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Abstract. In this work, we introduce a model-based approach to ex-
tracting the silhouette of people in motion from stereo video sequences.
To this end, we extend a purely stereo-based approach to tracking people
proposed in earlier work. This approach is based on an implicit surface
model of the body. It lets us accurately predict the silhouette’s location
and, therefore, detect them more robustly. In turn these silhouettes allow
us to fit the model more precisely. This allows effective motion recovery,
even when people are filmed against a cluttered unknown background.
This is in contrast to many recent approaches that require silhouette
contours to be readily obtainable using relatively simple methods, such
as background subtraction, that typically require either engineering the
scene or making strong assumptions.

We demonstrate our approach’s effectiveness using complex and fully
three-dimensional motion sequences where the ability to combine stereo
and silhouette information is key to obtaining good results.

1 Introduction

In recent years, much work has been devoted to tracking people from video
sequences. Many of the techniques that have been proposed rely on extract-
ing silhouettes and fitting body models to them. See [IJIT/T3] for recent reviews.
While this may be practical in some cases—for example, because the background
is both static and known, thus allowing background subtraction—silhouette ex-
traction is in general a difficult task.

Here, we present a model-based approach to silhouette extraction that al-
lows us to overcome this problem and to simultaneously recover 3—D body shape
and motion as well as 2-D outlines. We use the “articulated soft objects” we
proposed in earlier work [I4] to represent and track human bodies: We use a
conventional articulated skeleton but replace the simple geometric primitives—
typically, cylinders or ellipsoids—that are usually attached to it by implicit vol-
umetric primitives. Each one defines a field function and the skin is taken to be
a level set of the sum of these fields. This implicit surface formulation has three
key strengths:

— Effective use of stereo and silhouette data: Defining surfaces implicitly
allows us to define a distance function of data points to models that is both
differentiable and computable without search.
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Fig. 1. Mode(ls)and silhouettes. (a) Metalg)a)lls attached to an articulaéezl skeleton. (b)
Skin surface computed by ray casting. (¢c) One image of a stereo pair used to estimate
the parameters of the model in (b). (d) Corresponding disparity map. (e) The real
body outlines overlaid on the skin surface. In this case the model was fitted using
stereo only. As a result, it ends up too far from the actual data points and the system
compensates by incorrectly enlarging the primitives. (f) Using the silhouettes during
the fitting process provides stricter constraints that yield a better result.

— Accurate shape description by a small number of parameters: Vary-
ing a few parameters yields models that can match different body shapes and
allow both shape and motion recovery.

— Explicit modeling of 3—D geometry: Geometry can be taken into ac-
count to predict the expected location of image features and occluded areas,
thereby making the extraction algorithm more robust.

Our model is depicted by Figure[l(a,b). In an earlier publication [T4], we used it
to demonstrate robust tracking using stereo only. Here, we show that its quality
and 3-D nature allow us to effectively predict silhouette locations from frame
to frame, constrain the search and, thus, reliably extract them from a cluttered
background without having to make a priori assumptions about it. These sil-
houettes are used in turn to constrain model reconstruction, thereby further
increasing its precision and reliability.

This is in contrast to many recent approaches that rely either on noisy edge
or region information, such as image gradient and optical flow, e.g. [3]9], or on sil-
houette contours that are assumed to be readily available or obtainable through
statistical background subtraction techniques e.g. [12[68|[7], both of which re-
quire either an engineering of the scene or a static background. Furthermore, as
noted in [9], the simple rigid volumetric primitive-based models that are often
used tend to be a source of inaccuracy. Our approach addresses both of these
issues: Our improved models yield a better accuracy that, in turn, gives us the
predictive power required for effective silhouette extraction.
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Combining stereo and silhouette data is valuable because they are comple-
mentary sources of information. The former works best when a body part faces
the cameras but becomes unreliable when the surface slants away, which is pre-
cisely where silhouettes can be used. Figure [[l(e,f) illustrates this complementar-
ity. In this example, we used a single stereo pair. In Figure[l(e) only stereo-data,
in the form of a cloud of 3-D points derived from the disparity map, was used.
The stereo data is too noisy and shallow to sufficiently constrain the model. As a
result, the fitting algorithm tends to move it too far away from the 3-D data and
to compensate by inflating the arms to keep contact with the point cloud. Using
the silhouettes in addition to the stereo data, however, sufficiently constrains the
fitting problem to obtain the much improved result of Figure [I(f).

