
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 436-451, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Evaluating CM3: Problem Management

Mira Kajko-Mattsson

Dept. of Computer and Systems Sciences, IT University, Forum 100,
SE-16440, Kista, Sweden

mira@dsv.su.se

Abstract. CM3: Problem Management is a detailed problem
management process model to be utilised within corrective
maintenance. It has been developed at ABB and evaluated for its
industrial relevance within 17 non-ABB organisations. In this paper, we
present the evaluation results of CM3: Problem Management. Our
primary goal is to confirm its industrial relevance. Our secondary goal
is to establish current state of problem management practice in the
industry in order to provide a basic reference point from which the
desperately needed research into software maintenance can proceed.

1 Introduction

Software problem management process is one of the most important processes within
corrective maintenance. It not only manages software problems, but also provides a
basis for quantitative feedback important for assessing product quality and reliability,
crucial for continuous process analysis and improvement, essential for defect
prevention and for making different kinds of decisions. Mature problem management
process is a prerequisite for achieving CMM Level 5 [1].

Corrective Maintenance Maturity Model (CM3): Problem Management is a
detailed problem management process model. It has been developed at ABB and
evaluated for its industrial relevance within 17 non-ABB organisations. In this paper,
we have chosen some of the process requirements inherent in CM3: Problem
Management and matched them against the state of practice in software organisations.
Our primary goal is to confirm the industrial relevance of CM3: Problem
Management, that is, to find out whether our model is realistic, down-to-earth, and
whether it properly reflects current industrial practice. Our secondary goal is to
establish current state of problem management practice in the industry to provide a
basic reference point from which the desperately needed future research into software
maintenance can proceed.

2 Methodology

CM3: Problem Management was developed at two ABB organisations: ABB
Automation Products (ABB APR) and ABB Robotics (ABB ROP). Due to the scarcity

Evaluating CM3: Problem Management 437

of relevant literature about this domain, it is entirely based on our empirical study of
industrial processes.

Table 1. Organisations contributing to the evaluation of CM3: Problem Management

Name No of employees Products/Services Software size
Ericsson Radio Systems

Ericsson Telecom AB

Ericsson Global IT Services

Ericsson Infotech

Ericsson AB

ABB Automation Products

ABB Robotics

European Space Agency

SAAB AEROSPACE

Nexus

Postgirot Bank AB

eumetrix Financial Solutions

Navigera Business Consulting

Foyer Consulting AB

On, Line

Sema Group Infodata

VM Data Public Partner

Försvarets Radio Anstalt

Tele2

14 000

300 (75 maintainers)

900 (5 maintainers)

600

26 000

1400

600

3-4 maintainers/inter-
viewed departm.

6000 (400 maintainers)

300

3200 (170 maintainers)

55

47

1

20

300 (17 maintainers)

70 maintainers/depart.

ca 1000

6000

Base stations

Telecommunication systems

Telecommunication products

Sw processes and tools

platform for AXE switches

Process control systems

Industrial robot systems

Space robot arm

Software for military aircraft

Embedded systems

Financial systems

Financial Systems

Business systems

Various types of systems

Administration systems

Information systems

Financial systems

Support systems

Support systems

Impossible to assess

ca 100 000 LOC

ca 120 000 LOC

Impossible to access

400 blocks

Impossible to assess

3 000 000 LOC

250 000 LOC

Impossible to assess

10000-1000000 LOC.

6000 programs in
168 different systems

500 000 LOC

No size provided

Strongly varying

700 000 LOC

142 programs

Impossible to assess

Impossible to assess

250 000 LOC /interv. dep.

CM3: Problem Management was evaluated both within and outside ABB.
Seventeen non-ABB organisations agreed to expose their process models to our study.
When choosing them, we have attempted to cover the wide spectrum of the today�s IT
state. Deliberately, we have chosen different sizes and different types of software
organisations. The types of products maintained by these organisations varies from
financial systems, business systems, embedded real-time systems, consulting services,
administrative systems, and different types of support systems. The evaluation
organisations are presented in Table 1.

The evaluation was conducted against a specific evaluation model presented in
Appendix A. This model consists of the interview questions reflecting all the process
steps inherent in CM3: Problem Management. For learning about our process model,
we advice our reader to study [2].

The fine-grained nature of our questions makes our interview results highly
sensitive. Our results reveal the detailed state of practice of the organisations studied.
To ensure the anonymity of the organisations studied, we have grouped the results
with no references to a particular organisation.

438 Mira Kajko-Mattsson

It is not easy to evaluate a process model within the industry. Many industrial
processes are still too coarse-grained. They have not implemented all the process
steps suggested by our model. When evaluating CM3: Problem Management, we first
checked whether a certain process step was fully implemented by the industrial
processes. If not, then we checked whether this step was logically followed. This
sufficed to fully defend its implementation.

3 Evaluation Results

Seventeen non-ABB organisations exposed their processes to our evaluation. One of
these organisations was a consultant company evaluating our problem management
process within about ten organisations. Since no exact quantitative feedback could be
provided for these ten organisations, we have excluded them from our quantitative
analysis. These organisations are however included in our qualitative analysis.

Our two ABB organisations are also involved in our evaluation. Presently, ABB
APR is in the process of changing its problem management process, but the old
process is in use as well. For this reason, we treat the two ABB APR processes as two
separate ones. When presenting their results, we refer to them as to two separate
organisations. Summing up, nineteen processes are involved in the quantitative
evaluation of CM3: Problem Management (three ABB and 16 non-ABB processes;
one non-ABB organisation was excluded from our quantitative study) and thirty
processes are involved in the qualitative one.

