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Abstract. A common practice when carrying out self-calibration and Euclidean
reconstruction from one or more views is to start with a guess at the principal
point of the camera. The general belief is that inaccuracies in the estimation of the
principal point do not have a significant effect on the other calibration parameters,
or on reconstruction accuracy. It is the purpose of this paper to refute that belief.
Indeed, it is demonstrated that the determination of the focal length of the camera
is tied up very closely with the estimate of the principal point. Small changes in
the estimated (sometimes merely guessed) principal point can cause very large
changes in the estimated focal length, and the accuracy of reconstruction. In fact,
the relative uncertainty in the focal length is inversely proportional to the distance
of the principal point to the epipolar line. This analysis is geometric and exact,
rather than experimental.

1 Introduction

The principal point of a camera is often quite difficult to determine, and is known often
to vary with the zoom setting of a camera. Often, therefore, the principal point is guessed
when calibration or self-calibration of the camera takes place ([2,10]). The generally held
opinion is that this makes little difference to the estimate of the other camera parameters,
or to the ultimate accuracy of Euclidean reconstruction. It is possible that this may be
true under some conditions, but it has been quoted as a general principal often without
critical examination. The purpose of this paper is to point out that this assumption is far
from safe, and that in fact the estimated position of the principal point may have a large
effect on the accuracy of calibration and reconstruction.

We are concerned throughout with natural pinhole cameras, that is cameras with
zero skew and unit (or known) aspect ratio. First, we consider calibration of a camera
from a single view, in which a horizon line and a vertical direction, or vertical vanishing
point may be identified. Given knowledge of the principal point, the focal length may be
determined by an easy geometric construction, from which the dependence of the focal
length on the principal point estimate is easily seen.

This single-view case is next extended to the two-view case, in which the focal
lengths of each camera may be determined from the fundamental matrix alone. It is
shown that this problem may be reduced to the previous case of single-view calibration,
by considering the horizon line and perpendicular vanishing direction of the plane formed
by the base line and one of the camera’s principal rays. The sensitivity of this process to
variations in the principal point then becomes evident. Estimation of the focal length in
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this manner is well known to be unstable ([9,2]. In part this is due to sensitivity in the
estimation of the fundamental matrix of the camera pair. It is shown here, however, that
inaccuracy in the assumed position of the focal length is also a major culprit.

In an influential paper ([2]) Bougnoux gives a beautifully simple formula for the focal
length of the camera estimated from two views.As noted above, he finds that the estimate
of the focal length is quite sensitive, which we confirm. However he reiterates the popular
belief that the assumed position of the principal point does not have an important effect
on the estimated focal length, or on the accuracy of an eventual projective reconstruction
of the scene. This view has also been stated (often without sufficient evidence) by other
researchers, but is contrary to the findings of the present investigation. Indeed one of the
purposes of this paper is to demonstrate that these two findings are not universally true,
and must be treated with caution. By giving a new geometrically intuitive interpretation
of certain one and two-view self-calibration methods, we provide the user with a tool that
can be used to ascertain whether the assumptions are valid in a particular reconstruction
scenario.

2 Calibration from a Single Image

Throughout this paper, we assume that the skew of the camera is zero, and the aspect
ratio is equal to one. Thus, the only remaining parameters of the camera are the focal
length and the principal point.

We consider first calibration of the camera (determination of the focal length and
principal point) from a single view. Clearly this can not be done without some scene
information, and many ways have been proposed to do this. For instance, if three or-
thogonal vanishing points can be identified in the image, then the principal point may be
identified as the orthocentre of the triangle formed by the three vanishing points ([3]).
In addition, the focal length may be determined by direct geometric construction ([8],
page 212, [4]).

