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Abstract. In this paper we propose an architecture for an output
queued switch based on the mesh of trees topology. After establishing the
equivalence of our proposal with the output queued model, we analyze
its features, showing that it merges positive features of the input queued
switches (specially their implementability) with all the characteristics
typical of output queued ones. Moreover, such an architecture is able
to easily and efficiently manage multicast traffic, which is becoming ex-
tremely important in networks with traditional communication services
integrated in.

1 Introduction

Internet is evolving to an integrated services network with a large number of
users that exchange huge amounts of data, making the efficiency of the switch-
ing phase increasingly critical ([1J2J3l4]). This is even more evident since large
parts of Internet are circuit switched (SONE, just to cite one name), and
since link speed is rapidly increasing (for example, 40 Gb/s at OC768¢c or 160
Gb/s at OC3072), making routers/switches a serious bottleneck. At a suitable
level of abstraction, a switch is a box connecting n source inputs that want
to exchange messages with m destination outputs. The system is synchronous,
and the time is slotted. Without loss of generality, we can think of messages as
fixed size cells that arrive at the system at the beginning of each slot, and are
processed during the time interval. Since we assume that message destinations
are independently chosen by each input without rules, it can happen that more
inputs want to communicate with the same output at the same time, causing
a potential collision. Such an event should be avoided, because it results in the
loss of all the cells involved in it, and in the retransmission of all of them from
the originating source. Competing cells need to be stored in a memory, and to
be serialized in some way, in order to keep busy outputs with queued cells for
and to avoid collisions.

There has been a deep investigation in buffered switches during the last years,
that leaded to fundamental results. One of the first proposed solutions ([5l6]) was
to put a shared memory between inputs and outputs where to store incoming
cells and to forward a suitably chosen subset of them. While such an architecture
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Fig. 1. Different switch architectures.

is quite simple and practical for systems operating at less than 20 Gb/s, it has
many problems, the most penalizing is perhaps the memory access time (n +m
accesses should be granted at every cycle).

A natural step to move then was to introduce a queuing system, that led to
input queued (Fig. and output queued (Fig. switches. The former is
the implementation of the very simple idea that every cell, at the arrival to the
switch, should be immediately buffered (with a queue for every input), and then
a scheduler will choose in every cycle a set of non conflicting cells (namely, cells
bound for different outputs) to forward through a nonblocking interconnection
network, for example a crossbar. Easy to implement, the architecture was shown
to suffer of limited throughput if a FIFO strategy is used in the queues: con-
flicting cells in the head of the queues may block other cells that would be free
to pass through the switch, causing a performance loss known as head of line
(HOL) blocking, limiting the throughput of the system to ~ 58.6% assuming
iid. arrivals ([7]).

Moving the queues at the output ports results in efficient switches that don’t
block cells if their destination is idling, able for this reason to provide quality
of service ([IJ8]). This is not a solution, since such an architecture is clearly
equivalent to the shared memory one, and its problem is again scalability: each
queue must be able to serve up to n requests per time slot. This introduces the
need for a speedup of the switch of a factor n + 1, limiting its implementabil-
ity to scenarios with few input ports and quite slow links. In order to achieve
scalability without performance problems, virtual output queued switches were
proposed ([9/2]). Such an architecture avoids HOL blocking by having in each
input a different queue for each output. It is clear that the scheduling phase is
now critical: a set of cells must be selected for transmission at every time slot to
maximize performances. It was shown ([TOJITIT2IT3]) that there exist scheduling
algorithms able to exploit a throughput of the 100% and also to avoid starvation
of cells ([I4]). However, such algorithms have several drawbacks, that can be so
classified:
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Complexity: an optimal scheduling can be found solving a matching problem
on bipartite graphs ([15]), or finding a decomposition of stochastic matrices
(see [16] for the switching case). The weak point of these approaches is their
complexity; the best known matching algorithm runs in O(N?log,(N)) time
in the worst case ([17]), while the second method has been proved useful to
implement, at most, 4 x 4 switches ([I§]).