In the remainder of this paper, we first introduce both our human body model
and the optimization framework we use to instantiate its degrees of freedom
given stereo and silhouette data. We then turn to our model-based automated
silhouette extraction approach and show that it yields precise outlines and that
combining silhouettes and stereo yields much better results than using stereo
alone.

2 Articulated Model and Surfaces

The human body model we use in this work [I7] incorporates a highly effective
multi-layered approach for constructing and animating realistic human bodies.
The first layer is a skeleton that is a connected set of segments, corresponding
to limbs and joints. A joint is the intersection of two segments, which means it
is a skeleton point around which the limb linked to that point may move.

Smooth implicit surfaces, also known as metaballs or soft objects, form the
second layer [2]. They are used to simulate the gross behavior of bone, mus-
cle, and fat tissue. The metaballs are attached to the skeleton and arranged
in an anatomically-based approximation. The head, hands and feet are explicit
surfaces that are attached to the body. For display purposes a third layer, a
polygonal skin surface, is constructed by ray casting [17].

The body shape and position are controlled by a state vector @, which is
a set of parameters controlling joint locations and limb sizes. In this section,
we first describe this state vector in more detail and, then, our implicit surface
formulation.

2.1 State Vector

Our goal is to use video-sequences to estimate our model’s shape and derive its
position in each frame. Let us therefore assume that we are given N consecutive
video frames and introduce position parameters for each frame.

Let B be the number of body parts in our model. We assign to each body part
a variable length and width coefficient. These dimensions change from person
to person but we take them to be constant within a particular sequence. This
constraint could be relaxed, for example to model muscular contraction.

The model’s shape and position are then described by the combined state
vector
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o={ev.e, e ,0% , (1)
where 6 is broken into sub-vectors that control the following model components:

— Shape
e O = {6y | b=1..B}, the width of body parts.
e ©' = {0} | b=1..B}, the length of body parts.
— Motion
e O ={07,|j=1.J f=1.N}, the rotational degree of freedom of joint
j of the articulated skeleton for all frames f
e 07 = {0% | f = 1..N}, the six parameters of global position and orienta-
tion of the model in the world frame for all frames f

The size and position of the metaballs is relative to the segment they are attached
to. A length parameter not only specifies the length of a skeleton segment but
also the shape of the attached metaballs in the direction of the segment. Width
parameters only influence the metaballs’ shape in the other directions.

2.2 Metaballs

Metaballs [2] are generalized algebraic surfaces that are defined by a summation
over n 3-dimensional Gaussian density distributions, each called a primitive. The
final surface S is found where the density function F equals a threshold T, taken
to be 0.5 in this work:

S:{[z,y,z]T€R3|F(x,y,z):T}, (2)
F(m,y,z)ZZfi(x,y,z), (3)
fi($7y7z) = eacp(—?di(:c,% Z))? (4)

where d; represents the algebraic ellipsoidal distance described below. For sim-
plicity’s sake, in the remainder of the paper, we will omit the ¢ index for specific
metaball sources wherever the context is unambiguous.

