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Abstract. In this paper, we have analyzed a discrete-time GI − G − 1
queue with a preemptive resume priority scheduling and two priority
classes. We have derived the joint generating function of the system con-
tents of both classes and the generating functions of the delay of both
classes. These pgf’s are not explicitly found, but we have proven that
the moments of the distributions can be found explicitly in terms of the
system parameters. We have shown the impact of priority scheduling on
the performance characteristics by some numerical examples.

1 Introduction

In recent years, there has been much interest devoted to incorporating multime-
dia applications in packet networks (e.g., IP networks). Different types of traffic
need different QoS standards, but share the same network resources, such as
buffers and bandwidth. For real-time applications, it is important that mean de-
lay and delay-jitter are bounded, while for non real-time applications, the Loss
Ratio (LR) is the restrictive quantity.

In general, one can distinguish two priority strategies, which will be referred
to as Delay priority and Loss priority. Delay priority schemes attempt to guaran-
tee acceptable delay boundaries to delay-sensitive traffic (such as voice/video).
This can for instance be achieved by giving it HOL priority over non-delay-
sensitive traffic. Several types of Delay priority (or scheduling) schemes have
been proposed and analyzed, each with their own specific algorithmic and com-
putational complexity (see e.g. [5, 8] and the references therein). On the other
hand, Loss priority schemes attempt to minimize the packet loss of loss-sensitive
traffic (such as data). An overview and classification of some Loss priority (or
discarding) strategies can be found in [5, 3].

In this paper, we will focus on the effect of a specific Delay priority scheme,
i.e., the preemptive resume priority scheduling discipline. We assume that delay-
sensitive traffic has preemptive priority over delay-insensitive traffic, i.e., when
the server becomes empty, a packet of delay-sensitive traffic, when available, will
always be scheduled next. In the remaining, we will refer to the delay-sensitive
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and delay-insensitive traffic as high and low priority traffic respectively. Newly
arriving high priority traffic interrupts transmission of a low priority packet that
has already commenced, and the interrupted low priority packet can resume its
transmission when all the high priority traffic has left the system.

In the literature, there have been a number of contributions with respect
to HOL priority scheduling. An overview of some basic HOL priority queueing
models can be found in Kleinrock [4], Miller [7] and Takagi [9] and the references
therein. Preemptive resume priority queues have been analyzed in Machihara [6],
Takine et al. [10] and Walraevens et al. [11]. Machihara [6] analyzes waiting
times when high priority arrivals are distributed according to a MAP process.
Takine [10] studies the waiting times of customers arriving to a queue according
to independent MAP processes. Finally, Walraevens [11] analyzes system con-
tents and packet delay when the length of high priority packets are generally
distributed and the length of low priority packets are geometrically distributed.

In this paper, we analyze the system contents and packet delay of high pri-
ority and low priority traffic in a discrete-time single-server buffer for a preemp-
tive resume priority scheme and per-slot i.i.d. arrivals. The transmission times
of the packets are assumed to be generally distributed. These distribution can
be class-dependent, i.e., the transmission times of the high priority packets can
be different from those of the low priority packets. We will demonstrate that an
analysis based on generating functions is extremely suitable for modelling this
type of buffers with a priority scheduling discipline. From these generating func-
tions, expressions for some interesting performance measures (such as moments
of system contents and packet delay of both classes) can be calculated.

The remainder of this paper is structured as follows. In the following section,
we present the mathematical model. In sections 3 and 4, we will then analyze
the steady-state system contents and packet delay of both classes. In section 5,
we give expressions for some moments of the system contents and packet delay
of both classes. Some numerical examples are treated in section 6. Finally, some
conclusions are formulated in section 7.

