High Performance DiffServ Mechanism for Routers and
Switches: Packet Arrival Rate Based Queue Management
for Class Based Scheduling

Bartek Wydrowski and Moshe Zukerman

ARC Special Research Centre for Ultra-Broadband Information Networks,
EEE Department, The University of Melbourne,
Parkville, Vic. 3010, Australia

{ b.wydrowski, m.zukerman }@ee.mu.oz.au

Abstract. This paper introduces a technique for applying packet arrival rate
based queue management to class based scheduling algorithms. This enables a
DiffServ architecture with very low packet latency, loss, and high link
utilisation. Simulation results demonstrate that the proposed technique
outperforms the current weighted random early drop (WRED) and weighted fair
queue (WFQ) architecture.

1 Introduction

At the core of the Internet’s Differentiated Services (DiffServ) architecture are the
packet scheduling and queue management algorithms in routers or switches. Today’s
premier DiffServ architecture consists of a weighted fair queue (WFQ) with weighted
random early drop (WRED) queue management. However, literature has shown that
performance of packet arrival rate based congestion control, such as REM [5] or
GREEN [8], significantly outperforms packet backlog based techniques such as drop-
tail or RED. In this paper we form a basis for a high performance DiffServ
architecture by applying rate-based queue management to packet scheduling
algorithms. In the following subsections we give an overview of the area and show
why rate-based control with packet scheduling is desirable.

1.1 Congestion Control Overview

Asides from the physical capacity of the network, the key design component that
determines the quality of service of packet networks is load control. Load control
determines how many packets are allowed onto each link of the network, who gets to
send them and when. This controls the bandwidth, latency and jitter experienced by
users.

There are a number of load control mechanisms, characterised by the amount of
connection state information stored in the network. The range goes from connection
admission control schemes, such as RSVP, through to stateless congestion control
such as TCP, which is a subset of a more general macro-economic like system [7].
Diffserv occupies a middle ground, where individual connections are controlled on a
connectionless/stateless basis from the perspective of the network, but aggregates of

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 62-73, 2002.
© Springer-Verlag Berlin Heidelberg 2002

High Performance DiffServ Mechanism for Routers and Switches 63

flows, i.e. classes, receive pre-configured treatment at links, which require per-class
information. This results in a good compromise between system complexity and
control of performance.

Congestion control on an Internet with Diffserv is performed by two independent and
concurrent mechanisms: (1) a closed-loop control mechanism controls the
transmission of packets onto the end-to-end source to destination paths, and (2) open-
loop packet scheduling algorithms, enforce statically pre-configured prioritisation and
allocation of bandwidth at each link.

The closed-loop congestion control system consists of source algorithms controlled
by link algorithms. The source algorithm is any protocol which transmits onto the
Internet (e.g. TCP, UDP, RTP etc.) and is not necessarily responsive to congestion.
The link congestion control algorithm is sometimes called queue management or
active queue management (AQM). Examples of AQM algorithms include drop-tail,
Random Early Drop (RED) [3] (and variants: WRED [1], GRED [14] etc.), Random
Exponential Marking (REM) [5], Blue [4] and GREEN [8]. The AQM algorithm
signals congestion to the source by packet marking, namely, explicit congestion
notification (ECN) or packet dropping.

The open-loop scheduling algorithms determine which packet to send next [6]. They
decide the order of packet transmission based on the order of packet arrival and the
packet priority class. DiffServ uses a 3 bit code in each packet to identify the class.
Scheduling of the packet controls the order of transmission as well as the relative
bandwidth allocation to each class. Examples of scheduling disciplines include First
In First Out (FIFO), Round Robin (RR), Priority Scheduling (PS) and Weighted Fair
Queueing (WFQ).

1.2 Need for Scheduling: Classless vs. Class Based Differential Service

A number of papers [5] [7] have proposed an architecture for differentiated services
without explicit packet classes. Instead, sources differentiate their demand for
bandwidth by utility functions, x = U(p), which determine the source’s transmission
rate x based on the current network price p. The price p, is determined by the end-to-
end congestion level, and is communicated to sources from the AQM algorithm by
packet marking or dropping. In fact, the network functions as a macro-economic
system, where links sell their bandwidth and sources purchase it, based on their utility
function. Sources which require more bandwidth than others, simply send more,
suffering a higher price p. In such a system, scheduling algorithms are redundant
because the allocation of bandwidth is determined solely by the macro-economic
process. It has been shown that such a system maximises the aggregate of the utilities
of all the sources [7].

If maximising the aggregate utility of the system is the only criteria, this system is
sufficient. However, no guarantees can be made about the amount of bandwidth
actually allocated to each source, because the current ‘market’ of all sources on the
network determines this. A real network will consist of a subset of sources which
require a minimum rate guarantee, and a subset which are satisfied by their ‘market-
share’. Since the network administrator is not aware of all of the utility functions of
all the flows traversing the network, it is not possible to configure the utility functions
of sources to guarantee their minimum rates in a competitive environment.

64 B. Wydrowski and M. Zukerman

Many real applications require minimum rate guarantees. For example, an office with
a set of voice-over IP telephones, an interactive online game, or video-conferencing,
all require a guaranteed amount of bandwidth from the network at any time,
regardless of the background traffic. If a subset of sources needs a guaranteed
minimum rate from a link, the macro-economic system is not sufficient. A flow
isolation mechanism, which removes the flows needing guarantees out of the
competitive macro-economic environment that contains other flows with unknown
utility functions, is essential to guarantee minimum rates. DiffServ with packet
marking and link class-based scheduling does this by guaranteeing minimum capacity
to flow subsets.

