summarizes this article.

2 Hierarchical Shape Model

2.1 Hierarchical Modeling for Facial Shape

Feature points used in face shape models may have semantic meanings. For
example, we usually choose corner and edge points of eyes, eyebrows, nose, mouth
and face contour to model a face. Let W = {(xi, yi), i = 1, · · · , n} denote the
shape, where (xi, yi) is the ith key point and n is the number of key points. Let
I denote the image containing the face. The task of face localization is to infer
W from I.

A hierarchical shape model (HSM) has multiple levels, W = {Wl, l =
1, · · · , L}, where W1 is the finest level of shape. The number of feature points
in Wl is nl and the jth feature point of Wl is denoted as W (j)

l . Each feature
point in coarse levels (W2, · · · ,WL) is generated as the weighted sum of chosen
feature points in W1. In practice, we choose nl+1 to be approximately half of nl.
A three-level HSM is shown in Fig 1. Let the Gaussian pyramid of image I be
{I1, · · · , IL}. Then the correspondence is established between shape domain Wl

and image domain Il. The most important property of HSM is that significant
semantic information is preserved across levels. As shown in Fig. 1, eyes, mouth,
face contour are all modeled even in the coarsest level.
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2.2 Bayesian Inference in Hierarchical Shape Model

Our task is to infer W = {W1, · · · ,WL} from image I1:

W∗ = argmax
W
p(W|I1) = argmax

W
p(W1, · · · ,WL|I1)

= argmax
W
p(WL|I1)

L−1∏
l=1

p(Wl|Wl+1, · · · ,WL, I1)

= argmax
W
p(WL|IL)

L−1∏
l=1

p(Wl|Wl+1, Il). (1)

p(WL|I1) = p(WL|IL) because the information of IL is enough to determineWL,
and so on to get p(Wl|Wl+1, Il). Obviously given Il and Wl+1, Wl only depends
on Il. We may have

W∗ = argmax
W

L∏
l=1

p(Wl|Il) = argmax
W

L∏
l=1

p(Il|Wl)p(Wl), (2)

which is equivalent to

W ∗
l = argmax

Wl

p(Il|Wl)p(Wl), l = L, · · · , 1. (3)

In HSM, we shall gradually optimize W ∗
l in Eqn.(3).

We decompose shape model Wl into two parts: the external parameters in-
cluding centroid Zl, scale sl and orientation θl, and the internal parameters wl.
With a linear transition matrix T(s,θ) to scale and rotate the shape wl, we get

Wl = T(s,θ)wl + Zl, T(s,θ)=s
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (4)

It is reasonable to assume that the external and internal parameters are inde-
pendent

p(Wl) = p(wl)p(Zl)p(sl)p(θl). (5)

2.3 Hierarchical Data-Driven Markov-Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) method is a tool to sample high-
dimensional distributions. It can be used in optimization if the objective function
itself is a pdf or could be converted to a pdf. Particularly if the objective function
is very complex with multiple peaks, MCMC has the good property of global
convergence because it ensures the Markov chain to reach the global optimum
with a certain probability. The inefficiency of MCMC could be improved by
data driven MCMC (DDMCMC)[12]. The traditional MCMC method randomly
walks through the parameter space while DDMCMC employs some heuristics
from data to guide the walks. In HSM, we should devise the salient proposal
density including both the heuristics given by the localization result on the
higher level, and local cues directly from the image. This leads to a hierarchical
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DDMCMC or HDDMCMC, which starts at the top level and propagates the
optimal solution from higher level to lower level.

At the top level, the optimal WL of IL is determined by Metropolis-Hastings
sampling. The Markov chain {WL(t)} to sample p(WL|IL) is driven by the tran-
sition probability at time t

α = min{1, p(W
′
L|IL)q(WL(t);W ′

L, IL)
p(WL(t)|IL)q(W ′

L;WL(t), IL)
} (6)

where W ′
L is sampled from proposal density q(W ′

L;WL(t), IL) and it is accepted
as WL(t+1) with probability α. The proposal density has two components, the
shape prior p(WL) and data-driven part, or local hints from image IL to the jth
feature point q(W (j)

