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Abstract. Position disparity between two stereoscopic images, com-
bined with camera calibration information, allow depth recovery. The
measurement of position disparity is known to be ambiguous when the
scene reflectance displays repetitive patterns. This problem is reduced if
one analyzes scale disparity, as in shape from texture, which relies on
the deformations of repetitive patterns to recover scene geometry from
a single view.
These observations lead us to introduce a new correlation measure based
not only on position disparity, but on position and scale disparity. Local
scale disparity is expressed as a change in the scale of wavelet coefficients.
Our work is related to the spatial frequency disparity analysis of Jones
and Malik (ECCV92). We introduce a new wavelet-based correlation
measure, and we show its application to stereopsis. We demonstrate its
ability to reproduce perceptual results which no other method of our
knowledge had accounted for.

Introduction

Position disparity is a well-known cue used for stereoscopic depth reconstruction,
but it is not the only one. Jones and Malik have demonstrated the importance of
frequency disparity information in stereopsis [4,5], and perceptual results have
shown that stereo image pairs created with bandpass filtered noise, and designed
to contain frequency disparity information, but no position disparity informa-
tion, lead to slant perception [12]. In shape from texture, which studies the
recovery of scene depth from the monocular image of a homogeneously textured
object, the shape cue comes from the scale or the frequency disparity between
different positions in the image [3,6].

Many stereoscopic algorithms which produce dense disparity maps require a
measure of similarity between regions from the image pair, and define disparity
as the local translation maximizing this similarity. In order not to be sensitive
to noise, the similarity measure is usually based on averages of image intensities
over a region. A geometrical problem arises when the local scene element being
viewed is not fronto-parallel: because of projective distortion, the shapes and
sizes of corresponding image patches are not identical in the two images. Since the
distortion parameters depend on the local orientation of the scene whose shape
is being computed, an iterative scheme must be used, in order to improve the
similarity measure by using the scene shape calculated at the previous step [2].
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Repetitive texture (regular grating, woven fabric), is difficult to handle with
classical similarity measures because they produce many local maxima. We intro-
duce a new similarity measure, incorporating a scale disparity constraint, which
we observe in practice to lift the repetitive texture ambiguity.

Wavelets, whose parameters are position and scale, are ideally suited to define
a correlation measure based on position and scale disparity. Wavelet methods
have been proposed for stereopsis in the context of coarse-to-fine disparity mea-
surement [9,10]. The method proposed here is related to [8], in which an affine
transformation between image patches is measured at the output of a set of
filters.

We demonstrate through numerical examples in 1D and 2D that our wavelet-
based correlation is smooth and well-behaved and generally displays only one
local maximum in the presence of repetitive texture. This makes it a good in-
gredient for stereopsis algorithms which rely on a similarity measure [13].

1 Wavelet Analysis of Distortion

In this paper, we neglect occlusion effects, which can be taken into account at a
higher level, for instance in a cooperative stereopsis algorithm [13]. We suppose
the stereoscopic pair of images Il and Ir to satisfy

Il(x) = Ir(d(x)) .

where
d(x) = d(x1, x2) = (d1(x1, x2), d2(x1, x2))

is a continuous map, which we call the disparity1 between Il and Ir. Let ψ(x)
be a wavelet, i.e. a two-dimensional oscillating function whose spatial support is
localized around (0, 0) and whose spatial frequency support concentrates around
a frequency ξ �= (0, 0). A Gabor wavelet, which is a Gaussian window modulated
to oscillate at a frequency ξ, satisfies these requirements. Let u be a position in
R2 and let S denote a positive definite 2 × 2 matrix. An affine transformation

ψu,S(x) = (detS)−1ψ(S−1(x− u)) .

modifies the space-scale localization of the wavelet to position u and frequency
ST ξ, where ST is the matrix transpose of S.