Thus, if the vanishing points of all three orthogonal directions are known, then
the camera may be completely calibrated without any further assumptions. Therefore,
we consider a calibration problem in which there is a little less information available.
Accordingly, we assume that the horizon line and the vertical vanishing point (henceforth
known as the apex) are identified in an image. An example of such an image is given in
Fig. 1. The principal point in the image must lie on the perpendicular from the apex to
the horizon. Thus, the principal point has a single remaining degree of freedom. Suppose
that the principal point is the point p in the image, v is the vertex, and h is the foot of
the perpendicular from the apex to the horizon. In this case, the focal length may be
computed by a simple formula:

f2 = −d(p,h)d(p,v) (1)

where f is the focal length, and d(·, ·) represents the (signed) Euclidean distance. The
negative sign in this expression expresses the fact that d(·, ·) is a signed quantity, and
that the direction vectors from the principal point to the horizon and the apex must be in
opposite directions in order for f2 to be positive, as given by this formula. In other words,
the principal point must lie between the horizon and the apex. Proof of this formula is
given in Fig. 2.
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Fig. 1. Examples of images for which it is possible to compute the focal length of the camera,
assuming knowledge of the principal point. To do this, it is sufficient to identify the horizon and
a vertical vanishing direction. In the left-hand image, the exact position of the horizon can be
established with the aid of the vanishing points of the ground markings and shadows. The image
of the apex may be computed as the intersection of the the two vertical edges. Focal length may
then be computed using (1).

Fig. 2. Left. The diagram shows the vertical plane containing the principal ray pO of the camera.
The two rays to the horizon and the apex are perpendicular to each other, meeting the focal plane
at points h and v respectively. The focal length is the distance from the camera centre to the focal
plane. By similar triangles, f2 = −d(p,h)d(p,v).
Right. In the image, a circle (black) is drawn with diameter the perpendicular line between the
apex v and the horizon PQ. The principal point must lie on this line. A line is drawn through
p perpendicular to vh. This meets the circle in two points a and b. The focal length equals the
distance d(p,a), and the circle with diameter ab is the 45◦ circle in the image (shown in red).

The focal length may be computed by a simple geometric construction, as follows. Let
C be the circle with the line from apex v to horizon h as diameter. The line in the image
through the principal point p meets the circle C in two points a and b. By elementary
geometry of a circle, d(p,a)d(p,b) = d(p,v)d(p,h), and since d(p,a) = −d(p,b)
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it follows that f = d(p,a). The circle constructed with centre p passing through a and
b is the 45◦ circle in the image. This is illustrated in Fig. 2, and on a real image in Fig.
3. Since f is the distance from p to the circle C along a line drawn perpendicular to
the diameter vh, the way the estimated value of f varies as a function of the presumed
principal point location is easily visualized. In particular, as the assumed principal point
moves towards the horizon, or the apex in the image, the corresponding estimated value
of the focal length f diminishes towards zero. If an image is taken with a camera aimed
directly at the horizon, the principal point corresponds with the point h on the horizon,
and so d(p,h) = 0. In this case, however, the distance to the apex will be infinite, and
hence f2 = 0 × ∞, and the computed value of f will be indeterminate. From this, we
see that it is impossible to compute f from this configuration if the camera is pointed
directly at the horizon, or the apex.

2.1 A Different Formula

It is sometimes difficult to measure the distance of the principal point to the apex, partic-
ularly if the apex is far away from the visible area of the image. A simple modification
of the image takes care of that problem. Suppose that l is a line from the apex to the
horizon, not passing through the principal point. This can be the image of a vertical
object in the scene. Let s1 = d(p,h) be the orthogonal distance from the principal point
to the horizon, and let s2 = d(p, l) be the orthogonal distance from the principal point
to the line l. Let θ be the angle between line l and the horizon – more specifically, the
angle of the region containing the principal point. Then

f2 = s1s2/cosθ (2)

The proof of this is immediate from Fig. 4. Note that for f2 to be positive, the
principal point must lie in the acute-angled section of the plane partitioned by lines h
and l.
Sensitivity of f . In terms of (2) it is easy to write down an expression for the uncertainty
of the focal length in terms of small errors in the three parameters s1, s2 and θ. Since
df = ∂f/∂s1ds1 + ∂f/∂s2ds2 + ∂f/∂θdθ, simple calculus leads to the following
formula for the relative change in f .

df/f = 1/2 (ds1/s1 + ds2/s2 + tanθdθ) (3)