2.3 3-D Quadratic Distance Function

We use ellipsoidal primitives because they are simple and, at the same time,
allow accurate modeling of human limbs with relatively few primitives because
metaballs result in a smooth surface, thus keeping the number of parameters low.
To express simply the transformations of these implicit surfaces that is caused
by their attachment to an articulated skeleton, we write the ellipsoidal distance
function d of Eq. B in matrix notation as follows. For a specific metaball and a
state vector ©, we define the 4 x 4 matrix

Q@ = L(_)w,l N C@w,l . (5)
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where L and C are radii and position of the primitive respectively. The skeleton
induced transformation Sg is introduced as the rotation-translation matrix from
the world frame to the frame to which the metaball is attached. These matrices
will be formally defined in the appendix.

Given the Qg and Sg matrices, we combine the quadric and the articulated
skeleton transformations by writing the distance function of Eq.[d as:

d(x,0) =x" -85 -Q6-Qe -Se - x . (6)

This formulation will prove key to effectively computing the Jacobians re-
quired to implement the optimization scheme of Section [3

We can now compute the global field function F of Eq. Bl by plugging Eq.
into the individual field functions of Eq. @land adding up these fields for all prim-
itives. In other words, the field function from which the model surface is derived
can be expressed in terms of the Qg and Sg matrices, and so can its derivatives
as will be shown in the appendix. These matrices will therefore constitute the
basic building blocks of our optimization scheme’s implementation.

3 Optimization Framework

Our goal is to instantiate the degrees of freedom of our model so that it conforms
as faithfully as possible to the image data derived from motion sequences such
as the ones shown in Figure Bland Figure[d. The expected output of our system
is the instantiated state vector @ of Eq. [ that describes the model’s shape and
motion. This is a highly non-linear problem: The model consists of an articulated
set of implicit surfaces. As a result it contains rotations in Euclidean space as
well as quadratic and exponential distance functions. Simplifying the volumetric
models, replacing the perspective transform by an orthographic one, and using
a different representation for rotational joints can be used to linearize parts of
the problem [3]. Such approaches, however, tend to lose in generality. Therefore,
we chose to use a non-linear least squares estimator (LSE) to minimize the
distance between the observations and the model. We implemented a variant of
the standard Levenberg-Marquart least-squares solver [15] that can handle large
number of unknowns by using sparse matrices.

In practice, we use the data to write n,ps observation equations of the form

F(x,0) =T —¢; , 1<i< nops , (7)

where F' is the global field function of Eq.[Bl 7" is the threshold of Eq.2] x is a data
point, and ¢; is an error term. We then minimize v7 Pv where v = [eq, ..., €,,,.]
is the vector of residuals and P is a diagonal weight matrix associated to the ob-
servations. Because F' is both well-defined and differentiable, these observations
and their derivatives can be estimated both simply and without search using
the matrix formalism of Section [2:3l This is valuable because our least-squares
solver takes advantage of differential information for faster and more robust op-
timization, as do most powerful optimizers. The computation is outlined briefly
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in the appendix and we refer the interested reader to our earlier publication [14]
for additional details.

We now turn to the detailed implementation of the 3-D point and 2-D silhou-
ette observations which are the main cues we obtain from the image sequences.

3.1 3-D Point Observations

Disparity maps such as those of Figure[ll(d) are used to compute clouds of noisy
3-D points. Each one is used to produce one observation of the kind described
by Eq.[[ Minimizing the corresponding residuals tends to force the fitted surface
to be as close as possible to these points.

The properties of the chosen distance function allow the system to naturally
deal with outliers and to converge even from rough initializations or estimates.
The smooth shape of the inverted exponential that is used in our field function
is responsible for both effects. It approaches zero asymptotically and, thus, pro-
vides an upper limit on the error resulting from distance between model and
observation.

3.2 2-D Silhouette Observations

A silhouette point in the image defines a line of sight to which the surface must
be tangential. Let § € @ be an element of the state vector. For each value 6, we
define the implicit surface

S(0) = {[x,y,2]" €R3 F(x,y,2,0) =T} . (8)

Assuming that the line of sight is tangential to S(6), let [x(0),y(9), 2(0)] be
the contact point that is both on the line and on the surface. By definition,
[2(0),y(0), 2(0)] satisfies two constraints:

1. The point is on the surface, therefore F(x(0),y(0),z(0),0) = T.
2. The normal to S(6) is perpendicular to the line of sight at [x(6),y(0), z(9)].