The wavelet coefficients of I are defined by

W (u, S) = 〈I, ψu,S〉 =
∫
I(x)ψ∗

u,S(x) dx . (1)

The squared amplitude of wavelet coefficients |W (u, S)|2 measures the energy
contained in a surface patch of the image I centered at u, around spatial
frequency ST ξ.
1 Disparity is generally defined as d(x) − x.
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Let us compare the wavelet coefficients of Il (denoted Wl(u, S)) to those
of Ir (denoted Wr(u, S)), supposing for the moment that the disparity d
between the two images is an affine transformation

d(x) = d(u) + J × (x− u) ,

where J is a 2 × 2 matrix. A simple change of variable2 in (1) yields

Wl(u, S) =Wr(d(u), J S) .

This relationship between wavelet coefficients makes apparent the position and
scale disparities between the two images.

In the case of a general, no longer affine, disparity, if d is differentiable,
it can be approximated, locally around a position u, by its first-order Taylor
approximation

d(x) ≈ d(u) + J(u) × (x− u) ,

where J(u) is the 2 × 2 Jacobian matrix of d at position u

J(u) =



∂d1
∂u1

(u)
∂d1
∂u2

(u)

∂d2
∂u1

(u)
∂d2
∂u2

(u)


 .

If Il were a smooth image, it would be possible to extend the Taylor approxima-
tion to the image, and obtain

Il(d(x)) ≈ Il(d(u) + J(u) × (x− u))

Unfortunately, even in the absence of sharp discontinuities, an image cannot be
assumed to be smooth on account of measurement noise. One can however model
the image as the realization of a stochastic process, whose covariance is smooth
away from the diagonal. Then one can show [1] that the variances of wavelet
coefficients satisfy

E[|Wl(u, S)|2] ≈ E
[|Wr(d(u), J(u)S)|2

]
. (2)

2 Correlation Measure

We choose a correlation measure between images Il and Ir of the form

ρ =
2 (Featl,Featr)

(Featl,Featl) + (Featr,Featr)
(3)

2 The change of variable is the motivation for the L1 normalization of the wavelet,
instead of the more classical L2 normalization.
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where Featl and Featr are features relative to the two images, and ( , ) is an
inner product in feature parameter space. Clearly, ρ ≤ 1 and ρ = 1 if and only
if Featl = Featr. Section 4.2 comments on this choice of correlation ratio.

Relationship (2) allows to derive a correlation measure which combines po-
sition disparity d and scale disparity J . Given a collection of scaling matrices Si

(typically less than 5), let

Featl(u, Si) = E
[|Wl(u, Si)|2

]

and for a given position disparity d and scale disparity J , let

Feat(d,J)
r (u, Si) = E

[|Wr(d(u), J(u)Si)|2
]
.

We define the features at a position u as the collection of wavelet coefficient
variances at preselected scales:

Featl(u) = {Featl(u, Si)}{Si} (4)

Feat(d,J)
r (u) = {Feat(d,J)

r (u, Si)}{Si} . (5)

The inner product ( , ) is then simply

(Featl,Featr) =
∑
Si

Featl(u, Si) · Featr(u, Si) .

We finally obtain a correlation measure which depends on position disparity
d and scale disparity J :

ρ(u, d, J) =
2

∑
Si

Featl(u, Si) · Feat(d,J)
r (u, Si)∑

Si
(Featl(u, Si))2 + (Feat(d,J)

r (u, Si))2
. (6)

Note that one is in practice limited to a unique realization of the images.
In order to estimate the variance of wavelet coefficients, we rely on estimation
results from [1]. We estimate E[|W (u, S)|2] by averaging |W (v, S)|2 for v in
a neighborhood B(u) of u. This estimation procedure, which is proved to be
consistent, justifies the use of wavelet filters rather than Gaussian filters in the
correlation measure.

For a given scaling matrix Si, Featl(u, Si) is estimated with

F̂eatl(u, Si) =
∫

B(u)
|Wl(v, Si)|2 dv

and the corresponding Feat(d,J)
r (u, Si) is estimated with

F̂eatr
(d,J)

(u, Si) =
∫

B(u)
|Wr(d(v), J(v)Si)|2 dv .
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3 Local Shape Measurement

We have relaxed the classical stereopsis problem by introducing a new parameter
for image matching: scale disparity J . At first view, the problem may appear
more difficult to solve, because finding the best local match between Il and Ir
now requires to maximize ρ (defined in (6)) over d and J , instead of d only.