From this we see that f is sensitive to small changes in the measurements of s1, s2 and
θ when s1 or s2 are small, or θ is close to 90◦. In particular, it is impossible to estimate
f accurately when the principal point is close to the horizon line, since in this case s1 is
small, and the angle θ will be close to 90◦.
Dependence of f on the principal point. It was seen above that if the horizon and apex
are identifiable in an image, then the principal point position may vary with one degree
of freedom, along the line through the apex perpendicular to the horizon. If there is only
one vertical line feature visible in the image, then the apex may not be identified, but
instead may lie anywhere along the image of the vertical line. The principal point may
now vary with two degrees of freedom anywhere in the image. Figure 5 gives an example
of such an image. For a choice of the principal point, the focal length may be computed
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Fig. 3. This image shows the computation of the focal length of the camera assuming a principal
point at the centre of the image. The original image is shown to the left, and the construction to
the right. Since the horizon line (blue) is not directly visible in this image, it is computed as the
line joining two horizontal vanishing points, computed from the right-hand wall and the grid on
the door (green lines). Note that these are not orthogonal vanishing points. The vertical vanishing
point is given by the sides of the door and the door frame (red lines). The red circle is the 45◦

circle, with radius f , assuming the principal point is placed as shown (at the centre of the red
circle).

Fig. 4. Since d(p,v) = s2/cosθ, it follows from (1) that f2 = s1s2/cosθ.

using (2), or by direct geometric construction, as shown previously. However, because
of the added degree of freedom, the computed focal length depends more dramatically
on the assumed position of the principal point. It may vary from near zero, when the
principal point is assumed to be close to the intersection of the horizon and vertical line,
to large values when the principal point is far from both these lines.
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Fig. 5. In this image, the apex is unknown, but is constrained to lie somewhere along the vertical
direction shown in the image (green). The principal point has two degrees of freedom, but once a
position of the principal point is assumed, the focal length of the camera may be computed. The
red circles represent various estimates of the focal length for different assumed principal points.
Each circle is the locus of all directions 10◦ from the principal point, which is at the centre of the
circle. Thus, the radius of each circle is equal to 0.176f = tan(10◦)f . The focal length has been
computed in each case using (2).

3 Calibration from Two Views

Next, the calibration methods for a single view discussed above will be extended to
consideration of calibration from two views. This problem was first addressed in [5]
where an algorithm for computing the two focal lengths was given. This algorithm was
quite complicated, and the problem was later considered by several authors. The most
compact solution was found by Bougnoux in [2], where a simple formula was given for
the two focal lengths in terms of the fundamental matrix and the two principal points
(see equation (5) below). This formula will be rederived here in a way that sheds light
on its geometric meaning, and its sensitivity to variations in the assumed positions of
the principal point. It will be shown that Bougnoux’s formula is closely related to (2),
and has a simple geometric interpretation.

First, we note that in order to compute the focal lengths, the positions of the two
principal points need to be known. The geometry of two views may be summarized in
Fig. 6. The two camera centres O1 and O2 are joined by a baseline O1O2 and the view
direction of each camera is defined by the principal rays, R1 and R2 of the cameras. Of
most interest is the case where these three lines are not coplanar; in other words, the
principal rays of the two cameras do not meet. The principal ray R1 and the baseline
O1O2 define a plane, which will be denoted by R1O1O2. In addition, let A1 be the ray
through the camera centre O1 perpendicular to the plane R1O1O2. This plane, and the
ray A1 form an orthogonal pair in space. If their projections into the second image can
be identified, then we may use the methods of section 2 to compute the focal length of
the second camera.
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Fig. 6. The plane defined by the principal ray R1 and the base-line O1O2 is imaged as an epipolar
line in the second (right-hand) image. The ray A1 is perpendicular to this plane, and also projects
to an epipolar line in the second image. The two epipolar lines are the images of an orthogonal
plane/line pair. Assuming a position for the principal point p2, the focal length f2 of the second
camera may be computed using the method of section 2.