Due to the fact that our model is very comprehensive, we cannot present the
evaluation results for all process steps. We have chosen only a subset of them. We
have also excluded all kinds of motivations for choosing CM3 process steps. Instead,
we advise our reader to study [2]. Each process step presented below has a numerical
reference to the interview question(s) listed in Appendix A. Our evaluation results are
presented in Sections 3.1-3.11.

3.1 Process Definition and Process Visibility

We have checked whether the organisations studied have defined and documented
their problem management processes, whether they have divided them into process
phases, whether they have recorded the results of these process phases, and finally,
whether they record additional activities that have not been predetermined by their
defined problem management processes.

Problem Management Process Definition (see I:Q.1): Sixteen out of 19
organisations have defined and documented their problem management process. The
interviewees from two of the three remaining organisations claim that they have
defined a problem management process but they have not documented it as yet.
Finally, the third organisation has no process model defined at all. Maintainers in this
organisation use their own personal methodology based on the experience gained.

Process Visibility (see I:Q.2 and I:Q.3): Sixteen out of 19 organisations divide their
problem management processes into several phases. This division however, is coarse-

Evaluating CM3: Problem Management 439

grained. Usually, it consists of the following phases: Problem Reporting, Problem
Analysis, and Problem Resolution. Only four of these 16 organisations further divide
these phases into sub-phases and activities. These four organisations have also
defined process models for the major problem management activities such as Problem
Investigation, Problem Cause Identification, Modification Design and Modification
Implementation. These process models are usually represented in the form of process
guidelines. Six other (out of 16) organisations have expressed a strong wish for
process models for each major problem management activity. Two of these six are
presently working on fine-graining their problem management processes and on
defining process models for major activities.

Recording the Results of Process Phases (see I: Q.4.1 and Q.4.3): Fifteen out of 19
organisations record process data concerning the results of the process phases. This
data is however very coarse-grained. Usually, it encompasses the combined results of
the following group of major activities: Problem Investigation, Problem Cause
Identification, Modification Design, and Modification Implementation. The
information being recorded varies. Usually, it covers effort, resources, modification
size, impact, and experience gained. Only two of the 15 organisations record the
results of each individual process activity.

Recording Additional Activities Not Predefined by the Problem Management
Process (see I: Q.4.2): Four out of 19 organisations record the additional activities
that have not been predetermined by their problem management process. Only major
additional activities are recorded such as a visit to a customer site.

3.2 Process Analysis and Control

In this section, we report on the types of activities that are conducted in order to
analyse and control the problem management process. We have checked the
following: (1) measurement of the problem management progress, (2) rules for
recording problems in problem reports, (3) management of duplicate problem reports,
(4) control of the correctness of the problem report data, (5) distinguishing between
internal and external problem reports, (6) categorisation of maintenance requests, and
finally, (7) comparison of plans to the actual results.

Progress of Problem Management (see II: Q.1): Sixteen out of 19 organisations
measure the progress of problem management process using status values and the
dates when these status values change. This information is primarily used for
monitoring the problem resolution process and workload of individual engineers. It is
also used for controlling the amount of corrective work that remains to be done for a
certain release.

Rules for Recording Problems in Problem Reports (see II: Q.2 and Q.3): Sixteen
out of 19 organisations studied identify all maintenance requests (problem reports in
our case) by assigning a unique identifier to each reported problem. Thirteen out of 19
organisations describe one problem in one and only one problem report. If a problem
report communicates several problems or if an analysis of a problem reveals several
underlying problems, then all these problems get reported anew in separate problem
reports. The six remaining organisations sometimes report on several problems in one

440 Mira Kajko-Mattsson

problem report. Usually, these problems are somewhat related. The interviewees
coming from these organisations admit that this practice is clumsy, severely
obstructing problem management.

Management of Duplicate Problem Reports (see II: Q.4, Q.5, and Q.6): Sixteen
out of 19 organisations distinguish between unique and duplicate problems. If several
problem reports relate to the same problem, then usually one report becomes a master
report containing all information about the unique characteristics of the problem. This
master report is continuously updated with relevant information from the duplicate
problem reports. The duplicate problem reports get closed, but remain related to the
master report.

Two of the organisations simultaneously attend to all the duplicate problem reports
in a group. They do so with the motivation that these reports come from different
customers and hence may contain information that differs from customer to customer,
that they wish to keep in separate problem reports.

All the sixteen organisations continuously revise the uniqueness of the problems
throughout the process. One of the interviewees has mentioned that sometimes as late
as during the modification implementation, the maintainers may discover that the
problem being attended to is a duplicate problem.

Control of the Correctness of the Problem Report Data (see II: Q.2 and Q.3):
Seventeen out of 19 organisations continuously check the correctness of the problem
report data throughout the whole problem management life cycle. Eighteen out of 19
organisations check the quality of the reported data before assigning the problem
report to the maintenance team. This is usually conducted by a role corresponding to
CM3 Problem Report Administrator, CM3 Problem Report Owner, or a CM3: CCB.

Distinguishing between Internal and External Problems (see II: Q.9 in Appendix
A): Ten out of 19 organisations studied actively classify problem reports as internal
or external. This information is utilised for different purposes such as statistics,
planning, evaluation of customer satisfaction, and measurement of effort. Five of the
remaining nine organisations may record this information, but they do not use it for
any particular purpose. For one of the remaining four organisations, this information
is not relevant. They only maintain internal support systems.