This difficulty disappears when recalling the objective, which is to measure
scene depth. At a given position u in image Il, position disparity d(u) and scale
disparity J(u) are both a function of the local position and orientation of the
scene element being viewed. Consider a simplified 2D geometry displayed in
Figure 3, where local orientation is defined by a unique angle θ, and position is
determined by the signed distance p from the surface tangent to a reference point
O. Appendix A gives the expressions of position disparity dp,θ and scale dispar-
ity Jp,θ. In 3D, local geometry would be expressed by three scalar parameters
(p, θ1, θ2).

p
θ

tangent

β

O

rightleft
image image

local scene
element

Fig. 1. Simplified 2D geometry.

The correlation measure ρ can then be reformulated as a function of p and θ
instead of d and J :

ρ(u, p, θ) =
2

∑
Si

Featl(u, Si) · Feat(dp,θ,Jp,θ)
r (u, Si)∑

Si
(Featl(u, Si))2 + (Feat(dp,θ,Jp,θ)

r (u, Si))2
. (7)
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4 Numerical Results

In this section, we compare the correlation measure ρ(u, p, θ) defined in (7) to
the classical area correlation ρ0(u, p, θ) defined by

ρ0(u, p, θ) =

∫
B(u) Ĩl(v) Ĩr(dp,θ(v)) dv(∫

B(u) Ĩl(v)
2 dv

∫
B(u) Ĩr(dp,θ(v))2 dv

)1/2 ,

where
Ĩl(v) = Il(v) − 1

area(B(u))

∫
B(u)

Il(v) dv

and
Ĩr(dp,θ(v)) = Ir(dp,θ(v)) − 1

area(B(u))

∫
B(u)

Ir(dp,θ(v)) dv .

4.1 One-Dimensional Results

Consider the following synthetic example: a one-dimensional signal covering a
straight line with position and orientation parameters p0 and θ0 is viewed by two
cameras, leading to two distorted one-dimensional signals Il and Ir (Figure 2).
The local scene geometry is specified by p0 = 0 and θ0 = .15 radians. The width
of the portion of image being viewed is .69 units in the real scene. The widths of
the perspective projections are .15 units in the left image, and .14 units in the
right image.

The following three examples compare ρ and ρ0 for repetitive texture, for the
extreme case with only scale disparity, and for non-repetitive texture.
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Fig. 2. Two stereo “images” Il (left) and Ir (right), high resolution (top), and low
resolution (bottom).
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Fig. 3. Correlation for the high-resolution stereo pair of Figure 2 (Example 1, modal-
ity 1). Left: classical correlation measure ρ0(u0, p, θ0) for fixed θ = θ0 (top) and
ρ0(u0, p, θ) (bottom). Right: new correlation measure ρ(u0, p, θ0) for fixed θ = θ0 (top)
and ρ(u0, p, θ) (bottom). The new correlation ρ is smoother than ρ0 and displays a
unique local maximum at the correct value (p, θ) = (p0, θ0).

Example 1: repetitive texture. A 1D repetitive texture stereo pair is dis-
played in Figure 2 both with a high resolution (512 pixels) and with a low
resolution (64 pixels).

We display ρ and ρ0 measured at a fixed position u0 in the middle of the left
image for −0.05 ≤ θ ≤ 0.35 and −.5 ≤ p ≤ .5 in three different modalities:

1. High-resolution images Il and Ir with 512 pixels (Figure 3);
2. Low-resolution images Il and Ir with 64 pixels (Figure 4);
3. High-resolution images Il and Ir corrupted by two distinct realizations of an

additive white Gaussian noise with variance equal to 1/15 of the standard
deviation of Il (Figure 6).

The wavelet used is the one-dimensional Gabor wavelet

ψ(x) = exp
(−x2) exp (−iξx) .