First of all, consider the first (left) image taken from camera centre O1. We want to
identify the projection in this image of the plane R1O1O2 and the ray A1. The projection
of the plane is easily identified as the epipolar line through the principal point, namely
[e1]×p1 = e1 × p1. Since the ray A1 is perpendicular to the plane containing the
principal ray, it projects to a point at infinity in the image, in the direction perpendicular
to the line [e1]×p1. This infinite point may be written as I(e1 ×p1), or I[e1]×p1, where
I is the 3 × 3 matrix diag(1, 1, 0).

To explain this last point more fully, note that Il represents the point at infinity in the
direction perpendicular to l for any line l. For example, (a, b) is the vector perpendicular
to the line ax + by + c = 0, represented by coordinates (a, b, c)�, and (a, b, 0) is the
vanishing point in this direction. This relation will be used often in this paper, so we
emphasize it:

Proposition 3.1.

1. If l is a line, then Il represents the point at infinity in the direction perpendicular to
the line.

2. If line l passes through point e, then [e]×Il is the line through e perpendicular to l.

It is now easy to compute the epipolar lines in the second image corresponding to
the plane R1O1O2 and the ray A1. This is done simply by transferring the epipolar lines
from the first image to the second, using the fundamental matrix. First, consider the
vanishing line of the plane R1O1O2. Since this plane passes through the camera centre
O2, it is viewed edge-on in the second image. Consequently, its vanishing line is nothing
more than the image of any line lying in the plane R1O1O2. Since the principal ray of
the first camera is just such a line we see:

3.2. The vanishing line in the second image of the plane R1O1O2 is the epipolar lineFp1
corresponding to an epipolar line [e1]×p1 in the first image. Here F is the fundamental
matrix.

Secondly, the image of the ray A1 is easily computed by transferring its vanishing point
using the fundamental matrix:
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3.3. The image of the ray A1 in the second image is the epipolar line FI[e1]×p1. This
corresponds to the epipolar line in the first image, perpendicular to [e1]×p1.

Thus, we may conclude:

3.4. Given the fundamental matrix F for two images, and assumed positions of the
principal points p1 and p2 in the two images, the focal length f2 may be computed as
follows.

1. In the first image, the epipolar line through the principal pointp1 is given by [e1]×p1.
The epipolar line perpendicular to this is [e1]×I[e1]×p1.

2. The two corresponding epipolar lines in the second image are Fp1 and FI[e1]×p1
respectively.

3. Apply equation (2) where s1 and s2 are the distances from the principal point p2 to
these two lines, and θ is the angle between them – more specifically, the angle of
the segment containing p2.

This construction is illustrated in Fig. 7. An explicit formula is possible. Let l and l′

be the two epipolar lines computed in (3.4). The distance from a point p = (x, y, 1)�

to a line l is l�p/α where α = (l21 + l22)
1/2, and li here represents the i-th component

of the vector l. Furthermore, the angle between two lines l and l′ satisfies the relation
cos θ = −(l′�Il)/αα′. Now, writing (2) in terms of the homogeneous coordinates for
the two lines l and l′ involved, yields

f2 = − (l′�p)(l�p)
l�Il′

(4)

since the factors α and α′ cancel top and bottom.
Substituting the formulas (3.2) and (3.3) for the lines l2 and l′2 finally gives the

formula

f2
2 = − (p�

1 [e1]×IF�p2)(p�
1 F

�p2)
p�

1 ([e1]×IF�IF)p1
. (5)

In this formula, e1 is the epipole in the first image, and p1 and p2 are homogeneous
3-vectors representing the principal points in the two images. It is required however, that
p2 = (·, ·, 1)�, with last coordinate equal to 1.

The formula for the first focal length f1 may be obtained by interchanging the role
of the first and second cameras in this formula.