2 Mathematical Model

We consider a discrete-time single-server system with infinite buffer space. Time
is assumed to be slotted. There are two types of packets arriving to the system,
namely packets of class 1 and packets of class 2. The number of arrivals of
class j during slot k are i.i.d. and are denoted by aj,k (j = 1, 2). Their joint
probability mass distribution is defined as a(m,n) � Prob[a1,k = m, a2,k = n].
Note that the number of arrivals of both classes can be correlated during one
slot. The joint probability generating function (pgf) of a1,k and a2,k is defined

as A(z1, z2) � E[za1,k

1 z
a2,k

2 ] =
∞∑

m=0

∞∑
n=0

a(m,n)zm
1 z

n
2 . The marginal pgf’s of the

number of arrivals of class j are denoted by Aj(z) (j = 1, 2) and are given by
A(z, 1) and A(1, z) respectively. We will furthermore denote the mean arrival
rate of class j packets during a slot by λj � E[aj,k] = A′

j(1) (j = 1, 2).
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The service times of the class j packets, i.e., the number of slots a class j
packet is effectively being served, are i.i.d. and generally distributed and their
pgf is denoted by Sj(z) (j = 1, 2). The mean service time of a class j packet is
given by µj (j = 1, 2).

The class 1 packets are assumed to have preemptive resume priority over the
class 2 packets and within one class the scheduling is FCFS. The load offered by
class j packets is given by ρj � λjµj . The total load is then given by ρT � ρ1+ρ2.
We assume a stable system, i.e., ρT < 1.

3 System Contents

We denote the system contents of class j packets at the beginning of slot k by
uj,k (j = 1, 2). Their joint pgf is defined as Uk(z1, z2) � E

[
z

u1,k

1 z
u2,k

2

]
. Since

service times of both classes are generally distributed, the set {u1,k, u2,k} does
not form a Markov chain. Therefore, we introduce two new stochastic variables
rj,k (j = 1, 2) as follows: r1,k indicates the remaining number of slots needed to
transmit the class 1 packet in service at the beginning of slot k, if u1,k > 0, and
r1,k = 0 if u1,k = 0; r2,k indicates the remaining number of slots service time of
the class 2 packet longest in the system at the beginning of slot k, if u2,k > 0,
and r2,k = 0 if u2,k = 0. With these definitions, {r1,k, u1,k, r2,k, u2,k} is easily
seen to constitute a Markovian state description of the system at the beginning
of slot k. If s∗

j,k (j = 1, 2) indicates the service time of the next class j packet to
receive service at the beginning of slot k, the following system equations can be
established:

1. If r1,k = 0 (and hence u1,k = 0):

a) If r2,k = 0 (and hence u2,k = 0):

uj,k+1 = aj,k ; rj,k+1 =
{
0 if aj,k = 0
s∗

j,k if aj,k > 0 ,

with j = 1, 2. The only packets present in the system at the beginning
of slot k+1 are the packets that arrive during the previous slot. If there
have been new arrivals of class j packets during slot k, the remaining
number of slots needed to service the first class j packet is that packet’s
full service time.

b) If r2,k = 1:

u1,k+1 = a1,k ; u2,k+1 = u2,k − 1 + a2,k;

r1,k+1 =
{
0 if a1,k = 0
s∗
1,k if a1,k > 0 ; r2,k+1 =

{
0 if u2,k − 1 + a2,k = 0
s∗
2,k if u2,k − 1 + a2,k > 0 ,

i.e., the class 2 packet in service at the beginning of slot k leaves the
system at the end of slot k.



748 J. Walraevens, B. Steyaert, and H. Bruneel

c) If r2,k > 1:

u1,k+1 = a1,k ; u2,k+1 = u2,k + a2,k;

r1,k+1 =
{
0 if a1,k = 0
s∗
1,k if a1,k > 0 ; r2,k+1 = r2,k − 1,

i.e., the class 2 packet in service at the beginning of slot k remains in the
system (not necessarily in the server - because of the preemptive priority
scheduling discipline, it can only remain in the server if there are no new
class 1 arrivals). Its remaining service time is decreased by one.