We integrate silhouette observations into our framework by performing an initial
search along the line of sight to find the point x that is closest to the model in its
current configuration. This point is used to add one of the observations described
by Eq.[d By construction, the point on the ray with the lowest value of field
function F' satisfies the second constraint as depicted by Figure [Z(a).

In order to keep the second constraint satisfied during the optimization pro-
cess, the Jacobian has to be constructed accordingly. A change in model position
or size induces a motion of x along the ray in order to remain the closest point
on the ray with respect to the model. This involves computing first and second
order derivatives for the Jacobian entries as will be discussed in the appendix.
We have already seen in Figure [[ that silhouettes are crucial to constrain the
search space. In Figure 2[(b) we show a similar behavior in a 2-D context.

4 Robust Silhouette Tracker

Because our models are fully three-dimensional, given a position estimate at a
particular time, we can predict where we expect to see silhouettes in a particular



Model-Based Silhouette Extraction for Accurate People Tracking 331

a b
Fig. 2. Silhouette constraints. (a) Two lines of sight going tilr)ough the camera optical
center. In both cases, at the point that minimizes F' along the line, the gradient of F'
is perpendicular to the line. But only in the case of the dashed line that is actually
tangent to the surface, is this point on the surface and thus satisfies both criteria of
Section B2l (b) The top row depicts the results of fitting an ellipse to slightly noisy
2-D points, shown as white crosses. The computed ellipses are much too large. The
bottom row depicts the fit to the same points, but under the constraint that the ellipse
be tangent to the white lines. The results are much improved.

image and we use this prediction to constrain the search for the silhouettes to
restricted areas in the image. In Section ELI] we discuss this approach when
run a posteriori, that is, by first tracking the person’s body using stereo only,
computing the model’s outline in each frame and using it as an initial guess for
the silhouette’s location. This “naive” approach yields good results if the initial
tracking was accurate enough but fails otherwise. In Section [£3] we therefore
introduce a more effective approach in which, for each frame, we use the model
derived from the previous frame to estimate the silhouette and immediately use
this silhouette to guide the recovery of the new current model position. We will
show that this increases the tracker’s robustness and prevents it from making
mistakes in ambiguous situations.

4.1 Simple Model-Based Approach for Silhouette Extraction

Given a first fit of the model to the data, one can take advantage of it to ex-
tract additional information from the images. In this case, we can first track
using stereo alone. In the absence of gross tracking errors, the projected model’s
outlines can be used as an initial estimate for the silhouette location. We ran
a number of experiments in which we used this estimate to initialize an active
contour. We found that, in practice, when the background is cluttered, the ac-
tive contour does not in general converge towards the desired outline because it
gets stuck into undesirable local minima. To remedy this situation, instead of
running the snake on the original image, we first filtered it using the technique
described in Section [42] and, then, used the result to deform the contour.
Figures Bl and H] depict the results of running this algorithm on the 600
frames of two different video sequences. For most frames, deforming the predicted
outline using the filtered the image resulted in an outline that was very close
to the true silhouette. We saw errors in only 19 frames. Given the fact that
the motions are complex and that the background is cluttered, this shows the
robustness of our algorithm. Note also, that we did not use an image of the
background without the subject to perform any kind of background subtraction.
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frame 20

Fig. 3. Extracting the subject’s silhouette using the simple model-based approach of
Section .1l Frames 20, 40, 80, 100 and 110 of the a 300-frame sequence are shown. In
the upper row are the disparity maps, in the second row are the outlines of the projected
model, which is shown in the third row. This outline was fitted to the filtered image
gradient in the last row. The system correctly tracks until frame 100 and then recovers
before frame 110. The more sophisticated approach of Section [4:3] will overcome the
error in the 100th frame.