4 Effect of Varying the Principal Points

We consider now the effect of varying the principal point in either or both the images.
Without loss of generality, let us restrict attention to (5), and computation of f2

2 . Since
the left hand side of (5) is the square of the focal length, it is necessary that the right
hand side be positive, otherwise, no solution exists. To analyze this further, we note that
the expression for f2

2 may be split into parts as follows:

A(p1,p2) = p�
1 [e1]×IF�p2

B(p1,p2) = p�
1 F

�p2

D(p1) = p�
1 ([e1]×IF�IF)p1
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Fig. 7. A pair of images of the Grenoble museum from which one wishes to compute the focal
lengths. It is assumed that the principal point p1 in the first image is the centre of the image.
Shown overlaid on the first (left-hand) image are the epipolar line [e1]×p1 and the perpendicular
epipolar line [e1]×I[e1]×p1. Overlaid on the second (right-hand) image are the corresponding
epipolar lines Fp1 and FI[e1]×p1. From these latter two lines one may compute the focal length
f2. Computation of the focal length f2 will be very imprecise in this case, since the angle θ between
these two lines is close to 90◦, and also because one of the lines (actually Fp1) passes very close to
the centre of the image, and hence (presumably) close to the principal point p2. Relative accuracy
of the focal length f2 is given by (3), and is proportional to the distance of p2 from each of these
two epipolar lines, and also to the tangent of the angle θ.

At the right is shown the focal length f2 as a function of the principal point position p2. The focal
length is represented by the intensity of the image. For a principal point in the black region of
the image, the estimated value of f2

2 is negative, meaning that the assumptions on position of the
principal point are not viable (impossible situation).

Thus, f2
2 = −A(p1,p2)B(p1,p2)/D2(p1). Note that the estimated value of the focal

length becomes zero where the numerator (that is, either A or B) vanishes, and goes
to infinity where the denominator D vanishes. The value of f2

2 will change sign on the
union of the vanishing sets of A, B and D. We look at each of these terms independently.

4.1 Varying the Principal Point p2

This situation has been explored in section 3. The denominator D(p1) does not depend
on p2, and so is constant. We look at the vanishing sets of the two terms A(p1,p2)
and B(p1,p2). As discussed above, Fp1 and FI[e1]×p1 represent the epipolar lines
in the second image, corresponding to the principal ray in the first image, and a ray
perpendicular to it. When p2 lies on one of these epipolar lines, the numerator of (5)
vanishes. Consequently, the zero set of A(p1,p2)B(p2,p2) for fixed p1 and varying
p2 consists of a pair of epipolar lines in the second image. The image plane is divided
into four sections by these epipolar lines and the principal point p2 must lie in the
acute-angled region of the plane. This is illustrated in Fig. 7.

It may be noted that here and elsewhere (particularly in Fig. 9) the most probable
principal point (image centre) sometimes lies in the dark part of the diagram, indicating
an imaginary focal length. This is because when the principal ray passes near the centre
of the image, the angle between the two lines dividing the image is necessarily close
to 90◦. If because of the instability of the computed fundamental matrix it falls on the
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wrong side of 90◦, then the regions may swap sign, and lead to impossible values for the
focal length. In these examples the fundamental matrix was computed using a Maximum
Likelihood bundle-adjustment method, which should give optimal results – nevertheless
this unfavourable situation can occur. A method that avoids this problem by placing a
priori conditions on the positions of the principal point and (optionally) the focal lengths
was presented in [7]. It uses Bougnoux’s formula to constrain the values of the focal
length and principal points while finding a compatible fundamental matrix.

4.2 Varying the Principal Point p1

Next we consider the effect of varying the principal point p1 on the estimate of the focal
length f2. In this section we will assume that the principal point p2 of the second camera
is known and fixed at a given value. As p1 varies, formula (5) give an estimate for the
focal length f2.
Vanishing set of A(p1,p2)B(p1,p2). Since F is the fundamental matrix, F�p2 is the
epipolar line in the first image corresponding to the point p2. Thus the set of points p1
at which B(p1,p2) = p�

1 F
�p2 vanishes is precisely the set of points on the epipolar

line F�p2.
On the other hand, according to Proposition 3.1, [e1]×IF�p2 is the line perpendicular

to F�p2. Hence A(p1,p2) = p�
1 [e1]×IF�p2 vanishes when p1 lies on the epipolar

line perpendicular to F�p2.

4.1. For a given value of p2, the set of points p1 such that the numerator
A(p1,p2)B(p1,p2) of (5) vanishes consists of the epipolar line F�p2 and the epipolar
line perpendicular to it.