2. If r1,k = 1:
a) If r2,k = 0 (and hence u2,k = 0):

u1,k+1 = u1,k − 1 + a1,k ; u2,k+1 = a2,k;

r1,k+1 =
{
0 if u1,k − 1 + a1,k = 0
s∗
1,k if u1,k − 1 + a1,k > 0 ; r2,k+1 =

{
0 if a2,k = 0
s∗
2,k if a2,k > 0 ,

i.e., the class 1 packet in service at the beginning of slot k, leaves the
system at the end of slot k. There were no class 2 packets in the system
at the beginning of slot k.

b) If r2,k > 0:

u1,k+1 = u1,k − 1 + a1,k ; u2,k+1 = u2,k + a2,k;

r1,k+1 =
{
0 if u1,k − 1 + a1,k = 0
s∗
1,k if u1,k − 1 + a1,k > 0 ; r2,k+1 = r2,k,

i.e., the class 1 packet in service at the beginning of slot k, leaves the
system at the end of slot k. The remaining service of the class 2 packet
longest in the system stays the same.

3. If r1,k > 1:
a) If r2,k = 0 (and hence u2,k = 0):

u1,k+1 = u1,k + a1,k ; u2,k+1 = a2,k;

r1,k+1 = r1,k − 1 ; r2,k+1 =
{
0 if a2,k = 0
s∗
2,k if a2,k > 0 ,

i.e., the class 1 packet in service at the beginning of slot k stays in the
server at the beginning of slot k + 1. Its remaining service is decreased
by one.

b) If r2,k > 0:

uj,k+1 = uj,k + aj,k;
r1,k+1 = r1,k − 1 ; r2,k+1 = r2,k,

with j = 1, 2. The difference with the previous case is that there was at
least one class 2 packet in the system at the beginning of slot k.
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We define E[X{Y }] as E[X|Y ]Prob[Y ] in the remainder. We furthermore define
Pk(x1, z1, x2, z2) as the joint pgf of the state vector (r1,k, u1,k, r2,k, u2,k), i.e.,
Pk(x1, z1, x2, z2) � E[xr1,k

1 z
u1,k

1 x
r2,k

2 z
u2,k

2 ]. We assume that the system is stable
(implying that the equilibrium condition requires that ρT < 1) and as a re-
sult Pk(x1, z1, x2, z2) and Pk+1(x1, z1, x2, z2) converge both to a common steady
state value P (x1, z1, x2, z2) = lim

k→∞
Pk(x1, z1, x2, z2). Using the system equations,

we can constitute a relation between Pk(x1, z1, x2, z2) and Pk+1(x1, z1, x2, z2).
By taking the k → ∞ limit in this relation between Pk(x1, z1, x2, z2) and
Pk+1(x1, z1, x2, z2) we obtain:

[x1 −A(z1, z2)]P (x1, z1, x2, z2)

=
[
x1A(0, 0)(1− S1(x1))(1− S2(x2)) +

x1
x2
A(0, z2)(1− S1(x1))(x2S2(x2)− 1)

+A(z1, 0)(x1S1(x1)− 1)(1− S2(x2))

+
1
x2
A(z1, z2)(x1x2S1(x1)S2(x2)− x1S1(x1)− x2S2(x2) + x2)

]
P (0, 0, 0, 0)

+x1[A(0, 0)(1− S1(x1)) +A(z1, 0)S1(x1)](1− S2(x2))R2(0)
+x1(A(0, z2)−A(0, 0))(1− S1(x1))(S2(x2)− 1)R1(0, 0, 0)
+(A(z1, z2)−A(z1, 0))(S2(x2)− 1)P (x1, z1, 0, 0)
+x1(A(z1, z2)−A(z1, 0))(z1 − S1(x1))(1− S2(x2))R1(z1, 0, 0)

+
1
x2
[x1A(0, z2)(1− S1(x1)) +A(z1, z2)(x1S1(x1)− x2)]P (0, 0, x2, z2)