The result for frame 100 in Figure [3 shows typical problem areas. The errors
around the left arm are most interesting. The model was relatively far away from
the actual position. A second circular silhouette curve at the inside of the model’s
arm was extracted as well. It corresponds to nothing in the original image and
evolves arbitrarily during snake optimization. The problem is compounded by
the fact that the table in the background is very close to the subject. It is not
removed totally by the low level filtering steps but it is considered as foreground
instead.

A different problem occurred around the subject’s right elbow. It is cut be-
cause the model projected slightly inside the real contour so that the smoothness
coefficient of the snake forced it to retract from the sections of high curvature.

Fig. 4. Automatically extracted silhouette contours in a few frames of another 300-
frame sequence.
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Tuning the ratio of the snake parameters can delay the onset of such problems,
but not prevent them altogether.

This particular example clearly demonstrates the problems that arise when
trying to extract higher-level information from image data in an unsupervised
environment. Using the model is a tremendous advantage but, still, it is not
enough to ensure correct behavior. We address this problem in Section [4.3]

4.2 Disparity-Based Gradient Filtering

As discussed above, in the presence of a cluttered and unknown background,
even a good initial body-outline estimate does not guarantee convergence of an
active contour towards the correct solution. To improve the snake algorithm’s
performance, we filter the image to eliminate edges that are unlikely to be sil-
houettes but can still trap the active contour into an undesirable local minimum.
To this end we combine gradient and depth information as follows.

The main input to our system is 3-D data derived from disparity maps. It is
therefore natural to also use those maps to perform a form of background sub-
traction. This, however, is non trivial: Because of noise, absence of texture, spec-
ularities and non fronto-parallel surfaces, these maps are typically neither dense
nor reliable enough to robustly separate foreground and background. Further-
more, objects located at similar distances as the subject may not be eliminated
that way. This is certainly true of the disparity map of Figure Blb).

(d) (e) ()
Fig. 5. Disparity-based gradient filtering. (a) and (d) is a original stereo pair and (b)
is the corresponding disparity map which is binarized and morphologically “cleaned”
in (e). (c) is the gradient magnitude of (a), and (f) the result of filtering (c) with (e).
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We can nevertheless use such disparity maps to find image pixels with a
large probability to correspond to the subject: When computing the map, we
chose a range of disparities that eliminates distances that correspond to the
far background. Those areas for which no acceptable disparity value can be
found appear mostly in black. The correlation-based stereo algorithm we use [10)]
can be limited to a specified reconstruction volume and a Right-Left Check
eliminates most erroneous matches. Therefore, by binarizing of the disparity
map and cleaning it up using morphological operators, we obtain binary masks
such as the one shown in Figure [H(e). Disparity computation was done only
on a given volume excluding the far background. However, objects close to the
subject are still included and parts of the subject are missing due to bad texture
or shadows.

Applying the filter to the gradient image eliminates most parts of the back-
ground as shown in Figure B(f). Finally, we perform a hysteresis thresholding
that is comparable to the one used in Canny’s edge-detector [4]: Only gradi-
ent image pixels are accepted that are above an upper threshold or which are
above a lower threshold and have a point that passes the previous test in their
immediate neighborhood.

4.3 Joint Shape and Silhouette Extraction

To solve problems such as those shown in Figure Bl we take the temporal evolu-
tion of the contour into account, instead of entirely relying on a good fit of the
model. We therefore modify the scheme for silhouette extraction as follows:

1. Silhouette of previous frame serves as initialization for current frame

2. Optimize using active contours on disparity-filtered gradient image

3. Fit body model to stereo data constraint by current silhouette estimate
4. Optimize silhouette of fitted model using again active contours

The initial guess of the silhouette position is now taken to be the result of the
silhouette extraction in the previous frame. Because, at frame rate, differences
between successive images are small the actual silhouette is close to the previous
one. Assuming a correctly recovered position of the silhouette in the previous
frame we can directly feed this silhouette as initialization to an active contour
algorithm for the current frame.

