Helios: A Broadcast Optical Architecture*

Ilia Baldine!, Laura E. Jackson!, and George N. Rouskas?

I MCNC ANR, Research Triangle Park, NC, USA, ibaldin,lojack@anr.mcnc.org
2 Department of Computer Science, North Carolina State University, NC, USA,
rouskas@eos.ncsu.edu

Abstract. In this article we present a new all-optical broadcast LAN
architecture and an accompanying signaling protocol. The distinguish-
ing characteristics of this architecture are its fault-tolerant design and
its collision-free nature, which allows it to achieve high throughput in
a broadcast environment. The flexibility of the design allows different
schedulers to be used, which can introduce new features into the net-
work (e.g. multicast and QoS) as well as optimize its behavior for the
specific setting in which it is used.

1 Introduction

Wavelength division multiplexing (WDM) optical networks are a viable technol-
ogy for a next-generation network infrastructure that supports a diverse set of
existing, emerging, and future applications [§]. WDM bridges the gap between
lower electronic switching speeds and ultra high optical transmission speeds. Di-
viding the enormous information carrying capacity of single mode fiber into a
number of channels, each on a different wavelength and operating at peak elec-
tronic speed, WDM makes it possible to deliver aggregate throughput on the
order of Terabits per second. WDM technology initially was deployed in point-
to-point links and has also been extensively studied, theoretically and experimen-
tally, in wide area or metropolitan area distances [7]. Several WDM local area
testbeds have also been implemented [5] or are currently under development [6]
1].

In this article we present Helios — a WDM all-optical architecture for a lo-
cal area network and an accompanying signaling protocol. The packet-oriented
Helios architecture enjoys independence of the number of nodes and the number
of supported wavelengths, and relies on scheduled access to the medium, guar-
anteeing higher utilization. Helios is part of a DARPA-funded project aimed
at demonstrating the feasibility and potential of optical access networks. This
effort is a logical continuation of earlier work performed at NCSU ([11], [12]).
Following an overview of the architecture in Sect. Bl we describe the signaling
protocol in Sect. Bland the basic Helios scheduling algorithm in Sect. EE1. We
conclude in Sect. Bl

* Supported by DARPA under Contract No. F-30602-00-C-0034 and NSF under Grant
No. 9701113.

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 887-898] 2002.
© Springer-Verlag Berlin Heidelberg 2002

888 I. Baldine, L.E. Jackson, and G.N. Rouskas

2 The Helios Architecture

The Helios network employs a passive star coupler (PSC) as a broadcast
medium to connect all nodes in the network, making Helios a single-hop WDM
network. The entire path between source and destination in such a network is
entirely optical; no electro-optic conversion of the signal is necessary [9]. Helios
uses a smaller number of wavelengths than the potentially large number of nodes.
The Layer 3 protocol could be either IPv4 or IPv6.

Communication in a Helios network is made collision-free by a non-
preemptive gated scheduling protocol. A single master node in the network
calculates and disseminates the schedule, while other nodes use this schedule
to time the transmission of data to their peers. There are two types of nodes:
candidate nodes, which are eligible to serve as the master node should the current
master node fail, and slave nodes, which are not. Such a distinction is necessary
because a network will likely be composed of servers and workstations, where
the workstations lack the necessary computing resources to perform the mas-
ter node’s duties. Furthermore, workstations may allow low priority user access,
making them vulnerable to security attacks that could disrupt the network.

The Helios network utilizes a Fast Tunable Transmitter — Slowly Tunable
Receiver (FTT-STR) approach, where fast implies low to sub-microsecond tun-
ing times and slow implies hundreds of microseconds to tens of milliseconds. For
packet transmission and scheduling purposes, the lasers are considered tunable
and the receivers fixed. However, in order to balance the load in the network,
the receivers may be retuned from time to time, on the order of seconds.

Helios differs from other WDM networks currently under development in
several respects: it operates within a broadcast-and-select environment, it is
collision-free, and it is packet-switched instead of circuit-switched. At the same
time, the Helios architecture provides for such important LAN features as native
QoS support and multicast, described in [4] and [13].

