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Abstract. We present a linear method for self-calibration of a moving
rig when no correspondences are available between the cameras. Such a
scenario occurs, for example, when the cameras have different viewing
angles, different zoom factors or different spectral ranges. It is assumed
that during the motion of the rig, the relative viewing angle between the
cameras remains fixed and is known. Except for the fixed relative view-
ing angle, any of the internal parameters and any of the other external
parameters of the cameras may vary freely. The calibration is done by lin-
early computing multilinear invariants, expressing the relations between
the optical axes of the cameras during the motion. A solution is then
extracted from these invariants. Given the affine calibration, the metric
calibration is known to be achieved linearly (e.g. by assuming zero skew).
Thus an automatic solution is presented for self calibration of a class of
moving rigs with varying internal parameters. This solution is achieved
without using any correspondences between the cameras, and requires
only solving linear equations.
Keywords: Self-Calibration, Multi-View Invariants.

1 Introduction

The projective framework of Structure from Motion (SFM) is supported by a
relatively large body of literature on the techniques for taking matching image
features (points and lines) across multiple views and producing a projective
representation of the three-dimensional (3D) positions of the features in space.

For many tasks such as computer graphics, projective representation is not
sufficient, and an Affine/Metric representation is required. In recent years there
has been much progress in the theory and algorithms of Self/Auto-Calibration,
the upgrading of a projective structure to an Affine/Metric one, without using
knowledge of the viewed scene. These algorithms must make assumptions about
the parameters of the camera to achieve a unique solution (For a review see [6]).

There are roughly two approaches to self-calibration: The non-stratified ap-
proach solves directly for metric upgrade. This can be done for example by
solving Kruppa’s equations [4], or by solving for the absolute quadric [11]. In
both cases the solution of a set of non-linear equations is required. The stratified
approach first upgrades the projective representation to an affine representation
by solving for the homographies through the plane at infinity and then upgrades
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the affine representation to a metric one [3,8]. It was pointed by several authors
(e.g. [6,7]) that the first stage, the affine calibration, is the most challenging in
stratified methods.

By using a stereo rig, a stable solution for both affine and metric calibration
can be computed linearly from two or more images from each camera ([7], follow-
ing [12]). This method assumes that the rig structure and the Zoom/Focus are
fixed. Another approach for rig calibration achieves a linear solution by assuming
known relative orientations of the cameras, but allowing the Zoom/Focus and
the relative displacements to vary [13]. Both methods require correspondences
between the cameras.

In this paper we focus on a self-calibration scenario which is of interest on
both practical and theoretical fronts. We consider a rig of two or more video
cameras, each capturing an image sequence, where there is no or little spatial
overlap between the fields of view of the cameras (such as when the cameras
have different zoom settings or pointing to largely different directions). While in
motion, each camera may change its internal parameters and zoom factor.

Applying conventional self calibration algorithms for each camera separately
is always challenging with varying internal parameters, especially the affine cal-
ibration stage. Applying one of the existing rig algorithms [7,13], on the other
hand, is not possible since no correspondences are available between the cameras.

Therefore, we seek to solve for the calibration of the cameras, while exploit-
ing the rigidity constraints between them. We refer to this problem as ”Sequence
to Sequence Self-Calibration”, since every sequence requires a different calibra-
tion, and only the relations between the sequences can be exploited to recover
these calibrations. A similar scenario, of exploiting the rigidity between multiple
cameras, was presented recently in the context of image alignment [1].

A previous approach for handling self calibration without correspondences
between the cameras [2] assumed highly constrained conditions: In addition to
knowing one degree of freedom about the rotation between the cameras, that
solution also assumed fixed internal parameters, where only two of which were
unknown. It also required the solution of highly non-linear equations over a large
set of variables. The work presented in this paper solves for affine calibration lin-
early, without using any assumption but one known d.o.f. of the relative rotation
between the cameras.