Again, this step alone does not ensure robust silhouette extraction. The active
contour may still miss the silhouette outline of the person. We therefore rerun our
fitting algorithm on the 3-D stereo data augmented by this—possibly incorrect—
silhouette outline. Thanks to correct segments of the new silhouette, the implicit
treatment of outliers, and the strong stereo information, in our experience the
system is able to find the correct pose of the model.

In a last step the model in its correct pose is projected into the camera
frame. Using the model silhouette as input to a second run of an active contour
algorithm results in the final silhouette outline of the person. Results of this
model-based silhouette tracker are shown in Figure [Bl The original image to-
gether with the extracted silhouette of the person are shown in the left column.
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The recovered model pose as well as the silhouettes are shown in the right col-
umn. These results show that this new algorithm is able to overcome the errors
that occurred during the simple model-based approach of Section [4.1]

Fig. 6. Tracking results using the model-based silhouette extraction method of Sec-
tion 3. Frames 97, 98, 99 and 100 of the sequence in Figure [3] are shown. Snake-
optimized contours are overlaid on the original images on the left as well as the resulting
model on the right.

5 Conclusion

We have presented a model-based technique for robustly extracting silhouette
contours of people in motion. By integrating the model early on in the processing
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pipeline our system overcomes the common pitfalls of low-level image processing.
We do not have to engineer the background and the system could robustly extract
the silhouette of the person even in a dynamic scene. The explicit modeling of 3—
D geometry lets us predict the expected location of image features and occluded
areas, thereby making the extraction algorithm more robust. These silhouettes
are used in turn to constrain model reconstruction, thereby further increasing
its precision and reliability.

A key component of our implementation is our ability to analytically and pre-
cisely compute all required derivatives. This helps the optimizer to accurately
estimate the actual variation of the distance between model and data accord-
ing to parameter change and, thus, to minimize it with a minimal number of
iterations. In contrast to most other work where the derivatives are obtained
by perturbing the parameters and re-evaluating the distance function, comput-
ing the Jacobian analytically necessitates fewer computations. Furthermore, the
derivatives in our modular matrix notation contain many identical parts and
intermediate computation results can be reused to further speed-up the process.

In future work, we intend to test our system on sequences with highly clut-
tered and dynamic background. Our results are promising but more tests have
to be effected to analyze the limits of the system. Currently, no provisions for
occlusion and limb self-occlusion are given. The depth information from the dis-
parity maps was sufficient to successfully track in our test sequences but explicit
occlusion detection would be needed to robustly track more complex motions.

Appendix: Differentiating the Global Field Function

To illustrate the efficient computation of the Jacobian entries for the least squares
estimator we present the computation of the metaball distance function as well as
its first and second order derivatives with respect to a rotational joint paramter.

To express simply the transformations of the implicit surfaces caused by
their attachment to an articulated skeleton, we write the ellipsoidal distance
function d of Eq. B in matrix notation as follows. This formulation will prove key
to effectively computing the Jacobians required to implement the optimization
scheme regarding the different data constraints.

Recall that the distance function of Equation Bl can be written as follows:

d(x,0)=x"-85-Qf - Qo -Se -x.

d(x,©) defines an ellipsoidal quadratic distance field. For a given primitive and
the state vector @, the 4 x 4 matrix Qg contains the location of the center C
and the scaling L along the principal axes respectively. Figure [ATla) illustrates
the concept.