2.1 High Level Node Design

Figure [[(a) highlights the various hardware, software, and firmware compo-
nents of a Helios network adapter. The software Driver module consists of
two sub-modules. The Signaling Controller coordinates the operation of all
other software and hardware modules. The Scheduling Algorithm calculates
new schedules based on queue occupancies provided by all nodes in the network;
it is called infrequently, in response to changes in the traffic pattern or simply
periodically.

In hardware, the Signaling module of the adapter contains four sub-modules:
Schedule Management forms and processes frames related to scheduling,
Synchronization enables all communication to occur in hard real time, Join
allows a new node to join a Helios network, and Election manages the selection
of a new master node when the current master node fails.

The ARP and A\-ARP tables enable a Helios node to perform IP-to-MAC
address resolution and MAC-to-receive-wavelength resolution, respectively. The

Helios: A

Memory Bus

]
¥
|

Driver

Signaling
Controller

wArPk - 1 111]

Wavelength
Queues

Signaling

Schedule Mgt.

Scheduling
Algorithm

Data

Synchronization

°d <
¢
\5\)\.\‘2\)6

=
Q.
El

Q\a‘l\o

Rx

(a) High level node architecture

Broadcast Optical Architecture

889
N7
|
JOINOCC
Window
N2
T
™
Window

Frames:
RNISYNCSCHED MIDATA [JJOINOCC

1 ARP BmOCC HBHT™

(b) Example superframe

Fig. 1. Overview of Helios node architecture and superframe organization

master node keeps track of ARP and A-ARP mappings and distributes them
via ARP frames to all other nodes. Outgoing IP packets are buffered in the
Wavelength Queues on a per-wavelength basis prior to transmission. The
Queue Manager serves the wavelength queues in FIFO order and controls
which frames are transmitted.

2.2 Frames

and Superframes

The time required to complete the transmissions of one full schedule in Helios
is a superframe. A superframe further consists of frames, continuous sequences
of octets transmitted by nodes on individual wavelengths; Table [shows the
different frame types. Helios uses non-preemptive schedules, thus within each
superframe a node transmits on a particular wavelength at most once.

Table 1. Helios frame types and their function

DATA Carries regular data

MDATA |Carries multicast data
™ Measures roundtrip delay to PSC
OCC Transmits queue occupancies to master node (Routine mode)
JOINOCC |Transmits queue occupancies to master node (Join mode)
SYNCSCHED|Carries scheduling information

ARP Carries MAC to wavelength index mapping (AARP)

OAM Carries error and management information about network state
AVAIL Announces availability of a candidate node to become the master node

during scheduler election

890 I. Baldine, L.E. Jackson, and G.N. Rouskas

The master node calculates the schedule based on other nodes’ packet queue
occupancies, which it learns through the OCC frames sent by other nodes during
routine network operation. Once calculated, the schedule is then broadcast on
each wavelength inside the SYNCSCHED frame, which the master node trans-
mits on every wavelength every superframe. A schedule contains windows, or
intervals of time, during which a particular node may transmit a frame.

Figure [[[b) shows the position of various frames and windows within a su-
perframe. In this example, N1 is the master node and its receive wavelength is
A3. There is a JOINOCC window on A3 (with a JOINOCC frame in it), and
there is an attached TM window at the end of the superframe. Two nodes are
in different stages of joining the network: N6 is sending a JOINOCC frame con-
taining its queue occupancy information to the master node so that it can be
included in the next schedule. Meanwhile, N7 is performing Time Measurement;
its TM frame can be seen inside the TM window. Time measurement is the
first operation a new node must perform when joining the network, in order to
synchronize frame reception and transmission.

3 Network Operation: The Helios Signaling Protocol

The operation of a node in the Helios network is separated into the six different
modes shown in Table 21 Following an overview of each mode, we discuss one,
Routine Mode, in detail. When the network comes up after having been com-
pletely powered down, no master node has yet been designated, no frames are
traveling, and no synchronization information is available. The first task is the
election of a master node; candidate nodes enter Election Mode while slave
nodes sleep. The operation of Election Mode assumes that candidate nodes are
equipped with slowly tunable receivers; otherwise, a network administrator must
designate the master node.