+x1[A(0, z2)(1− S1(x1)) +A(z1, z2)S1(x1)](S2(x2)− z2)R2(z2)
+x1A(0, z2)(1− S1(x1))R1(0, x2, z2) + x1A(z1, z2)(S1(x1)− z1)R1(z1, x2, z2)

with functions R1(z1, x2, z2) � lim
k→∞

E
[
z

u1,k−1
1 x

r2,k

2 z
u2,k

2 {r1,k = 1}
]

and

R2(z2) � lim
k→∞

E
[
z

u2,k−1
2 {r1,k = u1,k = 0, r2,k = 1}

]
. It now remains for us to

determine the functions P (x1, z1, 0, 0), P (0, 0, x2, z2), R2(z2), R1(z1, x2, z2) and
the unknown parameters P (0, 0, 0, 0), R2(0) and R1(0, 0, 0). Using generating
functions techniques (a.o. Rouché’s theorem), we can ultimately calculate a fully
determined version for P (x1, z1, x2, z2) (calculations are omitted due to page lim-
itations):

P (x1, z1, x2, z2) = (1− ρT )[
1 +

x1z1(A(z1, 0)−A(Y (0), 0))(S1(x1)− S1(A(z1, 0)))(1− S2(x2))
A(Y (0), 0)(x1 −A(z1, 0))(z1 − S1(A(z1, 0)))(z1 − S1(A(z1, z2)))

+x1z1
(A(z1, z2)−A(Y (z2), z2))(S1(x1)− S1(A(z1, z2)))

(x1 −A(z1, z2))(z1 − S1(A(z1, z2)))(z2 − S2(A(Y (z2), z2))){
S2(A(Y (z2), z2))(z2 − S2(x2))

A(Y (z2), z2)
− z2

(1− x2)(S2(x2)− S2(A(Y (z2), z2)))
x2 −A(Y (z2)z2)

}

−x2z2 (1−A(Y (z2), z2))(S2(x2)− S2(A(Y (z2), z2)))
(x2 −A(Y (z2), z2))(z2 − S2(A(Y (z2), z2)))

]
, (1)
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with Y (z) implicitly defined as Y (z) � S1(A(Y (z), z)). From this pgf, several
joint and marginal pgf’s can be calculated. We can for instance calculate the joint
pgf of the system contents of class j packets and the remaining service of the class
j packet with the longest waiting time at the beginning of an arbitrary slot in
steady-state defined as follows Pj(x, z) � lim

k→∞
E [xrj,kzuj,k ] , j = 1, 2. P1(x1, z1)

(P2(x2, z2) respectively) can then be found from equation (1) by substituting x2
and z2 (x1 and z1 respectively) by 1. More importantly, we can calculate the
joint pgf of the steady-state system contents of class 1 and class 2 packets from
equation (1). It is given by:

U(z1, z2) � lim
k→∞

E
[
z

u1,k

1 z
u2,k

2

]
= P (1, z1, 1, z2)

= (1− ρT )
S2(A(Y (z2), z2))(z2 − 1)
z2 − S2(A(Y (z2), z2))

(2)
[
1 + z1

(A(z1, z2)−A(Y (z2), z2))(S1(A(z1, z2))− 1)
A(Y (z2), z2)(A(z1, z2)− 1)(z1 − S1(A(z1, z2)))

]
.

From the two-dimensional pgf U(z1, z2), we can easily derive expressions for the
pgf of the system contents of class 1 packets and class 2 packets at the beginning
of an arbitrary slot from expression (2), yielding

U1(z) � lim
k→∞

E [zu1,k ] = U(z, 1)

= (1− ρ1)
S1(A1(z))(z − 1)
z − S1(A1(z))

; (3)

U2(z) � lim
k→∞

E [zu2,k ] = U(1, z)

= (1− ρT )
A2(z)

A(Y (z), z)
S2(A(Y (z), z)(z − 1)
z − S2(A(Y (z), z))

1−A(Y (z), z)
1−A2(z)

. (4)

4 Packet Delay

The packet delay is defined as the total amount of time a packet spends in
the system, more precisely, the number of slots between the end of the packet’s
arrival slot and the end of its departure slot. We can analyze the packet delay
of class 1 packets as if they are the only packets in the system. This is e.g. done
in [1] and the pgf of the packet delay of class 1 packets is given by