LCguw, = Lguw, - Cguw, is the scaling and translation along the principal axes:

1 w
0 5% 0 —0%c¢y
LCew,z = 0 0ty 1 —chz
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Q

a b
Fig. A.1. (a) illustrat(es) the definition of quadric Q. The hierarchical skelegozl trans-
formation S up to joint j is followed by the centroid transformation C and by L
describing the quadric’s volume. (b) depicts the articulated structure S. The distance
between model surface e and observation x is to be minimized subject to rotation 6"
around axis a of joint j.

where L = (l;,1,1,) are the radii of an ellipsoid, i.e. half the axis length along
the principal directions and C' = (¢, ¢y, ¢;) is the primitive’s center. Coefficients
6" and 6% from the state vector © control relative length and width of a metaball.
They are shared among groups of metaballs according to segment assignment.
Set.r is the skeleton induced transformation, a 4 x 4 rotation-translation matrix
from the world frame to the frame to which the metaball is attached. Given
rotation 8" € @ of a joint J, we write:

S@:E'JQT :E'RQT‘JOT 5 (Al)

where E is the homogenous 4 x 4 transformation from the joint frame to the
metaball frame. Jyr is the transform from world frame to joint frame, including
the rotation parameterized by 6" and Ry~ is the homogenous rotation matrix
of #" around axis a with Jyor = Reil - Jgr. A configuration of an articulated
structure is depicted by Figure [AT(b).

We can now compute the global density function F' of Equation [3]by plugging
Equation[f] into the individual field functions of Equation[4 and adding up these
fields for all primitives. In other words, the field function from which the model
surface is derived can be expressed in terms of the Qg matrices, and so can
its derivatives as will be seen later. These matrices will therefore constitute the
basic building blocks of our optimization scheme’s implementation.

A.1 Derivatives of the Distance Function

The generic derivative of the distance function wrt. to any parameter § € @
from the state vector can be computed as:

0 0

%d(x,@) =2xx7.8L.Q% - [%Q@-S@} X (A.2)
The computation includes parts of the distance function and intermediate

results can be cached and reused.
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The model pose is exclusively defined by the state of the underlying articu-
lated structure S of Eq.[ATl A rotational parameter 6" defines the angle between
two body parts. For differentiation classical robotics methods can be applied,
such as [5]. Combined with the quadric the rotational derivative of Eq. can
be shown to be:

[aerQ'S@}'X:Q'E'anX' (A3)

with rotational axis a and jx = Jy - x being the vector from joint center to
observation. E is the transformation from the joint frame to the metaball frame.
See Figure[A](b) for an illustration. Equation[A3 can be efficiently implemented
because it only consists of a simple vector cross-product transformed into the
quadric’s frame. For more details we refer the interested reader to our earlier
publication [14].

A.2 Silhouette Constraint

As introduced in Section [32] the motion of the silhouette point x along the ray
has to be taken into account during optimization. For non-articulated implicit
surfaces this has been shown by [16]. This involves computing first and second
order derivatives for the Jacobian entries. This turns out to be prohibitively
expensive when done in a brute force manner. In contrast, our modular matrix
formulation allows an elegant description of these derivatives because they retain
their modularity and can be computed similarily to the first order derivatives.
Again, intermediate results of the function evaluation as well as the computation
of the first order derivatives can be reused to speed up the process.

Second order derivatives with respect to spatial coordinates can be computed
according to Eq.[A4] and those with respect to a spatial coordinate as well as
a parameter of the state vector according to Eq. Please see our earlier
publication [14] for a full derivation of the Jacobian for the field functions.

9%d ox" o AT ox
3501‘033]'72*8331- 'S@'QQ'QO'SQ.T@’ (A4)
0*d = T 9 o AT T AT 0 ox
8:01'8072*)( -([%S@-Qe Qo -Se+856:Qe- %Q@'S@ '6331-(A'5)

These derivatives are necessary to correctly integrate 2—D silhouette observa-
tions in a 3-D optimization framework. When replacing them with simpler, first
order ones we experienced incorrect estimation of the closest point on the ray
and the optimizer did not converge. Using the complete derivatives allows the
optimizer to more precisely estimate the system’s reaction to paramter change
and, thus, to find the optimal state with a minimal number of iterations.
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