Vanishing set of D. We now turn to the denominator of (5), namely D(p1) =
p�

1 ([e1]×IF�IF)p1. Note that this is independent of p2. From the form of this ex-
pression, the vanishing set is a conic. It will be shown that in fact it is a degenerate conic,
consisting of two perpendicular lines through the epipole e1.

First of all one observes (by simple substitution and using the fact that Fe1 = 0) that
the epipole e1 belongs to this vanishing set. If p1 is any point such that D(p1) = 0, then
D(p1 + αe1) = 0 for any α, and hence the vanishing set is made up of lines passing
through e1, epipolar lines.

Now let p1 be a point at infinity, and let p′
1 be the point at infinity on the epipolar

line normal to [e1]×p1. By symmetry, p′′
1 = (p′

1)
′ = p1. By Proposition 3.1, p′

1 =
I[e1]×p1, and so D(p1) = p′�

1 (F�IF)p1. Substituting p′
1 for p1 in this expression

gives

D(p′
1) = p′′�

1 (F�IF)p′
1 = p�

1 (F�IF)p′
1 = p′�

1 (F�IF)p1 (by transposing) = D(p1) .

Thus, D(p′
1) vanishes if and only if D(p1) does. Consequently, the zero set of D(p1)

consists of a pair of orthogonal epipolar lines. Summarizing this complete discussion.

4.2. For a given value of p2, the set of points p1 for which the estimated value of f2
2

changes sign consists of two pairs of orthogonal epipolar lines in image 1. The value of
f2
2 tends to zero at one pair of lines, and to infinity at the other pair of lines.

This is illustrated in Fig. 8.
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Fig. 8. Assuming p2 is fixed, and p1 is varying, the singular set for estimation of f2 consists of
points p1 lying on two pairs of orthogonal epipolar lines. The estimated value of f2, according
to (5) tends to 0 and ∞ as p1 approaches the alternating epipolar lines. The value of f2 is only
defined for p1 in alternating sectors of the image as shown, since f2

2 is negative for p1 in the
other (dark) sectors.

5 Varying both Principal Points

The previous sections have assumed that one of the principal points was fixed, and the
other was allowed to vary. In some instances it may be more realistic to assume that
the principal point is the same in both images, albeit not known exactly. Therefore, in
this section, we assume that p1 = p2 = p, and examine how the focal length estimate
depends on the position of this common principal point. In this case, the formula for f2
is as follows.

f2
2 = − (p�[e1]×IF�p)(p�F�p)

p�([e1]×IF�IF)p
= −A(p,p)B(p,p)

D(p)
. (6)

We have seen already that the zero-set of D(p) consists of a pair of orthogonal epipolar
lines through the epipole e1. The zero sets of the expressions A(p,p) = p�F�p and
B(p,p) = p�[e1]×IF�p are conics. It is easy to see that each of these expressions
vanishes at both epipoles e1 and e2, hence the conics pass through the two epipoles. In
addition, it may be verified that the tangents to these two conics at the epipole e1 are
orthogonal. To see that, recall that the tangent at a point x on a conic defined by matrix
C is the line (C + C�)x. Applying this, one finds that the tangents to these two conics
at the point e1 are (F� + F)e1 = F�e1 and ([e1]×IF� − FI[e1]×)e1 = [e1]×IF�e1,
which according to Proposition 3.1 are orthogonal lines through e1. Summarizing this
gives the following result.

5.1. As the position of the principal point p1 = p2 = p varies, the singular set where
the value of the focal length f2

2 changes sign has the following components.

1. Two orthogonal epipolar lines passing through the epipole e1. As the assumed po-
sition of p approaches these lines, the value of f2

2 tends to infinity.
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Fig. 9. Museum images : the geometry of the allowable positions of the principal point, assuming
that it is the same in both images (shown at left). The plane is divided into regions by three conics
(one of them degenerate). Black regions represent impossible locations for the principal point.
Inside the allowable (white) regions, the focal length approaches infinity at the pair of orthogonal
lines (degenerate conic), and zero at the non-degenerate conics. At right is an enlargement of the
bottom left-hand corner, showing the conic corresponding to the denominator of (6).