We select 5 scales si = 0.05 × (1.1)i for i = 0, . . . , 4, which are relatively coarse
compared to the width of image Il which is .15. The width of the averaging
window B(u0) is .015.
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Fig. 4. Correlation for the low-resolution stereo pair of Figure 2 (Example 1, modal-
ity 2). Left: classical correlation measure ρ0(u0, p, θ0) for fixed θ = θ0 (top) and
ρ0(u0, p, θ) (bottom). Right: new correlation measure ρ(u0, p, θ0) for fixed θ = θ0 (top)
and ρ(u0, p, θ) (bottom). The classical correlation ρ0 is blocky because of the low reso-
lution, whereas ρ is smooth, with a unique local maximum (which is not as precise as
in the first modality because of the low resolution).
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Fig. 5. Stereo pair Il (left) and Ir (right) corrupted by additive Gaussian noise.

Example 2: scale disparity only. We demonstrate that our correlation mea-
sure accounts for a stereoscopic depth perception experiment [12], in which there
is a spatial frequency disparity between images Il and Ir, but no position dis-
parity. Images Il and Ir in Figure 7 are created by projecting two independent
realizations of a colored noise according to a stereoscopic geometry with pa-
rameters (p0, θ0) = (0, .15). The numerical results in Figure 8 show that the
classical correlation measure ρ0, based on position disparity alone, has many lo-
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Fig. 6. Correlation for the noisy stereo pair of Figure 5 (Example 1, modality 3). Left:
classical correlation measure ρ0(u0, p, θ0) for fixed θ = θ0 (top) and ρ0(u0, p, θ) (bot-
tom). Right: new correlation measure ρ(u0, p, θ0) for fixed θ = θ0 (top) and ρ(u0, p, θ)
(bottom). Observe the smoothness of ρ compared to ρ0.
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Fig. 7. Two stereo “images” Il (left) and Ir (right) containing scale disparity informa-
tion, but no position disparity information.

cal maxima, whereas the correlation measure ρ which is based on scale disparity
information displays a unique local maximum at the correct position p0.

The wavelets and scales used in this example are the same as in Example 1.

Example 3: non-repetitive texture. Finally, we show the advantage of the
new correlation measure ρ over the classical one ρ0 in the case of a stereo pair
with no repetitive texture, but high-frequency oscillations, displayed in Figure
9. Because of the band-pass filtering performed by the Gabor wavelets, the cor-
relation measure ρ is smoother than the classical one, as displayed in Figure
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Fig. 8. Left: with only scale disparity information (stereo pair of Figure 7), the classical
correlation measure ρ0 fails. Right: on the other hand, the new correlation measure ρ
displays a unique local maximum at p = p0 and θ = θ0.
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Fig. 9. A stereo pair Il (left), Ir (right) with non-repetitive texture.

10. Note that this improvement could also have been obtained by applying a
low-pass filter to the stereo image pair, before computing the classical corre-
lation. However, this example is noteworthy because it shows the consistency
of the wavelet-based correlation measure, which can be applied successfully to
different types of images.

In this example we used a set of finer scales than in the two previous examples:
si = 0.015 × (1.1)i, for i = 0, . . . , 4.
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Fig. 10. Correlation for the non-repetitive stereo pair of Figure 9. Left: classical corre-
lation measure ρ0(u0, p, θ0) for fixed θ = θ0 (top) and ρ0(u0, p, θ) (bottom). Right: new
correlation measure ρ(u0, p, θ0) for fixed θ = θ0 (top) and ρ(u0, p, θ) (bottom). Right:
ρ(u0, p, θ0). Even in the absence of repetitive texture, ρ is smoother than ρ0 and does
not display spurious local maxima.

4.2 Choice of Correlation Ratio

We found the correlation measure (3) to be more discriminant than the wide-
spread correlation measure

(Featl,Featr)

(Featl,Featl)
1/2 (Featr,Featr)

1/2 . (8)

The above ratio (8) is equal to one as soon as Featl and Featr are collinear in
feature space, whereas (3) is not equal to one unless Featl and Featr are equal
in feature space. The possible advantage of (8) over (3) could be its immunity to
shading variations between the images, but we observed that shading variations
between images bring the maximum value of (3) down from one, without reducing
its high contrast.

