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Abstract. We present a possible way to extend queuing theory to ac-
count for interactions between adjacent queues in a packet-switched net-
work. The interaction between queues arises because of the influence of
the routing protocol on each switching decision and the stochastic nature
of packet lengths and inter-arrival times.

Both the methodology and the analysis tools are adaptations of meth-
ods of statistical mechanics and are presented in outline here. The jus-
tification for their use lies in experimental evidence given in [I2J3] that
aggregate, core-network IP traffic exhibits quasi-Markovian properties.
In this paper, we focus on the interaction between pairs of queues, either
in a cascaded arrangement, or connected to the same switching fabric,
in the presence of an idealised routing protocol.

1 Introduction

Next generation telecommunication networks are likely to rely on an IP core net-
work infrastructure. As a consequence, unlike today’s Internet, future networks
will be subject to much more demanding requirements. In order to provide op-
erational guarantees, network owners need tools which enable the dimensioning
of the core of packet-switched networks. It is customary that network design is
based mainly on simulations. Replacing theory by simulations is non-tenable due
to the sheer size of such networks.

A theory of traffic in packet-switched networks must be capable of predicting
a number of quantities of interest: end-to-end latency, packet loss rate, etc. Based
on such metrics of network performance we would then wish to quantify the
external loading point of a large system of interconnected queues at which the
network changes its behaviour. For example, if packet loss rate is of interest, we
wish to know the loading point at which this rate exceeds a given threshold. One
of the important features of such a theory is that it must model all sources of
stochasticity in the system of interconnected queues that form the core network.
This implies that correlations between the states of queues, which have a knock-
on effect on each other, must be modelled explicitly as interactions.

Constructing of this theory has attracted a lot of attention [AJBGI7I8I9] but
this work is far from over. In this paper we take a somewhat different approach
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in attempting to formulate a phenomenological theory of traffic in interacting
queues. The chosen approach can be scaled to large numbers of queues which is
essential in modelling a large-scale core IP network. The methodology adopted
here is an adaptation of the methods of statistical mechanics, which are ideally
suited to the study of large systems in the presence of sources of stochasticity.

The “microscopic” state variables which we choose to define queue dynamics,
will here be the lengths of each and every buffer in the network. The sources
of stochasticity we consider are the random packet lengths (measured in bits)
and packet inter-arrival times. These latter random variables are distributed
according to some probability distribution, which will not be discussed here (c.f.
[1213]).

2 Background

The average latency along some path, or the loss rate of a single buffer, or a
group of buffers can be calculated using a joint probability distribution (PDF)
function of all queue lengths of all routers at time ¢, P = P({ﬁi}iv:“l;t), where
Ny is the number of queues in the network.

It is natural to expect that some queue lengths are highly correlated, whereas
others are not. So, it is quite difficult to write a dynamical equation (e. g. a
Fokker-Planck equation) for P and, never mind, solve it. For this reason we try
to exploit some kind of approximation scheme and the simplest possible one is
the mean-field approximation originating from Quantum Field Theory.

In the simplest case the mean-field approximation implies that the joint PDF
can be represented as follows

Nq

Pyt = [ o, 0) (1)

=1

where p(¢;,t) is the PDF of an individual queue and should be determined in
a self-consistent manner to account for interactions. The dynamical equation
for p(¢;,t) of an individual queue should account for the fact that the queue
interacts with an “average field” of all other queues, in this case an “average”
network load. Individual PDF’s in the right-hand side of ([IJ) can actually depend
on more than one variable ¢ for strongly correlated subsystems. This depends on
the level of approximation we wish to use to account explicitly for certain types
of correlation between queues. In this paper we consider two such subsystems:
two cascaded queues and n queues attached to the same router.