D1(z) =
1− ρ1
λ1

S1(z)(z − 1)
z −A1(S1(z))

1−A1(S1(z))
1− S1(z)

. (5)

Because of the priority discipline, the analysis of the delay of the low priority
class will be a bit more involved. We tag a class 2 packet that enters the buffer
during slot k. Let us refer to the packets in the system at the end of slot k,
but that have to be served before the tagged packet as the “primary packets”.
So, basically, the tagged class 2 packet can enter the server, when all primary
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packets and all class 1 packets that arrived after slot k are transmitted. In order
to analyse the delay of the tagged class 2 packet, the number of class 1 packets
and class 2 packets that are served between the arrival slot of the tagged class
2 packet and its departure slot is important, not the precise order in which
they are served. Therefore, in order to facilitate the analysis, we will consider
an equivalent virtual system with an altered service discipline. We assume that
from slot k on, the order of service for class 1 packets (those in the queue at the
end of slot k and newly arriving ones) is LCFS instead of FCFS in the equivalent
system (the transmission of class 2 packets remains FCFS). So, a primary packet
can enter the server, when the system becomes free (for the first time) of class
1 packets that arrived during and after the service time of the primary packet
that predecessed it according to the new service discipline. Let v(i)1,m denote the
length of the time period during which the server is occupied by the m-th class
1 packet that arrives during slot i and its class 1 “successors”, i.e., the time
period starting at the beginning of the service of that packet and terminating
when the system becomes free (for the first time) of class 1 packets which arrived
during and after its service time. Analogously, let v(i)2,m denote the length of the
time period during which the server is occupied by the m-th class 2 packet that
arrives during slot i and its class 1 “successors”. The v(i)j,m’s (j = 1, 2) are called
sub-busy periods, caused by the m-th class j packet that arrived during slot i.
The service time of the tagged class 2 packet is denoted by s∗

2.
When the tagged class 2 packet arrives, the system is in one of the following

states:

1. r1,k = 0 (and hence u1,k = 0):
a) r2,k = 0 (and hence u2,k = 0):

d2 =
2∑

j=1

fj,k∑
m=1

v
(k)
j,m + s∗

2 +
s∗
2−1∑
i=1

a1,li∑
m=1

v
(li)
j,m, (6)

with fj,k defined as the number of class j packets arriving during slot
k, but that have to be served before the tagged packet. Slots li are
defined as the slots during which the tagged packet receives service (i =
1, .., s∗

2). f1,k class 1 primary packets and f2,k class 2 primary packets
that arrived during slot k and their class 1 successors have to be served
before the tagged class 2 packet. During the service time of the tagged
class 2 packet, new class 1 packets may arrive, which interrupt the tagged
packet’s service. The last two terms take this part of the delay into
account.

b) r2,k > 0:

d2 = (r2,k − 1) +
r2,k−1∑

i=1

a1,ni∑
m=1

v
(ni)
1,m +

2∑
j=1

fj,k∑
m=1

v
(k)
j,m +

u2,k−1∑
m=1

ṽ2,m (7)

+s∗
2 +

s∗
2−1∑
i=1

a1,li∑
m=1

v
(li)
j,m,
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with the ni-th slots (i = 1, .., r2,k−1) the slots (after slot k) that the class
2 packet longest in the server receives service and the ṽ2,m’s are defined
as the sub-busy periods, caused by the m-th class 2 packet already in
the queue at the beginning of start slot l. The residual service time of
the packet in service during slot k contributes in the first term, the sub-
busy periods of the class 1 packets arriving during the residual service
time contribute in the second term, the sub-busy periods of the class 1
and class 2 packets arriving during slot k, but that have to be served
before the tagged class 2 packet contribute in the third term, the sub-
busy periods of the class 2 packets already in the queue at the beginning
of slot k contribute in the fourth term and finally the service time of the
tagged class 2 packet itself and the sub-busy periods of the class 1 packets
arriving during this service time (except for its last slot) contribute in
the last two terms.