4.3 Two-Dimensional Results

Two-dimensional stereoscopic pairs created synthetically by projecting a planar
image at position p0 and with orientation θ0 onto two cameras in the simplified
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geometry of Figure 3. We compare the classical correlation measure ρ0 to the
wavelet-based correlation measure ρ, for repetitive texture (the metallic panel
in Figure 11), and non-repetitive texture (the dog hair in Figure 13).

The correlation measure ρ is computed using two-dimensional Gabor wavelets

ψu,S(x) = detS−1 exp
(
−∥∥S−1(x− u)

∥∥2
)
exp

(−iξ · (
S−1(x− u)

))
.

The selected scaling matrices are of the form

Si = (1.05)i ×
(
0.05 0
0 0.05

)
for i = 0, . . . , 4.
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Fig. 11. A synthetic stereo pair, created from a photograph of a metallic panel.

−0.5 0 0.5
−0.5

0

0.5

1

p

ρ 0

−0.5 0 0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

ρ

Fig. 12. Left: ρ0(u0, p, θ0) computed with the stereo pair of Figure 11. Right:
ρ(u0, p, θ0). The correct value for p is p0 = 0.

The numerical results displayed in Figures 12 and 14 for fixed θ = θ0 show
that the new correlation measure is smoother than the classical area-based cor-
relation, and displays a unique local maximum at the correct position p = p0,
for repetitive texture and non-repetitive texture alike.
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Fig. 13. Synthetic stereo pair, created from a photograph of dog hair.

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

ρ 0

−0.5 0 0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

ρ

Fig. 14. Left: ρ0(u0, p, θ0) computed with the stereo pair of Figure 13. Right:
ρ(u0, p, θ0). The correct value for p is p0 = 0.

Conclusion

We have introduced a new correlation measure for stereopsis based on wavelet
coefficients of images, which has several interesting properties: it lifts the am-
biguity on disparity measurement due to the presence of repetitive texture, it
shows good performance at low resolution, in the presence of noise, as well as
for non-repetitive texture with high-frequency components. Moreover, it is able
to reproduce results on stereoscopic depth perception from scale disparity, in
the absence of any position disparity. These promising results indicate that, if
incorporated in a stereoscopy algorithm which deals with occlusions, this correla-
tion measure could significantly improve its performance. Further work includes
testing the algorithm on real data, and investigating the influence of surface
curvature.

A Disparity as a Function of Local Surface Position and
Orientation

We give the expressions of d(u) and J(u) as a function of p and θ in the case
of a locally planar surface element. Let the origin of the Cartesian coordinates
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be at the midpoint between the two optical centers, and let the line joining the
two optical centers define the x-axis. We assume both cameras to have the same
focal length, and we denote by c the half-length between the two optical centers.
We suppose that the viewing angles of the cameras with respect to the x-axis are
β and −β. In the simplified geometry of Figure 3, the position and orientation
of a local scene element are described by

– p, the distance between the surface tangent and a reference point O with
coordinates (xO, yO),

– θ, the angle between the surface tangent and the x-axis.

If the scene element is locally flat (i.e. neglecting its curvature), the distortion
map d is a homography

d(u) =
A+B u

C +Du
(9)

where
A = − cos(θ − β)X ′ + cos(θ + β)X
B = − sin(θ − β)X ′ − cos(θ + β)Y ′

C = − sin(θ + β)X − cos(θ − β)Y ′

D = − sin(θ − β)Y ′ + sin(θ + β)Y

with
X = cosβ (c+ xO − p sin θ) − sinβ (yO − p cos θ)
Y = sinβ (c+ xO − p sin θ) + cosβ (yO − p cos θ)

and X ′, Y ′ are obtained by replacing c by −c and β by −β in the expressions of
X,Y above. The Jacobian J(u) is calculated by differentiating (9) with respect
to u:

J(u) =
BC −AD

(C +Du)2
. (10)
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