Throughput: with approximate algorithms it is possible to overcome the com-
plexity problem ([2JI5]19/13]). Behind this approach there are good simu-
lation results ([I5l20]), and a proof that, if traffic reaches a steady state
(i.e. there is always a cell that must be sent to every output), the behavior
of these algorithms is optimal ([13]). But with bursty traffic (J21]) such a
stability is never reached ([200]).

Performance guarantees: despite some results on the bounds in queues aver-
age sizes and on average delays in input queued switches have been recently
found ([22]), it is not yet clear how to offer quality of service in such a class
of switches. This justifies the research on output queued like architectures,
in order to obtain guarantees on the offered service.

Combined input-output queued switches are another interesting architecture
proposed as a trade-off between input and output queuing: there are queues
both in the inputs and in the outputs, and a speedup of k is used, in the sense
that it is possible to transfer k cells from every queue in the inputs to the de-
sired queue in the outputs at every time slot. In [23/24] it was proved that a
speedup of 2 is enough and necessary to emulate an output queued switch with
a queuing policy that varies in a well known class. Unfortunately a locally opti-
mal scheduling does not guarantee network optimization: in [25] it is shown that
input queued switches with high performance scheduling algorithms, efficient in
isolation, cause unbounded delay of cells when put in a network. In order to
avoid this problem, and to offer quality of service (QoS), it is then important
to have practical solutions resembling output queued switches. Parallel architec-
tures are an encouraging alternative ([26l27128]29/30]).

In this work we take a completely different approach, and propose an output
queued switch obtained by parallelizing the “classical” architecture, having very
interesting features like high compositional power (i.e. it is easy to create a
greater switch by using smaller ones), no speedup required (in a sense that will
be cleared later), real implementability and efficient multicast management.
The paper is organized as follows. Section [2] introduces the notation we will use
throughout the paper. Section B] outlines the idea at the very base of our pro-
posal, relating it with a well known architecture. In Sect. H] the topology of the
mesh of trees is presented, together with some of its most important features. In
Sect. [fl we present a new architecture for a switch, proving that it is equivalent
to an output queued one. Finally, we conclude in Sect. [f] summarizing our work
and proposing future directions.



1060  M.A. Bonuccelli and A. Urpi
2 Definitions

The following concepts and terms are very important through the paper:

Number of ports: without loss of generality, the switches are supposed to have
n inputs and n outputs,

Names: I; is the i'" input, O, is the j'" output; Q; is the queue at the i'" input
(output) in an input (output) queued switch, and L; is its size,

Acronyms: IQ) means Input Queued, OQ is Output Queued, while VOQ@ is
Virtual Output Queued and CIOQ is Combined Input-Output Queued,

Mimicking: as defined in [24], a switch S mimics another switch S if, for
any arrival pattern and independently of the switch size, the outputs are
exactly the same. In [30] the definition is extended by considering a possible
queuing delay for the cells, i.e. the outputs of the two switches are the same
but with a temporal shift caused by queuing. So, an architecture X mimics
an architecture Y with a delay of f(n) if, under the same arrival process,
the outputs of X at time t 4+ f(n) are the same of Y at time t.

3 A First (Impractical) Step

We begin by presenting a new point of view of an OQ switch. Later in this
section the same intuition will be presented from a different perspective.

Let us assume we have a n x n2 crossba and that each cell is associated with
an integer representing its arrival time (a time stamp). Then, we can think of
splitting the queues in the output ports in n different queues, one for each input,
like in Fig. @I Such an architecture can be thought of as the complement of a
VOQ@ switch, and it should not be hard noting that it can perfectly emulate
an 0Q switch. In fact, assuming a FIFO strategy, the division in n queues is
equivalent to the distribution of the cells in queues, sorted by sender. @); in an
0@ switch with a speedup of n, would contain all the cells sent to output i,
sorted by the time of arrival to the system, with simultaneous arrivals serialized
with a specific rule (for example smaller index of sender first, or randomly). In
this way, in the n queues at the i*” output, there is a double sorting: by arrival
time and by sender. Then, if the S; element chooses the oldest cell from all the
queues, breaking ties with the same rule that would have been used in the target
0Q switch, we perfectly emulate it.