2. r1,k > 0:
a) r2,k = 0 (and hence u2,k = 0):

d2 = (r1,k − 1) +
r1,k−1∑

i=1

a1,k+i∑
m=1

v
(k+i)
1,m +

2∑
j=1

fj,k∑
m=1

v
(k)
j,m +

u1,k−1∑
m=1

ṽ1,m (8)

+s∗
2 +

s∗
2−1∑
i=1

a1,li∑
m=1

v
(li)
j,m,

with the ṽ1,m’s the sub-busy periods, caused by the m-th class 1 packet
already in the queue at the beginning of slot k. The expression is almost
the same as in the previous case, with the difference that a class 1 packet
was being served during slot k.

b) r2,k > 0:

d2 = (r1,k − 1) +
r1,k−1∑

i=1

a1,k+i∑
m=1

v
(k+i)
1,m +

2∑
j=1

fj,k∑
m=1

v
(k)
j,m +

u1,k−1∑
m=1

ṽ1,m (9)

+r2,k +
r2,k∑
i=1

a1,ni∑
m=1

v
(ni)
1,m +

u2,l−1∑
m=1

ṽ2,m + s∗
2 +

s∗
2∑

i=1

a1,li∑
m=1

v
(li)
j,m.

This case is a combination of the former two cases.

Due to the initial assumptions and since the length of different sub-busy periods
only depends on the number of class 1 packet arrivals during different slots and
the service times of the corresponding primary packets, the sub-busy periods
associated with the primary packets of class 1 and class 2 form a set of i.i.d. ran-
dom variables and their pgf will be presented by V1(z) and V2(z) respectively.
Notice that f1,k and f2,k are correlated; in section 2 it was explained that a1,k

and a2,k may be correlated as well. Once again, applying a z-transform tech-
nique to equations (6)-(9) and taking into account the previous remarks, we can
ultimately derive an expression for D2(z):
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D2(z) =
1− ρT

λ2

S2(z)(A(V1(z), V2(z))−A1(V1(z)))
zA1(V1(z))−A(V1(z), V2(z))

1− zA1(V1(z))
1− V2(z)

. (10)

Finally, we have to find expressions for V1(z) and V2(z). These pgf’s satisfy the
following relations:

Vj(z) = Sj(zA1(V1(z))), (11)

with j = 1, 2. This can be understood as follows: when the m-th class j packet
that arrived during slot i enters service, v(i)j,m consists of two parts: the service
time of that packet itself, and the service times of the class 1 packets that arrive
during its service time and of their class 1 successors. This leads to equation
(11).

5 Calculation of Moments

The functions Y (z), V1(z) and V2(z) can only be explicitly found in case of some
simple arrival processes. Their derivatives for z = 1, necessary to calculate the
moments of the system contents and the packet delay, on the contrary, can be

calculated in closed-form. Let us define λij and µjj as λij � ∂2A(z1, z2)
∂zi∂zj

∣∣∣∣∣
z1=z2=1

and µjj � d2Sj(z)
dz2

∣∣∣∣∣
z=1

, with i, j = 1, 2. Now we can calculate the mean system

contents and the mean packet delay of both classes by taking the first derivatives
of the respective pgf’s for z = 1. We find

E[u1] = ρ1 +
λ11µ1 + λ21µ11
2(1− ρ1)

, (12)

for the mean system contents of class 1 packets and

E[u2] = ρ2 +
ρ1λ2(µ2 − 1)

1− ρ1
+

λ22µ2
2(1− ρT )

+
λ22µ22

2(1− ρT )(1− ρ1)
+

λ12µ1
1− ρT

(13)

+
λ2(λ11µ21 + λ1µ11)
2(1− ρT )(1− ρ1)

,

for the mean system contents of class 2 packets. The mean delay of both classes
can also be found by taking the first derivatives of the respective pgf’s for z = 1,
and are given by E[dj ] = E[uj ]/λj . So, as expected, Little’s law is satisfied.