L ;W (j)
L (t), IL). The optimal W ∗

L is selected from the samples
{WL(t)} with maximum a posterior (MAP) p(W ∗

L|IL).
The next is to find the optimalW ∗

l from the higher levelW ∗
l+1. The sampling

strategy is slightly different from Eqn.(6) because the localizationW ∗
l+1 will guide

the Markov chain in proposal density by

α = min{1, p(W
′
l |Il)q(Wl(t);W ′

l , Il,W
∗
l+1)

p(Wl(t)|Il)q(W ′
l ;Wl(t), Il,W ∗

l+1)
} (7)

where the proposal density q(W ′
l ;Wl(t), Il,W ∗

l+1) relies on W ∗
l+1 as well. The

proposal density again includes two parts, shape prior propagation p(Wl|W ∗
l+1)

and local hints q(W ′(j)
l ;W (j)

l (t), Il) from Il.
The hierarchical DDMCMC method (Eqn.(6) and (7)) is globally optimal

since we shall finally sample the finest posterior p(W1|I1). The information of
higher level shape W ∗

l+1 propagates to lower level Wl via proposal density, and
guides the Markov chain exploring the solution space p(Wl|Il). Thus, the er-
ror of W ∗

l+1 does NOT propagate to Wl. Since the entropy of p(Wl|W ∗
l+1, Il)

is much smaller than p(Wl|Il), the Markov chain will hardly walk to those un-
likely samples. Therefore, HDDMCMC is much more efficient than conventional
DDMCMC that directly samples W1 from input image I1.

3 Sampling Hierarchical DDMCMC

In this section, we explain the details of Metropolis-Hastings sampling Eqn.(6)
and (7). Since the propagation from higher level to lower level is more general
than sampling the top level, we focus on Eqn.(7). We shall also discuss how to
give good initializations in the top level.

3.1 Sampling Strategy

The basic task of MCMC is to sample a target density p(x), but in most cases it
is very difficult to directly sample p(x). Therefore a proposal density q(x′;x(t))
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Fig. 2. The flowchart of hierarchical DDMCMC in HSM. We use the propagation form
W3 to W2 as an example. The left branch is sampling the conditional prior from higher
level result, while the right branch is sampling the position of each feature point.

is designed so that it is easy to draw samples x′ ∼ q(x′;x(t)). In our HSM, the
proposal density q(W ′

l ;Wl(t), Il,W ∗
l+1) could be decomposed to

q(W ′
l ;Wl(t), Il,W ∗

l+1) = βp(W
′
l |W ∗

l+1) + (1 − β)q(W ′
l ;Wl(t), Il), (8)

where β is the probability of choosing prior propagation process p(W ′
l |W ∗

l+1)
and 1 − β is the probability of choosing data-driven process q(W ′

l ;Wl(t), Il), or
sampling the feature points directly from the image.

Sampling the first part of Eqn.(8), p(Wl|W ∗
l+1), is high-dimensional and non-

trivial. But if we model the joint distribution p(Wl,Wl+1) by a mixture of Gaus-
sians, then the conditional density p(Wl|Wl+1) is also a mixture of Gaussians
that can be derived from p(Wl,Wl+1). At the top level without any prior propa-
gation, we simply sample p(WL) which is also modeled as a mixture of Gaussians.
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To make it plausible to sample the second part of Eqn.(8), we design an
individual proposal q(W ′

l ;Wl(t), Il) for each feature point W ′(j)
l , j = 1, · · · , nl:

q(W ′
l ;Wl(t), Il) =

nl∏
j=1

q(W ′(j)
l ;W (j)

l (t), Il). (9)

We may use Gibbs sampling to simply flip the position of one feature point at
each time. Suppose the jth feature point is chosen, then after sampling,W ′

l differs
fromWl(t) only atW ′(j)

l . Sampling q(W ′(j)
l |W (j)

l , Il) means that we should find a
better position for the jth feature point, merely considering the local likelihood.
Let Γ(x,y) ⊂ Il denote a 5×5 image patch centered at (x, y) and N(W (j)

l ) be a
neighborhood, e.g. a 7×7 region centered at W (j)

l . We merely take into account
the possible positions of W ′(j)

l in the neighbor N(W (j)
l )

q(W ′(j)
l ;W (j)

l (t), Il)=
P (W ′(j)

l =(x, y)|Γ(x,y))∑
(x,y)∈N(W (j)

l
(t)) P (W

′(j)
l =(x, y)|Γ(x,y))

, (10)

where P (W ′(j)
l =(x, y)|Γ(x,y)) is the probability of the jth feature point lying at

position (x, y) given the local image pattern Γ(x,y). Thus it is easy to draw a
new sample W ′(j)

l via Eqn.(10). We define a salient map p(W (j)
l |Il) as

p(W (j)
l |Il) =

P (W (j)
l =(x, y)|Γ(x,y))∑

(x,y)∈Il
P (W (j)

l =(x, y)|Γ(x,y))
, (11)

to denote the distribution of the jth feature point at each position of image Il
according to local likelihood only. Eqn.(10) may be rewritten as

q(W ′(j)
l ;W (j)

l (t), Il)=
p(W ′(j)

l |Il)∑
W ′(j)

l
∈N(W (j)

l
(t)) p(W

′(j)
l |Il)

. (12)

Before the sampling process, we pre-compute the salient maps for all feature
points such that it is very fast to draw proposals.