Identifying Maintenance Category (see II: Q.10, Q.11, and Q.12): All the
organisations studied identify a maintenance category for each maintenance request.
In our context, this means that all software problems are classified as corrective
maintenance, to be distinguished from perfective and adaptive categories. Seven of 19
organisations studied conduct some form of preventive maintenance. By this, they
mainly mean restructuring some parts of the software system. Sixteen of the 19
organisations studied continuously revise the maintenance category during the
problem management life cycle.

Comparing Plans to Actual Results (see II: Q.18): Eleven out of 19 organisations
compare the plans to the actual results. They do it for learning lessons and for
providing feedback for process improvement. The maintainers within the remaining
seven organisations do not make any comparisons at all.

Evaluating CM3: Problem Management 441

3.3 Managing Software Products

In this section, we report on the mechanism used for identifying the software products
affected by the reported problems, utilisation of the information on the product
environment at both the customers and maintainers� sites, recording practice of the
problem occurrence date, and finally, the designation of releases in which problems
will be investigated and in which problem solutions will be implemented.

Identifying Software Products (see III: Q.1, Q.1.1, Q.1.2, and Q.1.3): All the
organisations studied identify the products in which software problems are
encountered. They usually report the Release Id or Article ID, a name which is then
translated into the Release Id by the maintenance organisation.

The identification of the software systems is not always so straightforward when
reporting on external software problems. Some systems are very complex. They may
be real-time embedded systems, integrated with other systems, and these systems may
not always be produced by one and the same organisation. In such a case, it is not
always easy to identify the system and its release at the problem encounter. The
organisations possessing such systems have chosen a special procedure for system
identification. Usually, representatives from different systems have a meeting or a
series of meetings during which they attempt to analyse the problem and localise it
within such a complex system.

Only in twelve organisations out of 19, external submitters are able to identify the
software product on a more detailed level than its Release ID. Usually, they may
identify some major functionality or sub-component. In the remaining processes,
more detailed identification of the product cannot be made by the external submitters.

Concerning the reporting of software problems internally, problems may be
reported on as detailed level as module- and/or even module line level in most of the
organisations studied. This, however, depends on the problem nature and on the
individual problem submitter.

Identifying Product Environment (see III: Q.2, Q.2.1, and Q.2.2): Eighteen out of
19 organisations studied have access to the data on the environment of their
customers. They either have this information available at the maintenance execution
level or they are provided with it by the upfront maintenance level (support). We have
not checked, however, whether this information is easily available at upfront
maintenance. Due to the specific nature of their product, the remaining 19th

organisation contacts its customers for finding out this information, when necessary.

Date and Time when the Problem was Encountered (see III: Q3 and Q3.1): Ten
out of 19 organisations record the date and time when the problem was encountered.
This value may also be easily recreated from log files. Only two of the organisations
studied use this value in the reliability measurements. Primarily, the organisations
studied use this value to learn about the problem, for instance, to find out whether it
was time related. Some organisations use this value to study the log files before the
problem was encountered in search of problem symptoms.

Designating Software Releases in which the Problem is Investigated (see III: Q.5
and Q.5.1): Thirteen out of 19 organisations carefully choose the versions in which
the software problem is to be investigated. First, they usually recreate the problem in

442 Mira Kajko-Mattsson

the version of the product in which the customer encountered the problem. Second,
they choose the release(s) in which it is relevant to identify the reported software
problem. This choice is usually determined by many varying factors such as the
number of releases being presently utilised by the customers, customer status and
business criticality, the severity of the problem, and so on.

In the remaining six out of the 19 organisations, the designation of the appropriate
version is not an issue. These organisations usually attend to software problems in the
latest releases. Therefore, they investigate the software problem first in the release in
which the software problem was encountered (irrespective of its age) and the latest
release in order to find out whether the problem still exists. It may happen that the
problem has disappeared due to changes in the earlier releases.

Designating Software Releases in which the Problem Solution will be
Implemented (see III:Q.4, Q.4.1, and Q.4.2): Thirteen out of 19 organisations
designate versions of the software system in which the problem will be implemented.
Usually, more than one release may be designated for this purpose. These
organisations also continuously revise the designation of these software releases. The
continuous revising is necessary for a meaningful planning and prioritisation of
problems as new software problems (with higher severity and priority) are reported or
as maintenance engineers gain better understanding of the problem.

Five of these thirteen organisations make patches. They do so mainly in cases
when it is urgent to solve a problem. These patches, however, are soon transformed to
new releases. In the remaining six out of 19 organisations, the choice of the version in
which the problem will be implemented is not relevant. This is because they either
have only one customer or they have a policy that they never do changes in the older
releases. If their customers have encountered a problem in some older release, then
they must simply upgrade their systems if they want the problem to be solved.

3.4 Recording Problem Reports (see IV: Q.4 and Q.4.1)

Sixteen out of 19 organisations studied record all their problems in an organisation-
wide problem report repository and tracking systems. The remaining three
organisations do it partially. Some problems internally encountered may never get
reported in these three organisations. They may be communicated orally via the
telephone or email. The first of these three organisations does not record minor
problems of the cosmetic type. In the second organisation, recording discipline
depends on the individual maintenance engineer. In the third organisation, the
problems that are usually reported via the mailing tool do not get stored in the
organisation-wide repository. In this organisation, all problem reports disappear as
soon as they get resolved. Hence, no historical data may be extracted. Finally, the
consultant organisation not included in our quantitative analysis claims that there are
still organisations that record their problem reports in a paper form.