2. Two conics passing through the two epipoles e1 and e2. The conics are orthogonal
at e1. As p approaches these conics, the estimated value of f2

1 tends to zero.

These lines divide the plane into regions. The value of f2
2 is negative on alternate regions,

which therefore represent impossible positions for the principal point.

For an illustration of this, see Fig. 9.

6 Reconstruction Accuracy

Previous sections have demonstrated that the camera calibration, particularly the focal
length, depends closely on the assumed position of the principal point. It has often been
objected that this may be true, but it does not affect the reconstructed scene. This belief
will be shown to be unsafe by an analysis of how angles in the reconstructed scene vary
with the principal point and focal length estimates. The dependency of scene angles on
calibration parameters is well known, and was noted in [2]. Here it will be shown that
the effect can be quite marked, and in particular a simple method of visualizing the effect
will be given.

A simple method of measuring some angles in a reconstructed scene utilizes a concept
called the conformal point in an image. This concept was introduced in [6] where its
application to visual odometry was demonstrated. The conformal point is defined relative
to a plane of interest in the scene.

• The conformal point relative to any plane in the scene is located a distance (f2+d2)1/2

from the vanishing line of the plane (the horizon), along a perpendicular to the horizon
through the principal point. Here f is the focal length of the camera, and d is the
distance in the image from the principal point to the horizon.

Note that the position of the conformal point is directly dependent on the focal length
and the position of the principal point. Note that in Fig. 2 the conformal point is located
along the line hv a distance from h equal to the length of the chord ah.
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Fig. 10. To measure an angle between two lines in the image, the lines are extended to meet the
horizon at points A and B. The true angle between the two lines is equal to the angle � APB,
where P is the conformal point. The position of the conformal point is explained in the text.

The interesting property of the conformal point is illustrated in Fig. 10, showing how
it may be used to measure angles between lines in a plane. A proof of the correctness
of this method is given in [6]. We apply this method of angle-measurement to the image
shown in Fig. 3, and use it to estimate the angle between the door and the wall.According
to the construction of Fig. 10, the required angle is the angle subtended at the conformal
point by the vanishing points of the two directions under consideration. Note that in
this example these two vanishing points are the two points (intersection of the green
lines) used to construct the horizon line. The conformal point may be easily constructed
assuming positions of the principal point of the image at the top, centre and bottom of
the image along the vertical line. The estimated angles are

1. For principal point at the top of the image : 88◦.
2. For principal point at the centre of the image : 69◦.
3. For principal point at the bottom of the image : 56◦.

Thus in this example at least computed angles in the scene (properties of a Euclidean
reconstruction based on a computed calibration) are very dependent on the assumed
position of the principal point.

Beyond illustrating the variation of estimated scene geometry, this method gives a
quick intuitive method of evaluating the degree of variation as a function of assumed
principal point. This allows an operator to ascertain the effect of an incorrect placement
of the principal point.

7 Conclusion

We have argued that the assumed position of the principal point may have a large effect
on the estimated focal length of the cameras, and also the 3D reconstruction accuracy, for
certain single-view and two-view calibration scenarios. The two-view calibration method
analyzed here has been shown previously ([9]) to have degenerate configurations when
the principal rays of the cameras meet. We have given here a simple analysis of how the
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quality of the focal length estimate degenerates when the principal ray of one camera
lies close to the epipolar line corresponding to the other principal point. It is shown
that in fact, the relative uncertainty in the the focal length estimated by this method is
inversely proportional to the distance of the principal point to this epipolar line. Because
of this sensitivity, the practicality of estimating focal lengths from two views is doubtful.
However, in separately published work ([7]) we have proposed a method for mitigating
some of the instabilities involved in estimating the principal point and focal length by
assigning a priori bounds and variances for their values.

The method and analysis of this paper apply to other imaging scenarios, such as
planar motion ([1] in which it is also possible to compute the image positions of the
horizon and apex. A new interpretation of Bougnoux’s focal length formula, is also
given here, relating it to the geometry of the principal rays.
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