In order to solve for the calibration, we use assumptions about the relative
orientations of the cameras in the rig. We divide the problem to three different
cases:

– Two cameras with parallel image planes. The cameras may view the same
direction, or the opposite directions (Back to back).

– Two cameras with non-parallel image planes, with the special case of orthog-
onal image planes.

– Cameras with varying orientations, each rotating about its Y axis. Their Y
axes are assumed to be parallel.

In the following sections we present a linear solution for affine self-calibration
for each of the cases above, assuming the cameras are synchronized. Later in
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Section. 5 we show how such synchronization can be achieved automatically. The
calibration is done by computing multilinear tensorial invariants, expressing the
relations between the axes of the cameras during the motion. A solution is then
extracted from these tensors. Having solved for the challenging stage of affine
calibration, the metric calibration can be achieved linearly by imposing further
constraints, e.g. zero skew (see [6]). In case the cameras view the same/opposite
directions, they share the same affine ambiguity. Thus metric constraints on both
cameras can be simultaneously used for calibrating both of the cameras.

1.1 Formal Statement of the Problem

A pinhole camera projects a point P in 3-D projective space P3 to a point p in the
2-D projective plane P2. The projection can be written as a 3× 4 homogeneous
matrix M :

p ∼=MP
where ∼= marks equality up to a scale factor. When the camera is calibrated, it
can be factored (by QR decomposition):

M = K[R;T ]

where R and T are the rotation and translation of the camera respectively, and
K is a 3 × 3 upper diagonal matrix containing the internal parameters of the
camera. The most general form of the internal parameters matrix K is:

K =



f γ u0
0 αf v0
0 0 1


 (1)

where f is the focal length, α is the aspect ratio, (u0, v0) is the principle point and
γ is the skew. It is practical to model K by a reduced set of internal parameters,
for example assume zero skew.

Generally, given projections of m 3-D points {Pj}m
j=1 to n images, it is possi-

ble to estimate the location of the 3-D points and the camera matrices {M}n
i=1

up to a projective transformation (collineation) represented by a 4 × 4 matrix
H:

p ∼=MH−1HP (2)

The matrices {Ci =MiH
−1}n

i=1 are called the projective camera matrices. The
points HP are the points in the projective coordinate system. We refer to the
matrix H−1 as the projective to Euclidean matrix.

When the internal parameters of the cameras {Ki}n
i=1 are known, then H

can be recovered up to a 3-D similarity transformation. The goal of (internal)
calibration is to recover {Ki}n

i=1, or equivalently recover the 4 × 4 collineation
H up to a similarity transformation.

In all following sections it is assumed that the projective camera matrices
{C}n

i=1 were already computed for each one of the sequences using for example
point correspondences between the different frames. This can be done in various
ways (for a review see [6]).
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2 Parallel Optical Axes

We first analyze the case of two cameras attached in a rig, viewing the same di-
rection, or the opposite directions (back-to-back). In addition, each camera may
rotate freely about its Z axis. Note that there are no constraining assumption
about neither the internal parameters of the cameras, nor the relative displace-
ments of the centers of projections.

The first Euclidean camera matrix is given by:

M1
i = K1

i [Ri; t1i ]

and the second Euclidean camera is given by:

M2
i = K2

i [R0 ∗Ri; t2i ]

Where R0 is the relative rotation between the cameras, and the third row of R0
equals to [0, 0, 1] up to sign.

Given the projective cameras C1
i , C

2
i , we seek for two projective transfor-

mations H1, H2 mapping the projective cameras to the Euclidean ones (up to
similarity transformation).

Let ri be the third row ofRi, and let c
j
i be the third row of Cj

i . Let Ĥj , j = 1..2
be the 4 × 3 matrices composed from the first 3 columns of the matrices Hj .

The internal parameters matrices Kj
i are upper triangular matrices and so

ĤT
1 c

1
i

∼= ri. Having also the special structure of the third row of R0 : ĤT
2 c

2
i

∼= ri.
Thus for every i:

ĤT
1 c

1
i

∼= ĤT
2 c

2
i

∼= ri (3)

The constraint above holds also for DĤ1, DĤ2 for every 3 × 3 matrix D. This
results in an ambiguity that would later on express itself as an affine ambiguity
on the cameras, the same affine ambiguity for both cameras (up to similarity).