It has been shown in [I}2/3] that the traffic in a core IP network acquires
quasi-Markovian properties in and near its congested state. Hence, for a sub-
system’s PDF we can write down a Fokker-Planck equation [10]. Parameters
entering the Fokker-Planck equation and, as a result, the PDF’s themselves will
depend on overall network load, capacity of lines and switches, average states of
adjacent queues, etc., and should be determined in a self-consistent manner but
this is beyond the scope of this paper.
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3 Dynamical Model for Interacting Queues in Subsystem

As an example of a subsystem we first consider two cascaded queues consisting
of an output buffer of a router connected to an input buffer of an adjacent router
(see Fig. ). Omitting the derivation details (which can be found in [10)]), the
Fokker-Planck (FP) equation for this system has the following form,
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Fig. 1. Subsystem of two cascaded queues
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and natural boundary conditions are assumed [10]
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Here we have introduced the concept of a probability current [10], which in our

case is defined as follows
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and n is a unit vector normal to the boundary S. The boundary S is a square
with the sides at {1 = 0,¢; =1,/ = 0,¢> = 1. Note that we measure lengths of
queues {1, {5 in terms of a fraction of the size of the corresponding buffer (here
we set them all equal for the sake of simplicity), so that ¢1,fs run from 0 to 1.
Parameters a’, o’ % characterise the mean value and the variance per unit time of
the traffic coming into the first buffer [10]; aine, aﬁne characterise the mean value
and the variance of the traffic coming through the line; a”, ¢”’* characterise the
mean value and the variance of the switching capacity available to the second
buffer (traffic is measured in bits and all quantities are per unit time). We do
not discuss here the nature of these parameters as they should be defined self-
consistently with other parameters of a broader model for the overall network.
Parameters by, bo are sensitivities of the routing protocol to the congestion of the
queues. The dependence of the FP equation on the protocol sensitivities can be
explained as follows. Relative queue lengths ¢1, /5> quantify the congestion level
of the subsystem. The factor a; — b1f1 — bofy determines the average amount
of traffic diverted to the subsystem: the more it is congested the less traffic (on
average) is (or should be) diverted to it.

We seek an equilibrium (stationary) solution of the FP equation. For a equi-
librium solution the detailed balance condition must be satisfied [10], and this
condition demands that the parameters by, by to be constrained as follows:

2 2
[« . o
2 Sm @ = line
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09 + Oline V03 + Olipe
(7)

with b to be a single free parameter characterising the sensitivity of the protocol
to the congestion of the subsystem as a whole. The stationary solution is

by =bcosy, by =bsiny, cosp =
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The normalisation constant N is a lengthy linear combination of error functions
of different arguments, which is omitted here for the sake of brevity.
Using the stationary PDF and the conditional PDF w(¢}, ¢, t'|¢1, l2,t) for
the transition from the state £1,¢5 at time t to the state ¢, £5 at time ¢’ which

is a solution of the same FP equation with the initial condition w|y—; = §(¢] —
£1)6(¢, — £3) we define the amount of the dropped traffic per unit time by the
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following expression (which should be considered as an estimation to the loss
rate):

Rioss = lim i /dé/l /dg/Z (6/1 - ]-) +/d£I2 /dfll (8/2 — 1)
1 —o0 1 —o0

At—0 At
(11)
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We only present here the final expression for the packet loss rate in the case
when the capacity of the transmission line between the buffers is equal to the
switching capacity available to the second buffer, a”’ = ajj,e. In this case az =0
and the PDF (§) takes the form:

(s) Al b any?
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The normalisation constant N,,—g is now determined by the following relation
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For the loss rate we obtain
2

2
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(14)

The behaviour of the loss rate R{?Sjo is illustrated in Fig.

It can be noticed that the loss rate is significantly greater than zero even
below the naive capacity threshold a’ = 1, especially in the presence of a rout-
ing protocol insensitive to congestion, or when the arriving traffic variance is

relatively large.

A similar analysis for n interacting queues connected to the same switching
device (see Fig.[3)) has been completed. The Fokker-Planck equation for the PDF
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Fig. 2. Packet loss rate Rioss (in normalised units of buffer size fmax per unit time)
plotted against traffic arrival rate a’ (with a”’ equal to the interconnecting line capacity
aiine = 1). In subplot (a) this is also plotted against the protocol sensitivity b for
a constant ratio of arriving traffic variance to the mean rate 0’2/a’ = 0.1, whereas
in subplot (b) this is also plotted against the ratio o’?/a’, for a constant protocol
sensitivity b = 0.1. The theoretical capacity of this subsystem of queues is at a’(=
a’)=1.