The proposed architecture apparently does not require any speedup to achieve
an 0@ switch behavior emulation. Actually there is a logarithmic factor to be
accounted for. In fact, assuming to be able to compare n time stamps in only
one cycle is unrealistic (specially for very large n, that is our final target). The
best thing we can do is to use a comparing tree, with log,(n) stages of parallel
comparisons. Such a logarithmic factor must be paid off in terms of scheduling
iterations, in the worst case, also in almost every proposed VOQ switch ([2] for

2 Actually, a full crossbar is not necessary. A structure containing n selectors or a
sorting network would be enough, but it is easier to imagine a crossbar
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Fig. 2. Output queued switch?

PIM, [15] for iSLIP, [31] for iLPF, just to cite some very popular proposals). In
1Q and VOQ switches, it is usually assumed that these computational steps can
be done during a time slot (thus limiting the power of scheduling algorithms).
In our proposal, we can avoid this delay with a very simple pipelining technique.
In fact, it is not necessary to wait for the entire comparison to be over before
starting a new one but, because of the tree structure of the comparison part, each
element (leaf or internal node) can compare two cells, and forward the oldest to
its parent (the root must send the oldest outside the switch). Thus, as soon as
an element finishes its work, it can start again for another round, waiting only if
its successor in the tree (its parent) is not ready to receive. Thus it is possible to
perform log,(t) comparisons (one for level) in parallel. The latency of the cell in
the switch is proportional to the logarithm of the switch size but the throughput
of the system will not suffer from this.

The introduction of a pipelined part in a switch is not a new concept: in [32]
the scheduler for a VO@ switch is improved with this technique, but the whole
system is very different (and more complicated) from the one presented here.
We make another step in our description, in order to have a system easier to
implement. It is possible to come to the same idea also by starting from well
known results. In [33], the architecture of an OQ switch called knockout was
presented. Each input is connected to one bus, and each output is connected to
every bus. We can think of the output modules as single queues, and still have
the mentioned speedup problem. We can also think of increasing the number of
queues, in order to avoid speedups by increasing the cell loss probability (namely,
the probability of dropping conflicting cells). Of course, by putting one queue for
every input in each output module , there is no cell loss (at this stage), and the
architecture is very similar to the one we sketched. It is also possible to put less
queues (say L), preceded by a statistical multiplexer that just chooses L cells, if
there are more, and discarding the others. A buffering scheme that uses several
(L) FIFO queues as just one queue with L inputs and one output in a knockout
switch makes it acting like an O@ switch without requiring any speedup. It was
shown that L = 8 queues are sufficient to reduce the loss probability to 106 for
an arbitrarily large switch size n ([33]). However we are interested in avoiding
cell loss (and then in using n queues without multiplexer). The architecture,
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conceptually interesting, has many problems, like number of busses too high
when the number of inputs grows and a number of crossing points not feasible
when there are many outputs. Moreover, there is a spatial speedup to pay:
implementing N adjacent memories is not so different from implementing one
with a (temporal) speedup of T'. In Sect. [l we will see why the architecture
proposed in this paper can be more practical, while potentially having the same
problems.

4 Mesh of Trees

We present here a well known topology called mesh of trees, recalling only what
is helpful to our aim. For more details the reader can refer to [34].

An N x N two-dimensional mesh of trees is a structure obtained from a N x N
mesh (or two-dimensional array) by adding nodes in order to form a complete
binary tree for every row and every column, with the nodes of the mesh as
shared leaves (see Fig. B). There is also an interesting recursive definition of the
topology: given four % X % meshes of trees it is possible to combine them in a
N x N one just by using the four smaller meshes as elements of a 2 x 2 mesh, and
combining the 4N roots pairwise adding 2N new roots (for a practical example
see Fig. , where the nodes to be added are represented by hexagons).

The total number of nodes in a N x N mesh of trees is 4N? — 2N. Commu-
nications between root nodes of column trees and root nodes of row trees are
interesting in several ways. First of all they have a fixed length of 2log, (V)
hops. Moreover, if we label each destination node with the binary representation
of a number between 0 and N — 1 (of course a different label for each different
node), the routing of a message through the mesh of trees is very simple (i.e.
the topology has a self-routing property). For example, nodes at i" level will
forward the message to their right son if the i*" digit of the label is 0, to their
left son otherwise. The leaves work as interchange points, and they just have to
forward the message from the column tree to the row tree they belong to. The
communication is then logically divided in two steps:

1. a selection phase, in which the message is directed to the right row,
2. a gathering phase, in which the message is conveyed to the desired root.