The above Eqns. 3 have a form we call “equivalence after projection”. In the
next section we present the solution for such equations.

Given the solution to these equations, the homographies through the plane at
infinity can be recovered for each sequence and between the sequences. A point
[aT , 0]T on the plane at infinity is projected to Cj

i Ĥja in the ith frame of the
jth camera. Hence the homography at infinity H∞

ijkl between frame i of camera
j and frame k of camera l is given by

H∞
ijkl = C

l
kĤl(C

j
i Ĥj)−1

The solutions to Eqn. 3 are up to a common 3× 3 matrix D which cancels out,
and so:

H∞
ijkl = C

l
kĤl(C

j
i Ĥj)−1 = Cl

kĤlD(Cj
i ĤjD)−1

Similarly, the coordinates of the plane at infinity Lj in the projective repre-
sentations of camera j can be recovered. Since Lj satisfies L�

j Ĥja = 0 for every

a, then Lj is the null space of Ĥj
�
, which is also the null space of DĤj

�
.
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2.1 The “Equivalence after Projection” Problem

We define the equivalence after projection problem as follows: Given two sets of
points in P 3 {Pi}n

i=1,{Qi}n
i=1 , determine whether there exist two 3×4 projection

matrices A,B such that for every i:

APi
∼= BQi

If such A and B exist solve for them up to a multiplication on the left by a 3×3
matrix. We next show a solution for this problem which requires only solving
linear systems of equations.

Let CB be the center of the projection matrix B, i.e CB is the null space of
B. Let B+ be a pseudo-inverse of B, i.e. a mapping from the image plane of B
to a plane in P3 such that BB+p ∼= p.

The points CB , B
+APi are incident with the line of sight of the projection

matrix B associated with the image point APi. Since APi
∼= BQi, Qi is also

on this line. This defines a constraint on the projection of these points by an
arbitrary projection matrix O: Let eO = OCB . Then the point OQi resides on
the line eO ×OB+APi. Therefore:

(OQi)T ([eO]xOB+A)Pi = 0 (4)

By choosing an arbitrary camera matrix O, the 3 × 4 matrix FO =
([eO]xOB+A) can be recovered linearly from the pairs of points {OQi, Pi}n

i=1.
The introduction of O enables to extract a unique bi-linear invariant with a min-
imal number of parameters. There exists a set of invariants described by 4 × 4
matrices G, satisfying: (Qi)T (G)Pi = 0. These matrices span a linear space of
dimension 4. By using the matrix O, we get a unique invariant with 12 elements.

For each O, the image eO of CB can be recovered as the null space of FT
O .

Using two such projection matrices O, the 3D position of CB can be recovered
by triangulation.
A,B can be recovered up to some 3 × 3 matrix D. All cameras of the form

DB share the same center of projection. Thus B can chosen as any 3× 4 matrix
whose left null space is the recovered CB . In order to solve for A, {BQi}n

i=1 are
first computed. Since for all i, APi

∼= BQi and BQi, Pi are known, A can be
recovered. This can be done by any method for recovering a camera from the
projections of known 3D points [6].

3 Non-parallel Optical Axes

In the previous section, we studied the case of two cameras viewing the same or
opposite directions. In this section, it is assumed that the two cameras have a
known constant angle between their optical axes.