Once a master node has been elected, it circulates scheduling and synchro-
nization information in SYNCSCHED frames. Now other nodes may join the
network, by proceeding through the Time Measurement and Join modes. In
Time Measurement, a node calculates its psc_offset, the propagation delay to
the PSC. All times are measured locally, and the transmissions are done in re-
lation to the PSC time. Since collisions can occur only at the PSC, each node
uses its psc_offset to ensure that its transmissions reach the PSC at the exact

Table 2. Modes of operation in the Helios network

Time

Measurement |a new node measures its propagation delay to the PSC

Join a new node contacts the master node with its bandwidth requirements
Election a candidate node participates in the election of a new master node
Routine a node transmits and receives data and related signaling frames

Scheduling |same functions as routine, plus must create and distribute new schedules
Error error detection, report and recovery

Helios: A Broadcast Optical Architecture 891

time prescribed by the schedule. After Time Measurement, a node enters Join
Mode. It informs the master node of its traffic demands via the JOINOCC
frame; the master node then calculates a new schedule to include this new de-
mand. The joining node waits to hear the new schedule before beginning normal
transmissions.

It is possible for a collision to occur when two or more nodes attempt to join
a Helios network at the same time. Two nodes assigned to the same listening
wavelength could experience a collision during Time Measurement, or two nodes
may transmit a JOINOCC frame to the master node during the same JOINOCC
window. The protocol includes backoff algorithms to resolve such contention.

After Join, a node enters Routine Mode, where it remains unless an er-
ror condition occurs. The receive hardware extracts the schedule from arriving
SYNCSCHED frames and forwards incoming data frames to the driver; mean-
while, the transmit hardware transmits control frames and data frames from
its wavelength queues onto the appropriate outgoing wavelengths, according to
the current schedule. Among these transmissions is an OCC frame sent to the
master node, once per superframe, to communicate the node’s packet queue
occupancies; the master node uses queue occupancies from all nodes to recal-
culate the schedule. Unlike Time Measurement and Join modes, Routine Mode
is collision-free. The psc_offset, first measured during Time Measurement, is
also measured periodically during Routine Mode, in a collision-free manner.

3.1 Routine Mode: The Receiver State Machine >routine<

Figure 2 shows the state machine >routine< which governs the receiver’s actions
during routine mode. A software signal to >routine< initiates the transition out
of IDLE and into the ROUTINE LISTEN state. When a SYNCSCHED frame
arrives, >routine< first checks whether its own MAC address (my_node_ID) is
included in the schedule. If the node has been left out of the schedule, >routine<
sends the "NOT_IN_SCHED” signal to the Signaling Controller and returns to
IDLE. The Signaling Controller then exits Routine Mode and moves to Error
mode.

[RCV({ss}) && ! {ss.more_frames} && my_node_ID not in {ss.schedule}]
STATUS(cur_bank, INVALID) ; STATUS(!cur_bank, INVALID) [RCV({arp})]
SNDSGNL("NOT_IN_SCHED", sw) arp(cur_bank) = {arp.table}

O Q [RCV({data})] ; FWD({data}, sw)

[RCV({tm}) && {tm.CRC} && {tm.source_ID} == my_node_ID]
tm_out = {tm.timestamp} ; tm_in = cur_time

[RCVSGNL("START_ROUTINE", sw)]
get_sched_timer = T_GET_SCHED

IDLE [RCVSGNL(*STOP_ROUTINE", <routine>) | ROUTINE

[RCV({ss}) && my_node_ID in {ss.schedule} &&

! {ss.active_bit} && STATUS(! cur_bank) == INVALID]

r_ss = cur_time ; master_node_ID = {ss.master_node_ID}
psc_sf_start_next = r_ss — T_ss — psc_offset + sf_length(cur_bank)
get_sched_timer = T_GET_SCHED

LISTEN
[! get_sched_timer]

SNDSGNL("NO_SCHED", sw]

G MEM(! cur_bank) = {ss.schedule(NODE_ID)}

[RCV({ss}) && my_node_ID in {ss.schedule} && STATUS(! cur_bank, VALID) ; status_flags |= CNTDWN