3.5 Describing Software Problems

We have checked whether the organisations studied provide guidance (templates) to
their problem submitters on how to describe software problems when reporting them,

Evaluating CM3: Problem Management 443

whether the organisations submit reports on problems encountered during
maintenance work, and, whether the organisations continuously revise the
descriptions of software problems during the problem management process.

Templates for Describing Software Problems (see V: Q.1, Q.1.1-1.8, and Q.2):
Sixteen out of the 19 organisations studied provide a template for problem
descriptions. This template, however, differs in the number and choice of predefined
constituent data fields. The following data fields are provided:

General problem description: All the organisations studied allow their submitters
to provide a general description of a software problem.

Problem effects and consequences: Nine out of 19 organisations studied provide a
predetermined data field in a problem report for describing problem effects and
consequences. In the remaining ten organisations, this information may be
communicated as part of the general problem description.

Problem symptoms: Only three out of 19 organisations actively collect information
on the problem symptoms using a predetermined data field in a problem report. Four
other organisations treat symptoms as consequences. The remaining twelve
organisations may communicate them as part of the general problem description. The
information on symptoms is utilised for problem investigation. Symptom information
provides important feedback when finding out what exactly happened before the
problem occurred. Symptom information is also used as a checklist for the
identification of duplicate problems. Identification of duplicate reports using the
symptom information is conducted manually by the organisations studied.

Problem conditions: Five out of 19 organisations provide predetermined fields for
describing problem conditions. One of those five organisations provides a
combination of several predetermined fields utilised for the purpose of describing
problem conditions. The remaining 14 organisations may or may not collect this
information as part the general problem description on a case to case basis. By
problem conditions, the organisations studied mean the specific date and time of the
problem occurrence (e.g., a year shift, or peak time), a combination of applications
active during the problem occurrence, cargo, weather conditions, exact position of the
product (if embedded product), and other things.

Problem Reproduction: Ten out of 19 organisations provide a predefined field for a
description of how to reproduce the reported software problem. This field is also
utilised for describing alternative execution path(s) to the problem. Out of these ten
organisations, five classify problems as reproducible and irreproducible. The
remaining nine organisations may provide this information as part of the general
problem description. One out of these remaining nine organisations provides a
predetermined field for classifying whether the problem is reproducible or not.

Attachments: Sixteen out of 19 organisations manage attachments such as log files,
application programs, error messages, screen dumps, data base contents. Only one of
these 16 organisations manages attachments manually, whereas the remaining 15 do it
electronically.

Submitting Additional Problem Reports (see V:Q.6): Twelve out of 19
organisations always report on additional problems encountered during the problem
management process. In these organisations, the engineers are not allowed to attend to
problems without first reporting on them, even if these problems imply trivial

444 Mira Kajko-Mattsson

changes. Three out of the seven remaining organisations never report on software
problems encountered internally. They attend to these problems without reporting
them. At most, this information may be visible in the release documentation. One of
these organisations admits that it is a bad habit. They feel that they must change it,
because they cannot get the whole picture of the changes in their systems. Also, if a
new problem is encountered, then they cannot see whether it has already been
resolved. In the remaining four out of seven organisations, reporting on additional
software problems varies as follows:

If the encountered problem is not related to the problem that is currently being
managed, then a new problem report is created. Otherwise, it is described in the
problem report being currently attended to. The organisation admits that this practice
creates difficulties especially in cases when the problem substantially expands. It then
becomes difficult to manage and control.

If a similar problem is discovered during attendance to some problem, and it
implies very little change, then it is not reported but corrected under the umbrella of
the attended problem. All other similar problems must be reported in separate
problem reports.

Revising Problem Report Data (see V:Q.5): Seventeen out of 19 organisations
continuously revise the problem report data as they gain more understanding about
the problem. This step however is usually not an explicit part of the maintenance
methodology of the organisations studied. Concerning the two remaining
organisations, this step is up to each individual maintainer. The interviewees from
these organisations agree that an explicit statement of this step is essential for
increasing productivity and making problem validation and verification effective.

3.6 Problem Investigation

We have checked whether the main activities within the Problem Investigation phase
have been implemented. They are (1) study of a problem report, (2) study of a
software system, and (3) recreation of the problem.

Study of Problem Report (see VI: Q.1, Q.1.1): All the organisations studied include
studying of a problem report as the first step within the Problem Investigation phase.
The duration of this step varies from half an hour to several months. The longer time
usually arises when the maintainer must complement the problem report with
additional data by contacting the problem submitter. Please observe that many of the
organisations studied contact problem submitters via the upfront maintenance
(support) process.

Study of Software System (see VI: Q.2, Q.2.1, Q.2.2): All interviewees claim that
their maintenance engineers study the software system when investigating the
problem. Twelve of the interviewees claim that their maintainers fully understand the
part of the software system they are maintaining. However, most of them have no
process feedback for supporting this statement. The remaining seven interviewees
admit that their maintainers have problems with understanding the software systems.
In one of them, the second root cause to the externally reported software problems is
lack of maintainers� knowledge of a software product.

Evaluating CM3: Problem Management 445

Lack of knowledge may arise in cases when the system has been developed by a
third party (another organisation), or the system is so complex that even a limited set
of components can be difficult to understand. In one organisation, the maintainers
only learn the parts of the product required for understanding the problem and for
infusing changes without acquiring the knowledge of its remaining parts.

To study a software system may take time. The time span required for conducting
this process step varies from half a day to several months. In cases when it takes a
longer time, the maintainer is a novice, or she must study several releases of the same
product and identify their differences, or the nature of a problem is such that it
requires a meticulous study of a software system, for instance, in embedded systems
when one must check all the interfaces to hardware, or there is inadequate
documentation so that reverse engineering needs to be performed.