In terms of hardware complexity it is clear that each node, if only communication
is needed, is very simple. Implementability of meshes of trees in single chips was
widely studied (e.g. see [35]). In the next section, we will see how to combine
meshes of trees and the switch architecture we proposed in Sect. [3L.

5 The New Architecture

It is possible to produce a n x n 0@ switch equivalent to the one we presented
in Sect. B, by means of a n x n mesh of trees. Assume to associate each input to
a column tree root, and each output to a row tree root. In this way, a cell from
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(a) 4 x 4 mesh of (b) Composition of
trees smaller meshes

Fig. 3. Two views of a 4 X 4 mesh of trees

input ¢ to output j can be seen as a communication between roots, exactly like
those presented in Sect.[d. Thus, the selection stage is exactly equivalent to the
crossbar-like element in Fig. 2l while the gathering stage, choosing the oldest cell
in case of contention, is just a comparing tree. We can think to put the queues
in the leaves: in this way they would become very simple elements encapsulating
a queue. It is easy to see that the two architectures are equivalent. Later in this
section, a formal proof of the above mentioned mimicking will be presented.
The logarithmic factor in the selection stage can be amortized in the same way
we did in the comparing phase: up to logy(t) communications can be present in
parallel in the column trees, for a total of 2log,(¢) communications at most that
can be done in parallel. In the remainder of this section, we shall assume infinite
size queues, and we use the following additional notation:

Memories: in the mesh of trees, for each output, the memory is divided into
quewing memory (in the leaves) and tree memory (up to one cell can be
stored in each internal node in the row tree while waiting to exit from the
switch).

Symbols: Extending (in a natural way) the names given in Section [2, Q;; is
the queue from input 4 to output j in the mesh of tree, and L;; is its length.

In order to establish that the mesh of trees switch mimics an OQ switch (with
a delay, as we will see), it is useful to introduce an intermediate architecture
that will be used as a paragon. In Fig. ] it is shown a queued architecture for a
single output (referred in the remainder of this section as DFIFdﬁ) composed by
n queues, from which the K element chooses the oldest to forward (breaking ties
in the usual way), and log,(n) — 1 elements that just forward from one end to the
other (actually the architecture is just the one shown in Fig. 2] with log,(n) —1
more stages).

3 DFIFO is just a short name for Delayed FIFO.
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It is now useful to introduce some straightforward lemmas:

Lemma 1. A switch with DFIFO queuing architecture mimics a FCFS OQ
switch with a delay of logy(n) steps.

Proof. As noted in Sect. Bl the architecture that, for every output, selects the
oldest cell from ¢ queues, exactly behaves like a FIFO OQ switch. Adding log,(n)
forwarding units, we just introduce a delay in the output.g

Lemma 2. A mesh of trees switch mimics a switch with DFIFO queuing archi-
tecture with a delay of logy(n) steps.

Proof. The delay is caused by the selection phase done at the column trees: as
we assume infinite size queues, it takes exactly log,(n) time slots to a cell for
arriving to the queues, while in a DFIFO based switch they would arrive in one
step. So it is enough to show that, without considering the column trees in the
mesh of trees, the two architectures are totally equivalent.

We focus on an output j, in order to prove that cells bound for that output
are handled in the same way (once they arrive at the queues) by the two ar-
chitectures. Since we don’t make any assumption on j, this will hold for all the
outputs, establishing the lemma. We shall prove the lemma by induction on the
number of queuesH:

basic step: for n = 2 (2 inputs/outputs, the minimum case), the two architec-
tures are exactly the same (the K element that chooses between two queues),
induction step: for n = 2m and m > 1 the row tree can be seen as the

composition of two trees with m leaves (queues) (see Fig. y induction,

such an architecture is equivalent to the one shown in Fig.