3.2 Initialization by Generalized Hough Transform

Although HDDMCMC is insensitive to initializations, good initializations al-
ways help searching algorithms both in efficiency and accuracy. In HSM, the
initialization is given in the top level to initialize WL(0) in IL. Since the di-
mension of WL is fairly high, we first give an estimate of the global parameters
{ZL(0), sL(0), θL(0)}, and then estimate the position of each key point.

Suppose the lattice of image IL is Ψ . The proposal density of ZL associated
with sL and θL is
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q(ZL, sL, θL|IL) =
nL∑
j=1

∑
W

(j)
L

∈Ψ

p(ZL, sL, θL,W
(j)
L |IL)

=
nL∑
j=1

∑
W

(j)
L

∈Ψ

p(ZL, sL, θL|W (j)
L )p(W (j)

L |IL), (13)

where the salient map p(W (j)
L |IL) generates a hypothesis of the positions of

each feature point, and then the feature point would propagate the hypothe-
sis to the 4D global parameter space by p(ZL, sL, θL|W (j)

L ). This is in fact a
generalized Hough transform (GHT). The initialization of the outer parameters
{ZL(0), sL(0), θL(0)} is sampled from Eqn.(13), and the key points most likely
to be connected to ZL(0) via sL(0) and θL(0) are chosen to initialize WL(0).

4 Distribution Modeling and Learning

In the previous section we introduced the statistical framework of HSM and its
four distributions. Overall, in HDDMCMC, there are basically two densities, i.e.
conditional prior p(Wl|Wl+1) and salient map p(W (j)

l |Il) for us to draw propos-
als, and other two densities, prior p(Wl) and likelihood p(Il|Wl) to evaluate the
posterior. In this section we design different strategies to model them. We show
that all of them can be decomposed to a mixture of Gaussians model, which
could be reliably learnt by reversible jump Markov chain Monte Carlo method.

4.1 Prior p(Wl)

From prior decomposition Eqn.(4) and independence assumption Eqn.(5), we
model the distribution of external and internal parameters separately. The prior
distribution of the position Zl is uniform and omitted. The priors of scale sl and
orientation θl are modeled by Gaussians

p(sl) =
1√

2πσsl

exp{− (s− µsl
)2

2σ2sl

}, p(θl) = 1√
2πσθl

exp{− (θ − µθl
)2

2σ2θl

}, (14)

where µsl
, µθl

and σsl
, σθl

are the means and variances of sl and θl respectively.
They can be easily estimated from training samples.

To model the position, scale and orientation irrelevant shape p(wl) is non-
trivial due to its high dimensionality 2nl. Here we apply principal components
analysis (PCA) to reduce the dimension and obtain the principal components hl

(dim(hl) < dim(wl))

hl = BT
wl
(wl − µwl

), Wl = Bwl
hl + µwl

, (15)

where µwl
is the mean of p(wl), and each column vector of Bwl

is the eigenvector
of the covariance matrix of p(wl). Since hl can approximate wl very well with
much lower dimension, we may learn p(hl) rather than p(wl). We model p(hl)
with the Gaussian mixture
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p(hl) =
Kl∑
i=1

α
(i)
l G(hl;µ

(i)
l , Σ

(i)
l ), (16)

where G(hl;µ
(i)
l , Σ

(i)
l ) is a Gaussian distribution with mean µ(i)l and covariance

Σ
(i)
l . α(i)

l is the corresponding weight such that
∑Kl

i=1αi=1 and α(i)
l >0,∀ i. Kl

is the number of Gaussian kernels.