(({ss.active_bit}) Il (! {ss.active_bit} && STATUS(! cur_bank) == VALID))] switch_count = {ss.switch_count}

r_ss = cur_time ; master_node_ID = {ss.master_node_ID} sf_length(! cur_bank) = {ss.sf_length}

psc_sf_start_next = r_ss — T_ss — psc_offset + sf_length(cur_bank) num_schedchunks(! cur_bank) = {ss.num_schedchunks(NODE_ID)}
get_sched_timer = T_GET_SCHED T_ss(! cur_bank) = {ss.T_ss}

Fig. 2. Receiver hardware state machine for routine mode: >routine<

892 I. Baldine, L.E. Jackson, and G.N. Rouskas

If, on the other hand, the node’s MAC address (my_node_ID) is in the sched-
ule, then >routine< next checks whether the “active bit” field within the SYNC-
SCHED frame, called {ss.active_bit}, is set. As long as the active bit is set,
the node will continue to operate according to the current schedule located in
the current memory bank, cur_bank. However, if the active bit is not set, then
the schedule being disseminated in the SYNCSCHED frame is a newly calcu-
lated schedule that will go into effect after switch_count more superframes.
That is, switch_count represents the number of remaining superframes follow-
ing the current one in which the old schedule will still be used. The value of
switch_count is obtained from the SYNCSCHED frame.

When >routine< encounters a SYNCSCHED frame without the active bit
set, it checks the status of the reserve memory bank, !cur_bank. If the status
is INVALID, then all the new synchronization and scheduling information for the
new schedule has yet to be copied into the reserve memory bank, !cur_bank. Af-
ter copying this information, >routine< sets this bank’s status to VALID. In this
way, >routine< doesn’t waste effort recopying the new schedule’s information
into the reserve memory bank several times. That is, if >routine< encounters a
SYNCSCHED frame without the active bit set but finds the status of the reserve
memory bank to be already VALID, then it recognizes that it has already copied
the new information into the reserve memory bank.

Routine mode ends whenever one of several error conditions occurs. For ex-
ample, if a SYNCSCHED frame isn’t received within the allowed time interval,
then it is possible the master node has failed; thus >routine< generates the
"NO_SCHED” signal and returns to the IDLE state.

4 Scheduling

4.1 The Helios Greedy Scheduling Algorithm

The master node receives an OCC frame containing packet queue occupancies
from each node once per superframe. The master node may also receive a JOIN-
OCC frame containing packet queue occupancies from a new node joining the
network. From this information, the master node builds the N x C' traffic matrix,
where N is the number of nodes in the network, C' is the number of wavelengths,
and entry a;; is the number of slots requested by node 4 for transmission on A;.

Table 3. Example traffic matrix

[2 fsm

ny||411|3] 8
no 2 3 2 7
ns 3121 6
N4 2131 6
ns || 1121 4
sumHlQ‘lO‘ 9 H

Helios: A Broadcast Optical Architecture 893

Table Bl shows a traffic matrix for a network of C = 3 wavelengths and N = 5
nodes.

Helios uses a one-pass greedy scheduling algorithm, the pseudocode for
which is given in Alg. [0l The algorithm creates a schedule from ¢ = 0 forward in
time without backtracking, always attempting to schedule the highest priority
node on the highest priority wavelength. Higher priority is assigned to nodes (re-
spectively, wavelengths) that have higher corresponding row-sums (respectively,
column-sums) in the traffic matrix. In the sample traffic matrix in Table B] the
nodes have been renumbered in order of largest row-sum to smallest, such that
n1 has the largest row-sum and nx has the smallest, with ties being broken arbi-
trarily. The same was done for the wavelengths: A1 has the largest column-sum
and A¢ has the smallest. The traffic matrix gives rise to two lower bounds on
the schedule length. The maximum column-sum is the channel bound; a schedule
can be no shorter than the total demand for any one wavelength. The maximum
row-sum plus C' tuning latencies is called the node bound; to meet the demand
of ny, a schedule must be at least long enough for n; to transmit all its traffic
and tune to each of the C' = 3 wavelengths. The maximum of the channel and
node bounds is the greatest lower bound on the schedule length.