Recreating Problems (see VI: Q.3, Q.3.1): When recreating software problems, the
organisations may follow problem descriptions, simulate software, or define test cases
and test software. Seventeen out of 19 organisations studied define test cases when
investigating software problems. All except two of those 17 organisations document
these test cases. The remaining two organisations (out of 19) do not create any test
cases. They just follow the problem descriptions when recreating problems.

3.7 Problem Cause Identification

We have checked whether the main activities within the Problem Cause Identification
phase have been implemented. They are (1) identification and recording of defects,
and (2) classification of defects.

Identification and Recording of Problem Causes (see VII: Q.2, Q.2.1, Q.2.2,
Q.2.3): When identifying causes, all the organisations studied prescribe a study of the
pertinent documentation items and a control of their correctness. Sixteen of them
record all the documentation items in which defects were found. Usually, these
documentation items are identified on a module granularity level. Only three of those
16 organisations record defects on the software code line level. One of the three
remaining organisations (out of 19) only records this information for problems whose
defects are difficult to identify. The remaining two organisations do not implement
this process step at all.

Classification of Defects (Problem Causes) (see VII: Q.3, Q.4, Q.5): Eleven of the
19 organisations studied classify the defects (problem causes). This information is
used for planning future work and for different types of statistical analyses. Five out
of these eleven organisations use it for identifying deficiencies (root causes) in the
organisational processes.

3.8 Root Cause Analysis (see VIII: Q1, Q.2, Q.3, Q.4)

We have checked whether the organisations studied attempt to identify deficiencies in
the process leading to the defects. Only five out of 19 organisations studied conduct
root cause analysis. However, they do not do it on every software problem. The

446 Mira Kajko-Mattsson

candidates for root cause analysis are either external software problems, very serious
internal and/or external ones, or groups of very frequently encountered problems.

3.9 Modification Design

We have checked whether the organisations studied create mental pictures of problem
solutions in the early phases of the problem management process, whether the
organisations create suggestions for problem solutions before implementing them,
whether they evaluate and inspect/review these suggestions, and whether they plan for
implementing them.

Mental Pictures of Problem Solutions (result of questions see IX: Q.1, Q.2, Q.3):
Design of problem solutions should start as soon as the problem gets reported to the
maintenance organisation irrespective of how much detail is provided about it. All
organisations except for one (18 organisations), create a mental picture of what a
problem solution might look like. This mental picture provides an important feedback
for making important decisions through the problem management process. It is also
continuously revised as more understanding is gained about the problem solution.
Only two of those 18 organisations document the mental pictures of problem
solutions.

Suggestions for Problem Solutions (see IX: Q.1, Q.2, Q.3): Fifteen out of 19
organisations may create one or several modification designs (problem solutions) for
resolving a problem. Usually, these organisations create one problem solution.
Several alternative problem solutions are only created for major and/or more severe
problems, especially for those implying expensive changes. Four of these 15
organisations always attempt to create several problem solutions, if possible. But,
only one suggestion is recorded in the problem report repository and tracking system.

The remaining four organisations only create one problem solution. One of them
has a time constraint to deliver a problem solution as quickly as possible. From the
time when the problem cause (defect) has been identified, the clock starts ticking and
the maintainers have only 48 hours to resolve the problem. Hence, there is no time for
creating alternative solutions.

Evaluating Problem Solutions (see IX: Q.4, Q.5, Q.6): Within 18 out of the 19
organisations, maintainers evaluate their own suggestions for problem solutions.
When evaluating them, they consider these factors: modification size, change impact,
ripple effect, effect on customers, effort and resources required for solving the
problem, the feasibility of solving the problem, and the benefits and drawbacks of
solving the problem.

Inspecting and/or Reviewing Suggestions for Problem Solutions (see IX: Q.7,
Q.8): Before being presented to the CCB, the suggestions for problem solutions
should be inspected and/or informally reviewed. Within 15 out of 19 organisations,
inspections and/or informal reviews are being conducted. The four remaining
organisations neither inspect nor review their suggestions for problem solutions.

The level of formality varies in the 15 organisations depending on the size, severity
and complexity of the software problem. Usually, major problems are formally
inspected and minor problems are only informally reviewed. It may also happen that

Evaluating CM3: Problem Management 447

suggestions for solutions of minor problems are not reviewed at all. In four out of the
15 organisations, all suggestions, even those for trivial changes, are always inspected
and/or informally reviewed.

Planning for Implementing Problem Solutions (see IX: Q.9, Q.10): Eighteen out of
19 organisations make plans for implementing problem solutions, but only 16 out of
those 18 record these plans. The remaining 19th organisation does not make any plans
at all (time is ticking and the organisation must resolve the problem as soon as
possible).

For one of the 18 organisations, planning means designating the date when the
problem solution should be ready. In the remaining 17 organisations, the plans
encompass time schedule, designation of the versions of the software system in which
problem solutions will be implemented, effort and resources required such as person-
hours and equipment to be available during a certain period of time, prerequisites for
implementing the solution such as closure of the system for a certain period of time,
and a time schedule.

3.10 Modification Decision

We have checked whether the organisations studied have institutionalised a practice
for making decisions on all corrective changes in the software product. Two types of
decision making have been identified: (1) management decision where the
maintenance engineers� closest managers are involved in following the problem
management process and in making intermediate decisions important for its further
progress, and (2) CCB decisions where Change Control Board members make the
most important decisions on changes to software systems.