& S
~ o~

b
2 _ "
0 =0y 9
] =— 1l
afl

al = X bl

/N

S &
>~ -~

Fig. 3. Subsystem of n queues connected to the same switching device.

of this subsystem, p = p(¢1,...,0y;t), is
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b;x is the set of protocol sensitivities similar to the ones described earlier, agery,
o2 ., is the mean value and variance (per unit time) of the overall traffic coming
from the central switching device, a; — >, bipl) is the set of mean values of
traffic coming towards of individual queues, o}, is the corresponding covariance
matrix, a/, /> the mean value and variance of switching capacities available at
the other ends of individual queues. The equilibrium solution has the following
form:

p(s)(fl7 L. ,fn) = N_l exp |2 Z(U_1>ik£iak - Z(U_l)ijbjkfigk (17)
ik

ikj

where A is the normalisation constant and the following set of relations (due
to a detailed balance condition) should be imposed on the protocol sensitivities
biki

Zbijffjk = Zbkjaji (18)
J J

A general solution to (I8) allows a large number of free parameters. In order
to arrive at a reasonable number of those we impose the following restrictions:

a// O./
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The first condition means that the mean value of traffic coming toward an in-
dividual queue is proportional to the switching capacity available to the corre-
sponding queue (and vice versa), the second condition means that variances of
traffic coming to all the queues are the same, and the third one is the state-
ment that the correlation coefficients of any two pairs of incoming queue-traffic
are equal as well, in order to maintain symmetry (this implicitly assumes that
the system is homogeneous). In addition to this we are looking for a solution
in the following class (the sensitivities of the idealised routing protocol for one
particular queue to congestion on all other queues on the same switch are the
same):

bi; = b; Vi , by =bi, i #k (20)

Then we have the following parameterisation for o, b;x:
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Summarising free parameters, we have: a//, 0//? are the mean value and variance

per unit time of the switching capacities available to each queue, dgery, 02, are
the mean value and variance per unit time of the overall traffic coming from
the central switching fabric, 0’2 (which is variance of the traffic coming to each
queue) and b are actually characteristics of the routing protocol. The loss rate for
this idealised router subsystem is defined an analogous fashion to (10) and has
been computed explicitly. For reasons of economy of space, we omit the results

from this paper, but will present them at the conference.

4 Preliminary Conclusions

We have presented a theoretical framework that can be used to model the in-
teraction between a cascade of queues in a network. The theoretical model is
capable of quantitative predictions of system throughput, loss rate, end-to-end
delay, etc. Here we have presented the packet loss rate for a subsystem of two
strongly correlated queues.

In the presence of stochastic packet lengths and inter-arrival times, we char-
acterise the system in terms of mean arrival bit-rates identical to those of con-
ventional queueing theory. However, here we also employ second-order statistics
for the traffic, namely the variance of the arrival bit-rates. The latter parameters
can be obtained either by observation on large-scale real networks, or as part of
a broader model for an entire network.

As we can see from Fig. 2 the packet loss rate is non-zero for a’ < 1 (i. e.
arrival rates less than the system capacity) due to the presence of uncertainty
in the arrival rate embodied in the variance terms. The packet loss rate can
also be seen to reduce in the presence of a routing protocol that is sensitive to
congestion. This type of analysis is clearly more useful than the conventional
mean rate analysis (leaky bucket calculations) typically used in the first-order
design of networks.

Finally, this methodology can be extended to a larger number of interacting
queues in a straight-forward manner using functional integral methods. Such
subsystems can be incorporated directly into broader network models (which
need the various PDF’s as input) in order to pursue the goal of arriving at
a mathematical theory for dimensioning large-scale, core, packet-switched net-
works. Work on the detailed methodology behind such broader network models
is at hand and will be presented in a series of papers in the future.
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