The directions of the optical axes of the cameras are given by cjT
i Ĥj , and

the angle between the axes of the two cameras α satisfies:

cos2 α =
(c1T

i Ĥ1Ĥ
T
2 c

2
i )

2

(c1T
i Ĥ1ĤT

1 c
1
i )(c

2T
i Ĥ2ĤT

2 c
2
i )

(5)
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This defines a nonlinear metric constraint on Ĥ1, Ĥ2.
We solve for the case of orthogonal optical axes, where cos2 α = 0, i.e. by

Eqn. 5:
c1T
i Ĥ1Ĥ

T
2 c

2
i = 0

Each image pair provides one constraint on the matrix F = Ĥ1Ĥ
T
2 . From the

matrix F , one can extract using SVD the matrices Ĥ1D and Ĥ2D
−� for some

unknown 3 × 3 matrix D.
The planes at infinity of the two projective reconstructions are the null spaces

of Ĥ�
1 , Ĥ

�
2 , as in the previous section. The homography through the plane at

infinity between frames i, k of the same sequence j can be computed similarly to
previous case by Cj

kĤj(C
j
i Ĥj)−1. Since the two matrices Ĥ1, Ĥ2 do not have the

same ambiguity, the homography through the plane at infinity between frames
of different sequences cannot be computed.

4 Non-fixed Parallel Rotation Axes

In previous sections we analyzed self calibration for rigs in which the angle
between the optical axes of the cameras remains fixed. In some cases it is useful
to enable the cameras to rotate. For example, they may need to be reoriented
such that the object of interest appears in the image.

In this section we explore another type of constraints for self calibration
of rigs without correspondences between the cameras. It is assumed that the
cameras in the rig may rotate arbitrarily about their Y axis (or similarly about
its X axis). It is further assumed that their Y axes are parallel. The rig as a
whole can rotate and translate freely in space, and the internal parameters of the
cameras may vary freely. We describe two cases. In the first case three cameras
are used and the internal cameras are not constrained. In the second case two
cameras are used, but we assume their skew is 0.

4.1 Three Cameras

Let σj
i be plane X-Y of camera j in time instance i. Since the three cameras rotate

about their Y axes, and the Y axes are parallel, then in every time instance i,
all planes {σj

i }j=1,2,3 intersect in a point on the plane at infinity. We next show
how we express this constraint as a multilinear equation in the projective camera
matrices.

Let H−1
j be the transformation mapping the projective coordinate system of

camera j to a common affine coordinate system in which the plane at infinity is
given by L = [ 0 0 0 1 ]. Let {πj}j=1,2,3 be three planes, where πj is given
in the coordinate system of the j-th camera. Then if these planes intersect in a
point at infinity, the determinant of the following matrix vanishes:



(π1)�H1
(π2)�H2
(π3)�H3

L


 (6)
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This determinant can be written using a 4 × 4 × 4 tensor Jabc, as

π1
aπ

2
bπ

3
cJ

abc = 0

The reader is assumed to be familiar with tensor notations. See for example in
[9]

The tensor Jabc can now be used to express the calibration constraints. In
each time i all planes {σj

i }j=1,2,3 intersect in a point on the plane at infinity. As
σj

i is given by [0, 0, 1]Cj
i , this is expressed by:

([0, 0, 1]C1
i )a([0, 0, 1]C

2
i )b([0, 0, 1]C

3
i )cJ

abc = 0

Given the projective camera matrices Cj
i , every time instance provides a linear

constraint on Jabc. Thus Jabc can be computed linearly from the projection
matrices.

In order to extract the homographies through the plane at infinity between
different images, We identify points at infinity in each coordinate frame. Let Y 3

i

be a double contraction of the form Y 3
i = ([0, 0, 1]C1

i )a([0, 0, 1]
�C2

i )bJ
abc. Let N

be any plane in the third coordinate system intersecting σ1
i , σ

2
i in a point on the

plane at infinity. Then:

([0, 0, 1]C1
i )a([0, 0, 1]

�C2
i )bNcJ

abc = N�Y 3
i = 0

Hence Y 3
i is the point of intersection of {σj

i }j=1,2,3 in the coordinate frame of the
third camera. Similarly this point can be extracted in the two other coordinate
systems: Y 1

i , Y
2
i .