Management Decision (see X: Q.1, Q.2, Q.6): Within 15 out of 19 organisations, the
maintainers report on the results of major problem management phases to some
authority for control and for decision making on the future progress of the problem.
Usually, correspondences to the CM3 role �Problem Report Engineer� report to the
correspondences to the CM3 role �Problem Report Owner�. This reporting is
however scarcely documented. It is mainly managed orally. At the most, its results
may be visible in the change of the problem report status values, their dates, and some
comments. Within four remaining organisations (out of 19), this reporting does not
take place at all. Maintainers are allowed to make their own decisions during the
problem management process.

CCB Decision (see X: Q3-Q.6): Within 16 out of 19 organisations, the most
important decisions are made by a Change Control Board. These decisions concern
the progress of serious problems and changes to software. In 14 organisations (out of
16) all changes must be permitted by the CCB. In two organisations (out of 16), only
major problems are paid heed to. CCB chooses a suggestion for a problem solution on
the basis of the evaluation results conducted by maintainers themselves,
inspectors/reviewers, and the CCB itself. Fifteen out of these 16 organisations
document the decisions made by the CCB and their motivations, but only within
eleven organisations are these decisions visible via the problem report repository and
tracking system.

448 Mira Kajko-Mattsson

3.11 Modification Implementation

We have checked whether the organisations studied record all the changes made to
software systems, whether they implement these changes according to some
documentation standard, and whether the organisations inspect/review the changes
made.

Recording Changes to Software (see XI: Q.1, Q.1.1): All the organisations studied
record the changes made to the system. These changes are either visible in the
problem report repository and tracking system, release documentation, or in the code -
in its comment part.

The granularity level of recording the changes is usually on a module level (the
identification of a module that has been changed). Finer granularity level such as the
identification of the lines being changed due to a particular problem can be achieved
manually either via a �diff� command in a version management tool or by reading
comments in the modules identifying the lines that have been changed.

Rules for Documentation Standard (see XI: Q.3): Fifteen out of 19 organisations
have defined rules for how to write software code and documentation. The
interviewees from these organisations claim that they follow these rules. The
remaining four organisations have not defined such rules at all.

Inspecting/Reviewing Changes (adapted from IX: Q.7): The practice of
inspecting/reviewing changes is followed by the same organisations as the practice of
inspecting/reviewing suggestions for problem solutions: 15 out of 19 organisations
conduct inspections and/or informal reviews on all changes made; four do not.

4 Conclusions
Problem management process is one of the most important processes within software
engineering. Its main role is to manage software problems in a formal and disciplined
way. Its other role is to help us look back in time and analyse our earlier processes
(either development or other maintenance process) in order to identify their weak and
strong points. These points are an important feedback for continuous process
assessment and improvement, and for piloting innovations exploiting the best
engineering practices [1]. For this reason, we need to achieve maximal visibility into
problem management process and all other development and maintenance processes.

The problem management process visibility equips us with data providing an
important basis for assessing product quality and reliability, crucial for continuous
process analysis and improvement, and essential for defect prevention. Good insight
into the process helps us make sound decisions. Mature problem management process
is a prerequisite for achieving CMM Level 5 [1].

CM3: Problem Management is a very detailed problem management process
model. It has been developed at ABB and evaluated for its industrial relevance within
17 non-ABB organisations. In this paper, we have presented our evaluation results of
CM3: Problem Management.

Our evaluation results show, that all the process steps of our model have been
either explicitly or implicitly implemented by the majority of the organisations

Evaluating CM3: Problem Management 449

studied. This proves that CM3: Problem Management is realistic and down-to-earth,
and correctly represents current industrial practice. The state of implementing our
process steps varies across the organisations studied. Some of them implemented
most of our process steps, whereas other have hardly defined any problem
management process. By delineating the strong and weak points in the industrial
processes studied, we hope that we have been able to better visualise the current state
of problem management practice within corrective maintenance, and thereby, to
provide a basic reference point from which the desperately needed research into
software maintenance can proceed.

Acknowledgements
I would like to thank all the software engineers at ABB who co-operated with me
personally. They are: Ulf Westblom from ABB Corporate Research; Sari Ebarasi,
Margaretha Holmgren, Bengt Kelvinius, Bengt Jönsson, Mats Medin, Ulf Olsson and
Stefan Törnqvist from ABB APR; Stefan Forssander, Gunnar Andersson, Tord
Fahlgren, Elisabet de Waal, Gunilla Sundelius, Sven-Erik Johansson and Pär
Andersson from ABB Robotics, and finally Lars-Olof Tjerngren from ABB Service.

I appreciate the contributions of the practitioners who participated in the evaluation
of our model. They are Jan-Eric Claesson from Nexus; Håkan Andersskär from
Ericsson Infotech, Leif Thedvall from Postgirot Bank; Jan Lindviken from Ericsson
Global IT Services; Birgitta Ervik from Ericsson AB, Claes Ericsson from eumetrix
Financial Solutions; Jordanis Caracolias from Ericsson Telecom; Åsa Gustafson from
Navigera Business Consulting; Per Foyer from Foyer Consulting; Göran Näsman
from On Line; Helena Lindström from Sema Group Infodata; Bo Andersson from
WM Data Public Partner; Jorge Amador Monteverde from European Space Agency;
Conny Axeus and Per Simonsson from Ericsson Radio Systems; Tore Isacsson from
Försvarets Radioanstallt; Jan-Ola Kruger, Kjell Alm and Mats Rundqvist from SAAB
Aerospace; and finally, Toni Baknor from Tele2.