In a similar way, expressions for the variance (and higher moments) can be
calculated by taking the appropriate derivatives of the respective generating
functions as well. These are nevertheless too elaborate to express them, but
figures of the variance of system contents and packet delay of both classes will
be shown in the next section.
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6 Numerical Examples

In this section, we present some numerical examples. We assume the traffic of the
two classes to be arriving according to a two-dimensional binomial process. Its
two-dimensional pgf is given by A(z1, z2) = (1−λ1(1−z1)/N −λ2(1−z2)/N)N .
The arrival rate of class j traffic is thus given by λj (j = 1, 2). This arrival process
occurs for instance at an output queue of a NxN output queueing switch/router
fed by a Bernoulli process at the inlets. Notice also that if N → ∞, the arrival
process becomes a superposition of two independent Poisson streams. In the
remainder of this section, we assume that N = 16. We furthermore denote the
fraction of the high priority load in the total load by α, i.e., α = ρ1/ρT .

In Figure 1, the mean and variance of the system contents of class 1 and
class 2 packets is shown as a function of the total load ρT , when service times
of class 1 and class 2 packets are deterministically equal to 2 (µ1 = µ2 = 2) and
α is 0.25, 0.5 and 0.75 respectively. We clearly see the influence of the priority
scheduling. The mean and variance of the system contents of class 1 packets
remains low, even if the fraction of class 1 packets is high. The mean value and
variance of the system contents of class 2 packets on the other hand is large,
especially when the system is heavily loaded.
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Fig. 1. Mean and variance of the system contents versus the total load

In Figure 2, the mean value and variance of the packet delay of class 1 and
class 2 packets is shown as a function of the total load ρT , when service times
of both classes are deterministically equal to 2, i.e., µj = 2 (j = 1, 2) and α
is, as before, 0.25, 0.5 and 0.75 respectively. In order to compare with FIFO
scheduling, we have also shown the mean value and variance of the packet delay
in that case. Since, in this example, the service times of the class 1 and class
2 packets are equally distributed, the packet delay is then of course the same
for class 1 and class 2 packets, and can thus be calculated as if there is only
one class of packets arriving according to an arrival process with pgf A(z, z).
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This has already been analyzed, e.g., in [2]. The influence of priority scheduling
on the packet delay becomes obvious from these figures: mean and variance of
the delay of class 1 packets reduces significantly. The price to pay is of course
a larger mean value and variance of the delay of class 2 packets. If this kind of
traffic is not delay-sensitive, as assumed, this is not a too big a problem. Also,
the smaller the fraction of high priority load in the overall traffic mix, the lower
the mean and variance of the packet delay of both classes will be.
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Fig. 2. Mean and variance of the packet delay versus the total load

Finally, Figure 3a. (Figure 3b. respectively) shows the mean delay of high
and low priority packets when service time of the packets are deterministic, as a
function of the mean service time of the low priority packets (high priority pack-
ets respectively), i.e., µ2 (µ1 respectively), when µ1 = 2 (µ2 = 2 respectively)
and ρT = 0.75. α is, as before, 0.25, 0.5 and 0.75. The figures show that the
mean packet delay of high-priority packets is not influenced by the mean ser-
vice time of class 2 packets, while it is proportionally increasing with the mean
service time of class 1 packets (when the load of high and low priority packets
is kept constant). The mean packet delay of class 2 packets on the other hand
is proportionally increasing with the mean service time of class 2 packets and
with the mean service time of class 1 packets. Because of the preemptive priority
scheduling discipline, mean delay of high priority packets is only influenced by
its own arrival and service process, while the mean delay of low priority packets
is influenced by the arrival and service processes of both classes.

7 Conclusion

In this paper, we have analyzed a discrete-time GI − G − 1 queue with a pre-
emptive resume priority scheduling and two priority classes. We have derived the
joint generating function of the system contents of both classes and the gener-
ating functions of the delay of both classes. These pgf’s are not explicitly found,
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Fig. 3. Mean packet delay versus the mean service time of class 2 and class 1 packets

but we have proven that the moments of the distributions can be found explic-
itly in terms of the system parameters. We have shown the impact of priority
scheduling on the performance characteristics by some numerical examples.
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