The set of points {Y j
i }i=1..n are sufficient to determine the plane at infinity

at the jth coordinate system. We can use these matching points on the plane
at infinity to compute the homography at infinity between all frames: The ho-
mography at infinity H∞

stuv between frames s and u of cameras t and v can be
computed using the pairs of matching points {(Ct

sY
t
i , C

v
uY

v
i )}i=1..n.

4.2 Two Cameras with Zero Skew

In this section we show that when the cameras have zero skew, two cameras in
the above settings are sufficient for linear recovery of the affine calibration. Then
a Metric upgrade can be achieved linearly using standard methods [6].

For every i, j the projective camera matrix Cj
i satisfies:

Cj
i Ĥj

∼= Kj
iR

i
jRi

where Ri
j is the rotation of the j-th camera with respect to the first camera in

time instance i, and Ri is the rotation of the rig in the same time. Again we
base the derivation on the structure of a rotation matrix Ri

j about the Y axis.
Since the first and third rows of Ri

j have a vanishing second coordinate, then so
is their linear combination. Assuming zero skew, the first and last rows of Cj

i Ĥj

are linear combinations of the first and third rows of Ri
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Let aj
i be the first row of the projective camera matrix Cj

i . Then the following
determinant vanishes for every i:



(a1i )

�Ĥ1

(c1i )
�Ĥ1

(c2i )
�Ĥ2




This constraint can be expressed by a trilinear tensor:

([1, 0, 0]C1
i )a([0, 0, 1]C

1
i )b([0, 0, 1]C

2
i )cK

abc = 0

The tensor Kabc can be solved linearly from the projection matrices. As
in the previous section, this constraint can be interpreted geometrically as the
intersection of three planes with the plane at infinity. Hence the plane at infinity
of the coordinate systems of the two cameras can be extracted by a method
similar to the one in the previous section.

Note that similar tensors can be derived by choosing other three-
combinations of Ĥ�

1 a
1
i , H

�
1 c

1
i , hatH

�
2 ai, hatH

�
2 ci

5 Sequences Synchronization

In the previous sections it was assumed that the sequences are synchronized.
This enabled to compute the multilinear constraints: FO of section 2.1, F of
section 3 and Jabc of Section 4. However the existence of these constraints may
be used to establish the synchronization between the sequences.

Consider for example the case of the orthogonal optical axes presented in
section 3. The existence of a matrix F such that for every frame i: c1�

i Fc2i = 0
is not guaranteed if the two sequences are not temporally aligned. Let A be the
estimation matrix of F , i.e A is the matrix whose ith row is composed from the
Kronecker product of c1i and c2i . If such an F exists then the rank of the matrix
A is not more than 8 and the vector composed from the elements of F lies in
the null space of A. In practice due to noise A is always of full rank, and we use
a least squares solution, choosing F to be composed out of the elements of the
eigenvector of AA� with the smallest eigenvalue. Let f be this eigenvector. We
define the magnitude of Af as the algebraic error of the estimation of F . When
the sequences are synchronized this magnitude is expected to be small.

In order to synchronize the sequences this algebraic error is measured for
each temporal shift between the sequences. The shift which produces the minimal
algebraic error is chosen as the solution. This measure is not optimal for a number
of reasons. First it has no real geometrical meaning. Second it depends on the
number of the frames which can bias in short sequences toward the ends of the
sequence. Third, changing the coordinates of cji changes the measure. However
in practice we find minimizing the algebraic error to work well on our sequences.
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6 Experiments

We have conducted several experiments for testing the quality of the affine self-
calibration and the sequence synchronization. In all our experiments we have
used an object modeling framework: The cameras were static, and an object to
be modeled was rotating in the scene. Points on this object were tracked, and
the virtual camera motion with respect to the object was estimated. Since no
calibration was available, the cameras and points had a projective ambiguity
to be recovered in the experiments. Then the proposed algorithm was used,
estimating an Affine representation of the structure and motion.