Let me thank the Swedish National Board for Industrial and Technical
Development (Nutek). This study has been made possible thanks to their recognition
of the importance of unifying academia with industry in Sweden. Thanks to its
support, the impossible research has been made possible.

Finally, I would like to thank Telefonaktiebolaget LM Ericssons Stiftelse for their
financial support allowing us to validate our model within Ericsson Group.

References

1. Carnegie Mellon University, Software Engineering Institute, The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-Wesley,
1994.

2. Kajko-Mattsson M, Corrective Maintenance Maturity Model: Problem
Management, PhD thesis, ISBN Nr 91-7265-311-6, ISSN 1101-8526, ISRN SU-
KTH/DSV/R--01/15, Department of Computer and Systems Sciences (DSV),
Stockholm University and Royal Institute of Technology, 2001.

450 Mira Kajko-Mattsson

5 Appendix A.1 : Our Questionnaire, Part I

I. Process Definition and Process Visibility
Q.1: Have you defined a model for problem

management?
Q.2: Do you divide your problem management

process into phases?
Q.2.1: What do they look like?
Q.2.2: Have you defined process models for the

following activities: (1) Problem investigation,
(2) Problem cause identification, (3)
Modification design, (4) Root cause analysis,
(5) Modification implementation?

Q.3: Are the problem management phases further
divided into activities/tasks?

Q.4: For each problem reporting
phase/activity/task:

Q.4.1: Do you record the date and time when the
problem report was in this phase/activity/task?
Q.4.2: Do you identify and record additional

activities/tasks performed during this phase?
Q.4.3: Do you record the effort and resources of each

phase/activity/task?
II. Process Analysis and Control
Q.1: Do you measure the progress? How?
Q.2: Are all problems uniquely identified?
Q.3: How many problems do you describe in one

problem report?
Q.4: Do you identify the unique problems?
Q.5: How do you manage unique and duplicate

problems?
Q.6: Do you revise the uniqueness of the problem

throughout the problem management process?
Q.7: Do you continuously check the correctness of

the problem report data?
Q.8: Do you check the quality of the reported data

before assigning the problem report to some
maintenance team?

Q.9: Do you classify problem reports into external
and internal ones?

Q.9.1: If yes, what do you use this classification for?
Q.10: Do you identify a maintenance category for

each software problem?
Q.11: Do you revise the maintenance category

continuously during the problem management
process?

Q.12: What types of maintenance categories do you
distinguish?

Q.13: Do you record severity and priority of the
problem?

Q.14: Do you separate the submitter�s and
maintainer�s judgement of severity and
priority?

Q.15: What do you use these values for?
Q.16: Do you identify the activity during which the

problem was encountered?
Q.16.1: If yes, what do you use this for?
Q.17: Do you record the date and time when the

problem was reported?
Q.18: Do you compare the plans to the actual results

in order to improve the process?
III. Managing Software Products
Q.1: Do you identify the product in which the

problem was encountered?
Q.1.1: Do you identify the product and its release ID

in which the problem was encountered?
Q.1.2: Do you identify the product

component/function in which the problem
was encountered?

Q.1.3: What is the lowest granularity level in which
you identify the product in which the problem
was encountered?

Q.2: Do you identify the environment of the
product in which the problem was
encountered?

Q.2.1: What do you mean by the product
environment?

Q.2.2: Do you consider information on the customer
environment when investigating the problem?
Does it help in recreating the problem?

Q.3: Do you record the date and time when the
problem was encountered?

Q.3.1: If yes, what do you use this value for?
Q.4: Do you designate the version(s) of the software

product in which the problem solution will be
implemented?

Q.4.1: What criteria do you use when choosing the
versions in which the software product will be
investigated?

Q.4.2: Do you continuously revise the designation of)
the version(s) of the software product in
which the problem solution will be
implemented?

Q.5: Do you designate (an) appropriate version(s) of
the software product in which the problem
will be investigated?

Q.5.1: What criteria do you use when choosing the
versions in which the software product will be
investigated?

Q.6: Do you ensure the traceability of the modified
documentation item to the other (modified and
unmodified) documentation items within the
system?

Q.6.1: On what granularity level do you achieve this
traceability?

Q.7: Do you ensure the traceability of change?
Q.7.1: On what granularity level do you achieve this

traceability?
IV. Resource Management
Q.1: Do you identify the problem submitter?
Q.1.1: If it is an external problem submitter, do you

have his/her/submitter organisation�s
identification data easily available?

Q.1.2: Do you often use the submitter�s identification
data? What for?

Q.1.3: In what situations do you contact problem
submitters?

Q.2: Do you allow problem submitters to describe
(a) work around(s), that is, a list of a set of
steps describing how to avoid the problem?

Q.2.1: What do you use it for?
Q.3: Do you allow problem submitters to describe

suggestions for how to solve software
problems?

Q.3.1: What do you use it for?
Q.4: Do you record problem reports into the

organisation-wide problem report repository
and tracking system?

Q.4.1. Do you record all software problems in the
repository?

Q.5: Do you assign the problem report to the
maintenance team for attendance?

Q.5.1: According to what rules do you choose the
maintenance team?

Q.5.2: What is this team responsible for?
Q.6: Exactly what roles are involved in the

management of software problems and what
exactly do they do?

Q.6.1 Who attends to the reported problems (1)
anybody, (2) a specially dedicated maintenance
team ?