The original scheduler developed in a previous work at NCSU ([11], [12])
produces schedules very close to the lower bound in length, but requires a pro-
hibitively long runtime. In particular, the original scheduler has a worst-case
runtime of O(CN?%. The scheduler developed for Helios is a straightforward
greedy scheduler that has a worst-case runtime of O(C?N?). This speedup is
substantial because the number of nodes is expected to be much larger than the
number of channels. Moreover, the greedy scheduler can be readily implemented
in hardware, resulting in an additional gain in speed. To achieve these gains in
speed and simplicity, the new scheduler produces schedules that are not as close
to optimal as those produced by the original scheduler. However, the greedy
scheduler’s results are ”reasonably close” to optimal: in simulations with vari-
ous patterns of network traffic demand, the greedy scheduler produces schedules
within 5% of the lower bound, approximately 95% of the time.

The histogram shown in Fig. Blcorresponds to a network of 50 nodes, in which
each node determines its demand for each wavelength by drawing from the same
distribution (here, equally likely over the set {0,1,...,20}). For each set of traffic
demands, we examined the ratio of the length of the schedule generated by the
greedy scheduler to the lower bound. The histogram was created from 100,000
replications. The height of each box shows the number of replications in which
the ratio fell within the range indicated. For example, nearly 58,000 or 58% of
the replications resulted in ratios between 1.00 and 1.01. Furthermore, in 95%
of the replications, the new scheduler produced a schedule that was no more
than 3% longer than the lower bound (corresponding to ratios between 1.00 and
1.03).

894 I. Baldine, L.E. Jackson, and G.N. Rouskas

Algorithm 1 The helios greedy scheduler

{* initialize each entry in the schedule to 0 *}
for t = 0 to 2glb do {* schedule length won’t exceed 2xgreatest-lower-bound *}
for A\=1to C do
schedule[t][A] <+ O
end for
end for
{* initialize remainingDemand to the sum of all the a,x’s *}
remainingDemand <+ 0
for A\=1to C do
for n=1to N do
remainingDemand < remainingDemand + a[n][}]
end for
end for
{* begin scheduling at first slot *}
t< 0
while remainingDemand > 0 and ¢ < 2glb do {* there is still unmet demand *}
for A\=1to C do
if schedule[t][\] = 0 then {* if no task has been assigned to this A, this slot *}
n<+1
while n < N and (unavailable[n][t] = 1 or a[n][A\] = 0) do
n < n+ 1 {* find an available node with unfulfilled demand on this A *}
end while
if n < N then
for i =t to t + a[n|[A\] —1 do
schedule[¢][\] < n
end for
for i =t to t+a[n][\]—1 + tuneLatency do
unavailable[n][i] + 1
end for
remainingDemand < remainingDemand —a[n][}]
a[n][A] < 0
end if
end if
end for
t < t+ 1 {* move to next slot *}
end while

4.2 Multicast

The Helios network nodes are equipped with fast tunable transmitters and
slowly tunable receivers to form what is known as a FTT-STR architecture. For
functions such as packet transmission and scheduling which operate at fine time
scales (i.e., on the order of packet transmission times), the lasers are considered
tunable and the receivers are considered fixed-tuned. The tunability of optical
receivers is invoked only at longer time scales (i.e., on the order of seconds or
hundreds of milliseconds) to address the issues of load balancing and multicast.
In other words, we distinguish two regions of network operation: during the

Helios: A Broadcast Optical Architecture 895

60000 T T T T T T T T T

50000 B

40000

30000 - R

Number of Replications

20000 1

10000 - B

0 1 1 1 1 1
1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
Ratio of Schedule Length to Lower Bound

Fig. 3. Performance of the greedy scheduler in a Helios network of 50 nodes

normal operation phase, the optical receivers remain fixed-tuned to their home
channels, while during the reconfiguration phase [3], the receivers are slowly
retuned to new home channels in order to optimize the network for the next
normal operation phase.