It is not hard to show the equivalence of such an architecture and a DFIFO
of height log,(m) (or equivalently log,(2m) — 1) forwarding elements. To avoid
tedious details, it can be sufficient noting that

— the number of steps that cells must undergo, is the same (log,(2m) after the
first selection),

— during any time slot, if at level i of Fig. @ architecture there is one cell,
then there is one cell also at the same level of the DFIFO architecture,

4 Given the mesh of trees features, we only deal with powers of 2, with 2 as bottom
of the induction chain.
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Fig. 5. Inductive step.

— in any time slot, if at level i of Fig. architecture there are two cells,
then in the DFIFO architecture there is one cell at level ¢ and one cell at
level 1 + 1,

— inversely, at any time slot, if at level ¢ of DFIFO architecture there is one cell,
then either there is at least one cell at the same level of Fig. architecture,
or there are two cells at level ¢ — 1 (note that this holds for 4 > 0 since the
root is unique in both systems).

So, at every time slot there is a cell in output in one architecture if and only if
there is a cell in output in the other. Since outputs are time ordered, they must
be exactly the same.

Lemma 3. Consider three switch architectures A, B and C. If A mimics B with
a delay of f(n) and B mimics C with a delay of g(n), then A mimics C with a

delay of f(n) + g(n).

Proof. By definition of mimicking with a delay (see Sect. ), under the same
arrivals, the output of C at time ¢ is the same of B at time ¢ 4+ g(n), which in
turn is the same of A at time t 4+ g(n) + f(n).o

We have thus established the following

Theorem 1. The mesh of trees switch mimics a FCFS OQ switch with a delay
of 2logy(n).

|
The mesh of trees architecture is particularly suitable to efficiently provide

multicast. An addressing technique already known suffices: the destination of
every cell is coded by a t bits string with the i*" bit set to 1 if and only if the
output ¢ is in the set of receivers. So, during the selection stage, the node at level
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7 in the column tree must only perform two “or” operations when a cell to route
arrives: one of the bits in the left half of the word, and one of the rightmost
ones. If the first “or” operation is equal to 1, then the cell is forwarded to the
left child (with the left half word as destination information), and the same
happens with the second operation, but the cell is forwarded to the right child
(note that at least one operation must be positive, but both can produce a 1).
The so implemented multicast is a copy multicast, and it is the most efficient
way to implement it: the cells arrive at the queues during the same time slot
(because of the synchronism of the selection phase), and will depart during the
first empty time slot.

We believe this feature makes particularly interesting the proposed switch: the 1Q)
architecture in fact has several problems managing multicast traffic, both from
a theoretical point of view ([36]) and from a practical one (e.g. the simulations
results in [37]), while in the mesh of trees switch the scheduling of multicast
traffic practically comes for free. As previously established, the mesh of trees
switch can mimic a FCFS OQ switch. Besides, for very large n’s the O switch
can be considered purely theoretical because of the needed speedup, while the
mesh of trees scales very well. Moreover, the time slot length limit is given just
by the memory speed: in fact, the whole architecture behaves like a pipeline,
and the time of the system is given by the time of the slowest element. If a
comparing step is faster than a memory cycle, we can think to group several
comparing steps into a single system cycle, in order to reduce the delay of the
mesh of trees and to improve performances.

The mesh of trees architecture seems to suffer of the same spatial speedup
problem of the knockout switch: the queues in the leaves, for graphical presen-
tation reasons, are drawn as adjacent, and at a first sight they can be imagined
as a single big memory with a speedup problem. In the real physical implemen-
tation, memories not necessarily are positioned as in Fig. Moreover, we
think that, at least theoretically, the study of such a kind of architectures can
be interesting, because of the positive performances offered that can overcome
technical problems.

6 Conclusions

In this paper, we considered a parallel architecture for the implementation of the
well known output queued switch. The widely studied mesh of trees topology
has been used to propose a switch that can mimic (even if with a logarithmic
delay) a FCFS output queued switch without the speedup problem. A future
work will be to extend the class of queuing policies that is possible to emulate,
in order to achieve quality of service, and to give some bounds on queues sizes
and dimension of time stamps needed.
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