Evaluating CM3: Problem Management 451

6 Appendix A.2: Our Questionnaire, Part 2

V. Describing and Reporting Software Problems
Q.1: How do you describe the problem?
Q.1.1: Do you provide a template on how to describe

software problems?
Q.1.2: Do you give a general textual description of

the problem?
Q.1.3: Do you describe the problem effect(s) and

consequence(s)?
Q.1.4: Do you describe the symptoms of the

problem?
Q.1.5: How do you use the information on

symptoms?
Q.1.6: Do you describe the problem conditions?
Q.1.7: Do you describe how to reproduce the

problem?
Q.1.7.1: Do you classify the problem as reproducible

or non-reproducible?
Q.1.7.2: Do you indicate the repeatability of the

problem (once, several, repeatable)?
Q.1.7.3: Do you describe how to reproduce the

problem?
Q.1.8: Do you describe alternative execution path(s)

to the problem?
Q.2: Do you attach relevant file(s) for

visualising/confirming the problem?
Q.3: Do you identify the type of a problem, for

instance, requirement problem, design
problem, software code problem, etc.?

Q.3.1: If yes, what does your classification look like?
Q.3.2: What do you use this classification for?
Q.4: Do you identify problems related to the

reported problem, if any?
Q.5: Do you revise the software problem report

data continuously during the problem
management process as you gain more
understanding about the problem?

Q.6: Do you submit additional problems
encountered during the problem management
process?

VI. Problem Investigation
Q.1: Do you study the problem report?
Q.1.1: Do you encounter any problems/difficulties

during this step?
Q.2: Do you study the software system?
Q.2.1: Do you spend enough time for studying the

software system?
Q.2.2: Do you fully understand the software system?
Q.3: Do you define a set of test cases required for

the recreation of some problems or do you just
recreate the problem in an ad hoc manner?

Q.3.1: Do you document these test cases?
Q.4: What exactly do you document during problem

investigation?
Q.5: What else do you do when investigating

problems?
VII. Problem Cause Identification
Q1: Do you study the results of the activity

�Problem Investigation� in order to get acquainted
with (if another Problem Report Engineer) or
get reacquainted with the problem?

Q.2: When identifying the problem causes, what
exactly do you do?

Q.2.1: Do you study the pertinent documentation
items and check their correctness?

Q.2.2: Do you identify and record the documentation
items containing the defect(s)?

Q.2.3: On what granularity level do you record the
problem causes (component/line level)?

Q.3: Do you classify the identified problem
cause(s)/(defect(s))?

Q.4: What do you use this classification for?
Q.5: What exactly do you document during this

activity?
VIII. Root Cause Analysis
Q.1: Do you identify the process activities/tasks

during which the problem cause (defect) was
introduced?

Q.2: Do you identify the root causes for the defect
by analysing the process steps during which the
problem cause/(defect) was introduced? How
do you do it?

Q.3: Do you classify the root cause(s)?
Q.4: Why do you conduct root cause analysis?
IX. Modification Design
Q.1: How many suggestions for problem solution

do you make?
Q.2: Do you record all these suggestions?
Q.3: What exactly is recorded: (1) a general

description of what a problem solution should
look like, (2) a specification of measures to be
conducted in order to solve the problem?

Q.4: Do you evaluate the problem solution?
Q.5: What is exactly evaluated: (1) a general

description of what a problem solution should
look like, (2) a specification of measures to be
conducted in order to solve the problem?

Q.6: When evaluating problem solutions, what
exactly do you consider (1) modification size,
(2) impact of the modification, ripple effect,
effect on customer, (3) the effort and resources
required for solving the problem, (4) the
feasibility of solving the problem, (5) the
benefits and drawbacks of solving the
problem?

Q.7: Do you inspect/review the modification
designs?

Q.8: Who does the inspection/reviewing?
Q.9: Do you make an implementation plan for each

problem solution?
Q.10: What exactly do you plan?
Q.11: When at the earliest do you start designing

problem solutions?
Q.12: Do you evaluate the early preliminary problem

solutions?
X. Modification Decision (Stage 4)
Q.1: Do you report the results of the major process

activity to some authority?
Q.2: Do you make decisions whether to proceed

with the problem resolution after each major
process activity?

Q.3: Do you have a Change Control Board (CCB)?
Q.4: What kinds of decisions does CCB make?
Q.5: When making decisions on the choice of

modification designs, what exactly does the
CCB do?

Q.6: Do you record all the decisions made (1) after
each major process phase, (2) decisions made
for all solutions?

XI. Modification Implementation (Stage 5)
Q.1: Do you record all the changes made to the

software product?
Q.1.1: On what granularity level?
Q.2: Do you unit test these changes?
Q.3: Do you modify the product according to some

documentation standard?
Q.4: For each change, do you record the following:

(1) reason for the changes, (2) modification
size, (3)effort and resources, (4) ripple effect,
(5) feasibility, (6) drawbacks and benefits?

Q4.1: Do you record this information for the whole
modification effort or for each individual
measure specified in problem solution?

	Introduction
	Methodology
	Evaluation Results
	Process Definition and Process Visibility
	Process Analysis and Control
	Managing Software Products
	Recording Problem Reports (see IV: Q.4 and Q.4.1)
	Describing Software Problems
	Problem Investigation
	Problem Cause Identification
	Root Cause Analysis (see VIII: Q1, Q.2, Q.3, Q.4)
	Modification Design
	Modification Decision
	Modification Implementation

	Conclusions
	Acknowledgements
	References
	Appendix A.1 : Our Questionnaire, Part I
	Appendix A.2: Our Questionnaire, Part 2