Let us assume that we have some information regarding the long-term mul-
ticast traffic demands in the network, including the number and composition of
multicast groups, and let us further assume that this information is collected
using the Helios protocol implemented at each node. Then, the problem of sup-
porting multicast traffic in a FTT-STR broadcast WDM architecture is an op-
timization problem, whereby optical receivers must be assigned home channels
such that a performance metric is optimized. The performance metric of interest
in Helios is the multicast throughput, defined as the number of multicast com-
pletions per unit time, where a multicast completion refers to the transmission
of a multicast packet to all members of its multicast group. We refer to this
problem as the multicast wavelength assignment (MWA) problem, and we have
shown in [13] that it is NP-hard.

The complexity of the MWA problem derives from two conflicting objectives
that must be simultaneously satisfied. On the one hand, it is important to bal-
ance the traffic load across the different channels, while on the other hand it
is desirable to assign receivers in the same multicast group to the same home
channel to keep the multicast throughput high (otherwise, a multicast packet
has to be transmitted multiple times, once to the home channel of the various
receivers in its group). The problem is further complicated by the fact that mul-

896 I. Baldine, L.E. Jackson, and G.N. Rouskas

tiple groups may not be disjoint, i.e., a given receiver may be part of multiple
groups.

We have developed a number of heuristics for the MWA problem, which are
described in detail in [I3]. Here we provide a summary of their operation. The
Join class of heuristics starts with each of the N receivers assigned to a sepa-
rate channel, and repeatedly joins the receivers from two different channels by
assigning them to a single channel, until the number of home channels is equal
to the number C,C < N in the network. The GreedyJoin heuristic applies a
greedy rule in joining two sets of receivers, while the RandomJoin heuristic ran-
domly joins two sets at each step. The Split class of heuristics starts with all IV
receivers in the network assigned to a single home channel, and then repeatedly
selects one receiver to assign to one of the other C' — 1 channels. The Join class
and Split class of heuristics take advantage of the monotonicity properties of
the multicast throughput that were first derived in [I0]. The MLPT heuristic takes
a different approach. It first uses the LPT (Largest Processing Time) schedul-
ing algorithm, which provides good load balancing, to come up with an initial
wavelength assignment, which it then improves through an iterative approach.
Based on a wide range of results in [13], the GreedyJoin heuristic appears to
provide the best approach for the MWA problem.

4.3 DiffServ Support in the Helios Architecture

The basic Helios scheduling algorithm is appropriate for best-effort traffic but
does not provide any QoS guarantees. We have modified this scheduling algo-
rithm [4] to provide native support for the differentiated services (DiffServ) archi-
tecture currently being standardized by the IETF. Providing bandwidth and/or
delay guarantees in a multiwavelength environment is an inherently complicated
task, due to the need to coordinate packet transmissions among the nodes across
multiple wavelengths while at the same time attempting to meet packet dead-
lines; the problem becomes all the more difficult when the transmitting nodes
have to account for non-negligible tuning delays. We provide a brief summary of
the scheduling algorithm here; details and numerical results are available in [4].

The algorithm consists of two steps. First, an initial schedule is built based on
traffic reservations for the two classes of DiffServ traffic that require bandwidth
and/or delay guarantees, the Expedited Forwarding (EF) class and the Assured
Forwarding (AF) class. This schedule is such that all nodes can meet the QoS
guarantees for their EF and AF traffic. This initial schedule is then extended
to assign transmission slots for best-effort (BE) traffic, using an algorithm that
ensures two important properties in the final schedule: first, that the QoS of
the EF and AF traffic is not compromised for any node; and second, that best-
effort transmissions are assigned to the various nodes in a maz-min fair fashion.
This latter property guarantees that the excess bandwidth in a Helios network
is allocated fairly among the network flows. Another important feature of our
guaranteed-service scheduling algorithms is that they require only small changes
to the basic Helios scheduling algorithm. Numerical results in [4] using our

Helios: A Broadcast Optical Architecture 897

WDM simulator (see below) indicate that the algorithm works as expected and
can provide QoS guarantees compatible with the DiffServ framework.