4.2 Conditional Prior p(Wl|Wl+1)

The conditional density p(Wl|Wl+1) plays an essential role in HSM and HDDM-
CMC because the localization of higher level W ∗

l+1 will propagate down via it.
Similar to Eqn.(5) we may have

p(Wl|Wl+1) = p(wl, Zl, sl, θl|wl+1, Zl+1, sl+1, θl+1)
= p(wl|wl+1)p(Zl|Zl+1)p(sl|sl+1)p(θl|θl+1). (17)

The conditional distributions p(Zl|Zl+1), p(sl|sl+1), p(θl|θl+1) are all modeled as
1D or 2D Gaussians, e.g., p(sl|sl+1) ∝ exp{−(sl − sl+1)2/λsl

} where λsl
scales

the variance of sl.
We, however, take a two-step approach to modeling p(wl|wl+1). We first

learn the joint distribution p(wl, wl+1) with a Gaussian mixture model. Then the
conditional prior p(wl|wl+1) has a closed form distribution, directly computed
by p(wl, wl+1) with parameters controlled by wl+1. We again use PCA to reduce
dimensions and in fact model p(wl|wl+1) by p(hl|hl+1).

4.3 Likelihood p(Il|Wl)

To evaluate the likelihood of an image given the shape in HSM, we only need to
take into account the pixels nearby each feature point. Let Γ

W
(j)
l

⊂ Il denote a

5×5 square patch around the jth feature point W (j)
l . Then we have

p(Il|Wl) = p(ΓW
(1)
l

, · · · , Γ
W

(nl)
l

). (18)

Directly modeling the above joint distribution is difficult. This is why previous
shape models (e.g., [1]) assumed independent distributions, i.e.

p(Γ
W

(1)
l

, · · · , Γ
W

(nl)
l

) =
nl∏

j=1

p(Γ
W

(j)
l

). (19)

However, this assumption is an oversimplification for the likelihood. For example,
what the left corner of the left eye looks like definitely depends on the appearance
of the left corner of the left eyebrow.

We now introduce global and local (GL) distributions to model likelihood.

Definition 1. The joint distribution of random variable X = {x1, · · · , xn} is
called a GL distribution if

p(X) =
∫
p(v)p(x1, · · · , xn|v)dv =

∫
p(v)

n∏
i=1

p(xi|v)dv, (20)

where v=f(X) is the hidden variable of X.
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Fig. 3. Illustration of a GL distribution when the hidden variable is chosen as the
principal components. The hidden variable v is determined by {xi}, but it also controls
each xi. {xi}s are never independent because xj would affect xi via v.

An intuitive explanation of the GL distribution is that each random variable
x1, · · · , xn is conditionally independent with respect to the hidden variable v,
and its distribution p(v) captures the global properties of X. Therefore each
random variable is not independent because they are connected by the hidden
variable, and meanwhile not too correlated because the conditional densities
p(xi|v), i = 1, · · · , n may be different. What we should do for GL is to select
hidden variable v=f(X) and do the integration.

Theorem 1. Let v = AX, where A is the principal components of X and
dim(v)  dim(X). Assume p(v) and p(xi|v) (i = 1, · · · , n) to be continuous
functions with finite optimums. The GL distribution can be approximated by

p(X) ≈ λp(AX)
n∏

i=1

p(xi|AX), (21)

where λ is a constant.

Proof. Since matrix A is the principal components of X, for a particular X
and a small ε there exists a small neighborhood Nv(X) = {p(X|v) > ε}. Since
the integration of p(v)

∏n
i=1 p(xi|v) in the whole set is p(X) <∞, the integration

can be approximated in Nv(X). The volume of the neighborhood Nv(X) exists
and is assumed to be δ due to the condition of p(v) and p(xi|v) (i= 1, · · · , n).
According to the mid-value theorem, there exists ξ ∈ Nv(X) such that

p(X) =
∫
p(v)

∏n
i=1 p(xi|v)dv

≈ ∫
Nv(X) p(v)

∏n
i=1 p(xi|v)dv

= δp(ξ)
∏n

i=1 p(xi|ξ). (22)

The point v = AX must lie at the center of Nv(x) because X ≈ AT v and the
conditional density p(X|AX) is fairly high. Since both ξ and AX lie in the



Hierarchical Shape Modeling for Automatic Face Localization 697

very small neighbor Nv(X), we may also have ξ ≈ AX. This naturally leads to
Eqn.(21).

Theorem 1 gives us an approximation to evaluate the GL distribution by
PCA. The hidden variable lies in the eigenspace of the observed data which
captures the global correspondence as illustrated in Fig. 3. From another point of
view, the distribution of the hidden variable p(v) in eigenspace approximates the
observed one, and the approximation error is compensated by the local densities
p(xi|v).