In the first experiment we tested the sequence synchronization application.
The algorithm was applied for several temporal shifts, and the sequences were
temporally aligned by finding the shift with the minimal residual error, as de-
scribed in Section. 5. Figures 1-a,b present the results of this experiment for
opposite and orthogonal directions respectively. The true shift was estimated
using hand waving in front of the camera. Note that this is an integer estimation
for the non-integer temporal shift of the sequences, and thus it is accurate up
to 0.5 a frame. In the experiments we tested 10 frames shifts in each temporal
direction on sequences containing 40 frames. Indeed a shift close to the estimated
by no more than 1 frame yielded the minimal estimation error.

One way to verify the accuracy of affine calibration is to test the accuracy
of the homographies through the plane at infinity. In the second experiment
we tested the accuracy of the homography through the plane at infinity by
mapping vanishing points between the images. We have marked points lying on
parallel lines, and tracked them along the sequences. The vanishing points at
each frame were computed as the intersections of the parallel lines defined by
the tracked points. We then mapped the vanishing points from the input images
to a common coordinate system. The quality of the homographies was measured
by the proximity of the mapped vanishing points. We have conducted this test
for two scenarios: One for cameras viewing opposite directions (Section. 2), and
one for cameras viewing orthogonal directions (Section. 3). Figure 2 shows the
results of these experiments. Errors in these results are combined from errors in
the Affine calibration, errors in the projective camera matrices (the input to our
algorithm), and errors in the estimations of the vanishing points in the images
due to drifts in the points tracking. However it is visible that the algorithm does
indeed align the vanishing points.

Finally, the quality of the homographies can also be tested visually. Warping
a sequence of images of a moving camera to a common reference by the homogra-
phies through the plane at infinity cancels the rotations of the cameras, as well
as the variations in the internal parameters. The result is a sequence in which
the camera virtually moves in pure translation and constant internal parameters.
Figure. 3 shows the results of applying the computed homographies through the
plane at infinity to several images. Note that while the original motion included a
rotation, the homographies through the plane at infinity canceled the rotations,
leaving only a translational component.
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Fig. 1. Sequences synchronization for cameras viewing opposite directions (Fig. 1-
a) and for cameras viewing orthogonal directions (Fig. 1-b). The residual error of
the estimation matrix is presented as a function of the temporal shift between the
sequences, where 0 shift corresponds to the manual integer estimation of the real shift.
The residual error for the orthogonal case is averaged over four random choices of the
camera matrix O.

7 Summary and Future Work

We have analyzed self calibration of rigs with varying internal parameters, when
no correspondences are available between the cameras. The only assumption
used for the affine calibration, was that the angle between the viewing directions
of the cameras is known.
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a)

b)

c)

d)

Fig. 2. Mapping vanishing points by the homographies through the plane at infin-
ity extracted by the proposed algorithm. a) The original vanishing points, opposite
viewing directions. b) The mapped vanishing points, opposite viewing directions. c)
The original vanishing points, orthogonal viewing directions. d) The mapped vanish-
ing points, orthogonal viewing directions. The size of the images in illustrations a,b
and c,d visualize the scale differences between the coordinate axes.

We presented constraints for general angles, and solved specific cases of par-
allel, opposite and orthogonal angles by extracting affine invariants.

Future work can be solving similar cases by deriving metric invariants, e.g.:
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a1) a2)

b1) b2)

c1) c2)

Fig. 3. Using the computed homographies through the planes at infinity to generate a
virtual motion of pure translation. Figures b1,b2 contain the same image, to which the
input images were warped. Figures a1,c1 to the left are the original input images. Fig-
ures a2,c2 to the right are the results of warping a1,c1 by the respective homographies
through the plane at infinity.

– Solving the case of arbitrary angles, with or without knowing the angle.
– Assuming that the distances between the centers of projections of the cam-

eras remain fixed during the motion.

We hope that even if such invariants are not compact, they may find use in some
application such as cameras synchronization.

We plan to implement such algorithms for self calibration on “domes” con-
taining cameras with fixed orientations and varying Zoom/Focus.
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