A significant contribution of our work was the implementation of a highly ex-
tensible simulator for evaluating the performance of the scheduling algorithms.
Our simulator builds upon the functionality provided by the DiffServ model
contributed by Nortel Networks to the popular simulator tool ns-2. Before our
work, ns-2 lacked support for WDM (i.e., multi-channel) links. Our WDM sim-
ulator was integrated into ns-2 by mapping a model of a Helios node into an
ns-2 topology. The details of the mapping can be found in [4], while the com-
puter code is available at [2] and can be easily incorporated into an existing ns-2
installation. We believe that our simulator addresses an important need and we
hope that it will be useful to other researchers in the field.

5 Conclusion

In this article we have presented a WDM all-optical broadcast architecture for
a local area network with an accompanying signaling protocol and control algo-
rithms. We’ve demonstrated how elements of DiffServ (QoS) and multicast can
be easily incorporated into the architecture, both essential features for local area
networks of the future.

We believe the Helios architecture to be a viable concept for all-optical net-
works of the future. Features such as fault-tolerance, the ability to support more
nodes than wavelengths, and scheduled gated access to the medium combine to
make this architecture a flexible framework into which, by replacing only the
scheduler, new features can easily be incorporated. Our work on Helios contin-
ues. We plan to implement an emulation of the protocol running on commodity
hardware to test various approaches to scheduling and signaling, in order to
validate the concept even further.

References

1. The NGI Helios project. In http://helios.anr.menc.org/.

WDM support in ns-2. In http://www.csc.nesu.edu/faculty/GRouskas/NS/.

3. Ilia Baldine and George N. Rouskas. Traffic adaptive WDM networks: A study
of reconfiguration issues. IEEE/OSA Journal of Lightwave Technology, 19(4):433—
455, April 2001.

4. Sudhin Bengeri. Differentiated services support for the Helios optical WDM
testbed. Master’s thesis, North Carolina State University,
http://www.lib.ncsu.edu/etd/public/etd-16201418610131981 /etd.pdf, August
2001.

5. E. Hall et al. The Rainbow-II gigabit optical network. IEEE Journal Selected
Areas in Communications, 14(5):814-823, June 1996.

6. M. Kuznetsov et al. A next-generation optical regional access network. [EEFE
Communications, 38(1):66-72, January 2000.

7. R. E. Wagner et al. MONET: Multiwavelength optical networking. Journal of
Lightwave Technology, 14(6):1349-1355, June 1996.

»o

898

8.

10.

11.

12.

13.

I. Baldine, L.E. Jackson, and G.N. Rouskas

O. Gerstel, B. Li, A. McGuire, G. N. Rouskas, K. Sivalingam, and Z. Zhang (Eds.).
Special issue on protocols and architectures for next generation optical WDM
networks. IEEE Journal Selected Areas in Communications, 18(10), October 2000.
B. Mukherjee. WDM-Based local lightwave networks Part I: Single-hop systems.
IEEE Network, pages 12-27, May 1992.

Zeydy Ortiz, George N. Rouskas, and Harry G. Perros. Scheduling of multicast
traffic in tunable-receiver WDM networks with non-negligible tuning latencies. In
Proceedings of SIGCOMM, pages 301-310, September 1997.

George N. Rouskas and Vijay Sivaraman. Packet scheduling in broadcast WDM
networks with arbitrary transceiver tuning latencies. IEEE/ACM Transactions on
Networking, 5(3):359-370, June 1997.

Vijay Sivaraman and George N. Rouskas. A reservation protocol for broadcast
WDM networks and stability analysis. Computer Networks, 32(2):211-277, Febru-
ary 2000.

Dhaval Thaker. Multicasting in a partially tunable broadcast WDM network.
Master’s thesis, North Carolina State University,
http://www.lib.ncsu.edu/etd/public/etd-120143410141221 /etd.pdf, May 2001.

	Introduction
	The texttt {Helios} Architecture
	High Level Node Design
	Frames and Superframes

	Network Operation: The texttt {Helios} Signaling Protocol
	Routine Mode: The Receiver State Machine texttt {>routine<}

	Scheduling
	The texttt {Helios} Greedy Scheduling Algorithm
	Multicast
	DiffServ Support in the texttt {Helios} Architecture

	Conclusion