When applying a GL distribution to modeling likelihood Eqn.(18), the di-
mension of Γ

W
(j)
l

is 25, still too high. We again employ PCA to reduce the di-

mension of Γ
W

(j)
l

to u(j)l . And vl is the hidden variable or principal components

of {u(1)l , · · · , u(nl)
l }. Thus the likelihood is approximated by

p(Il|Wl) ≈ p(vl)
nl∏

j=1

p(u(j)l |vl) = p−(nl−1)(vl)
nl∏

j=1

p(u(j)l , vl). (23)

Both p(vl) and p(u
(j)
l , vl) are assumed mixture of Gaussians.

4.4 Salient Map p(W (j)
l |Il)

From the definition of salient map Eqn.(11), the probability P (W (j)
l =

(x, y)|Γ(x,y)) is essential. Based on Bayesian law we may have

P (W (j)
l =(x, y)|Γ(x,y)) ∝ p(Γ

W
(j)
l

)p(W (j)
l ). (24)

p(W (j)
l ) is the prior distribution of the jth feature point, e.g., the left eye would

not lie at the upper-right of the image. p(Γ
W

(j)
l

) is just the independent com-
ponent of Eqn.(19). We also apply PCA to reduce Γ

W
(j)
l

and learn a Gaussian
mixture model in the reduced space.

4.5 Learning Gaussian Mixture by Reversible Jump MCMC

We have so far modeled all the distributions in HSM as a mixture of Gaussians
because of its flexibility in fitting arbitrary distributions. A traditional algorithm
of learning Gaussian mixture model is Expectation-Maximization (EM), which
needs as input the kernel number and often gets stuck in local minimums. To
solve this problem, we formulate the objective function under a MAP criterion
instead of MLE, with prior that restricts the number of Gaussian kernels based on
the minimum description length (MDL) criterion. Let {Y1, · · · , Ym} be observed
examples. The number of Gaussian kernels is k, and the parameter of the ith
kernel is αi, µi and Σi. Let θk = {αi, µi, Σi}k

1 . The Gaussian mixture model is
learnt via

(k∗, θ∗
k) = argmax

k,θk

p(k)
m∏

j=1

p(Yj ; θk) (25)

where p(k) ∝ exp{−λk log k} is the prior of the kernel number, and
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Level3
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Level2

Level3

Level1
Level2

Fig. 4. A sampling tree of face prior shape from the top to the bottom level. For each
parent node wl+1, four child nodes are randomly sampled from p(wl|wl+1).

p(Yi; θk) =
k∑

j=1

αiG(Yi;µi, Σi).

Then a reversible jump Markov chain Monte Carlo is developed to explore
varying probability spaces, with the guarantee of global convergence [8,3]. There
are three processes in the reversible jump MCMC: diffusion to explore the same
space, split to divide one Gaussian kernel to two, and merge to combine two
kernels to one. So the sampler may randomly walk to samples with different
kernel numbers. The learning by reversible jump MCMC is robust, efficient and
reliable.

5 Experimental Results

Our experiments are conducted with a large number of frontal face images in
the FERET data set [7], AR data set [5] and other collections, with different
races and varying illuminations. We have selected 721 images as training data
and use others for testing. We also collected some face images with complex
backgrounds and lightings to test the robustness of our algorithm. Each training
image is normalized to the same scale and manually labelled with 83 key points,
including the most semantically important feature points such as the corners
of eyes, mouth and face contour. These samples form the training set of shape
{W1(i), i = 1, · · · , N}. Then we design {W2(i), i = 1, · · · , N} and {W3(i), i =
1, · · · , N} with 34 and 19 feature points, respectively.
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Once the three levels of shape samples and their corresponding Gaussian
pyramid are generated, we employ reversible jump Markov chain Monte Carlo
to learn the four elementary distributions, i.e., single level prior p(Wl), con-
ditional prior p(Wl|Wl+1), likelihood p(Il|Wl) and salient map p(W (j)

l |Il). To
justify the reliance of our learning algorithm, we build a sampling tree of hier-
archical facial prior shape. The root node of this tree is the coarsest shape w3
sampled from p(w3). Then for each parent node in the tree, e.g. wl+1(j), we
may get four child nodes {wlj(1), wlj(2), wlj(3), wlj(4)} randomly sampled from
p(wl|wl+1(j)), as shown in Fig 4. The samples generated in this hierarchical
shape tree demonstrate the reliability of both the conditional density modeling
via Gaussian mixture and learning by reversible jump MCMC. For example, we
observe that the root sample w3 seems to have a smile, and so do four child
samples at level 2 and sixteen samples at level 1. Obviously the magnitude of a
smile differs from level to level. Going from level 2 to level 1, we also observe that
the difference between the four children at level 1 generated by the same parent
node at level 2 is much smaller than that between those four nodes on layer

Hierarchical DDMCMC
Sampling Processes Output Result

Initialization from
Higher Level

Input Image

Gaussian Pyramid of Input

GHT

Fig. 5. The flowchart of gradually locating a face from low-resolution to high-resolution
in HSM. In this display, the pyramid does not go up by 2 (the size of the image at
higher level is more than a half of that at lower level), but in experiment it does.
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(a) (b) (c)

Fig. 6. Comparison between likelihood assumptions. (a) Input face image. (b) Local-
ization result with independence assumption to local features. (c) Localization result
with GL distribution for local features.

2, reflecting the fact that the finer level model represents the higher frequency
information.

Once all the distributions are learnt (there are 280 distributions to learn), we
employ HDDMCMC to locate a face in input image. We use a simple example
to illustrate our algorithm in Fig. 5. First we build the Gaussian pyramid of
the input image, and do the generalized Hough transform (GHT) to get the
initialization in the top level. Then the sampler of HDDMCMC draws random
samples from the posterior, and the optimal solution is achieved in the samples
by MAP criterion. By sampling the conditional face prior densities as shown in
Fig. 4, the optimal solution from higher level generates the initialization at the
lower level. This process is propagated to the finest level until the global optimal
solution is obtained. In each hierarchical sampling process, we have found that
2000 samples are sufficient. In our experiment, we observe that the initialization
from higher level is usually close to the ground truth. Therefore, our algorithm
runs very fast, taking 0.5s, 1.5s and 6s to output the face shape from coarse to
fine for an image of size 128×128.

We designed an experiment to demonstrate the importance of the GL dis-
tribution. We select a face image with significant side illumination and run two
HDDMCMC algorithms with the only difference that the local likelihood of each
feature point is independent or not1. The results are listed in Fig. 6, where (b)
and (c) are the results of the independent local likelihood and GL distribution,
respectively. It can be observed that the face contour is localized much more
accurately in (c) than in (b). The global property of the likelihood plays an

1 An interesting comparison could be between HSM with GL distribution and ASM
(with independent local likelihood). It is, however, fair to compare HSM with GL
distribution and with independent local likelihood.
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important role in face localization, which is appropriately modeled in the GL
distribution.

Finally we test our algorithm on some challenging face images, shown in Fig.
7. There are typically four cases: (a) intensive expression, (b) unusual lighting
condition, (c) noisy and low-quality image and (d) face very different from the
training data. Overall the results are satisfactory. It is interesting to note that
in (a) the bottom lip is mismatched to the bottom teeth. This is the drawback
of the shape model which merely takes into account the local image patterns
associated with the feature points. Note that no Asian faces are used in our
training data, yet we obtain good localization results in (b) and (d). Despite the
poor lighting condition in (b), our algorithm is able to generalized the learnt
distributions and obtain a good localization result. Because image (c) has very
low resolution, we up-sample it and still obtain good localization without false
alarm.

(b)

(d)(c)

(a)

Fig. 7. The results of HSM in face localization with challenging conditions. (a) Intensive
expression. (b) Unusual lighting. (c) Noisy and low-quality image. (d) Appearance that
is very different from the training data.
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6 Summary

In this paper, we build a hierarchical shape model for faces and employ HD-
DMCMC to automatically locating a face in an image. In this way, two major
problems in previous shape models, i.e., huge solution space and rather inac-
curate model for likelihoods, are addressed. Even though MCMC is well known
for its inefficiency, the HDDMCMC runs very fast because (a) it proceeds from
coarse to fine with solution space sharply reduced and (b) salient proposal den-
sities integrating both top-down and bottom-up processes are designed to guide
the Markov chain. We model the joint distribution of local likelihoods via global
and local (GL) distributions to reserve the global correspondence and the local
details of local features associated with the key points. Our experimental re-
sults indicate that both modeling and learning of the distributions in HSM are
accurate and robust.

A large part of our work focuses on how to deal with high dimensional distri-
butions. The key idea in our approach is to simplify a complex correspondence by
introducing hidden variable. We have also found principal components analysis
and reversible jump MCMC are effective in linear dimensionality reduction and
density learning in HSM. In fact, the GL distribution can be applied to general
vision problems.
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