In practice, IP router manufactures have recognised this need for scheduling
algorithms. However, the existing architecture for congestion control in a class-based
environment remains crude. Until now, the closed-loop congestion control, or queue
management, within the scheduling mechanism has been based on backlog measuring
techniques such as drop-tail, RED or WRED. In this paper, a technique for
implementing high performance rate based congestion control in a scheduler such as
WEFQ is introduced.

1.3 Need for Rate Based Control: Rate vs. Backlog Based Congestion Control

Broadly, there are two paradigms of congestion control algorithms, characterised by
the way they observe congestion. Backlog based (BB) control, like droptail, RED and
WRED, measures the number of packets in the buffer to determine the severity of
congestion. Arrival rate based (RB) control schemes, such as REM or GREEN,
measure the packet arrival rate.

In general, AQM algorithms signal congestion to the source algorithms by varying the
rate of packet dropping or ECN marking, P. For BB control, P is a function of the
backlog size b(t) at time t, P(t)=f(b(t)); where f{x) is a positive and increasing function
for x > 0 and f{0)=0. For RB control, P is typically driven by an integration process,
which sums the excess demand, such as P(t+1) = P(t) + APX(x(t) — uxc(t)), where x(t)
and c(t) are the arrival and service rates at time ¢ respectively, AP is the gain of the
control which affects the stability and convergence, and u controls the target
utilisation. Although BB congestion control is simpler to implement, it has some
inherent limitations not present in RB control.

The backlog (queuing) process b(t+1)=[b(t) + x(t) — c(t)]", cannot observe long term
arrival rates x(t) < c(t) as if x(t) < ¢(t) for a sufficient period of time, then b(t) reaches
zero. Once b(t)=0, and if x(z) continues to be less than ¢(z) and b(t) remains zero, we
can say nothing about how close x(t) is to c(t) by observing the state of b(z).
Therefore, by observing b(t) the sources cannot be provided with feedback about the
level of x() to control their transmission rate, as b(t) stays at zero and provides no
information about x(7). Given that a positive feedback signal P is required to control
the source at some steady rate x(z) where x(z) < c(t), and P(t)=f{(b(t)), the backlog must
be positive, b(t) > 0, for P to be positive. This shows how BB control posits the
existence of backlog and backlog is necessary for the control process itself.

Backlog is undesirable because it creates packet latency and delay jitter. Furthermore,
delay in the congestion control system loop pushes the network towards instability,
increasing the likelihood of buffer overflow and under-utilisation. Of course, some

High Performance DiffServ Mechanism for Routers and Switches 65

backlog is necessary to achieve a desired utilisation of a link with a non-deterministic
arrival process, however this is at worst equal to, but typically far less than, the
backlog created by BB control such as drop-tail or RED [8].

Unlike the BB schemes, the RB control mechanism can observe x(z) directly. In a
steady state situation, where the input process is stationary, the amount of backlog
kept can therefore be only the minimum required to achieve the desired utilisation. It
is not the intention of this paper to give a thorough performance comparison of
different congestion control strategies, only to indicate some of the reasons why it is
desirable to have a RB control strategy. For more background, the reader is referred to
[51[8].

Now that we have presented the need for (1) class based scheduling algorithms and
(2) RB control, the algorithm which combines the two is presented in Section 2 and
its performance evaluation is presented in Section 3.

2 Algorithm Background

RB AQM operates in symbiosis with a scheduler. Our proposed design of RB AQM
applies to a work conserving WFQ like scheduler. A work conserving scheduler is
never idle if there are any packets in any queue. A WFQ like scheduler, such as RR
and many variants of WFQ, allocates a portion of service time to each queue during
an interval of operation. The scheduler is interfaced to by the enqueue and dequeue
functions, which accept and provide the next packet for queuing or transmission
respectively.

Class 1

AQOM 1

AQM 2 \/:
Class N ... AQM N

Fig. 1. RB AQM architecture in a class based scheduler

As shown in Fig. 1, each queue in the scheduler is managed by a separate instance of
an AQM algorithm. The AQM algorithm decides which packets to drop or ECN
mark. Packet marking/dropping gives the source algorithm a feedback signal which
controls its transmission rate and avoids queue overflow or excessive backlog.
Traditionally, this would be performed by BB control, such as drop-tail or RED
queue. RB control directly replaces these algorithms. In general, RB AQM is any
process which determines the packet marking/dropping rate, P(t), from at least the
packet arrival rate x(7) and capacity c(t). Typically, the process for P(t) is an integrator
of excess demand [10], P(t+1) = P(t) + APX(x(t) — uxc(t)), however, other functions
are possible, motivated by better convergence or stability (eg: REM, GREEN).

P(t+1)= AQM (c,(t),x,(t),P.(t),...) 12P(t)=0 (1)

66 B. Wydrowski and M. Zukerman

The distinctive issue, faced by RB AQM in a class-bases scheduler, is that the
capacity available to each class i, denoted c;, and the packet arrival rate for that class,
denoted x;, need to be known. In work conserving scheduler, such as WFQ, where
unused capacity in one class is redistributed to other classes, the capacity available to
each class is time-varying and depends on, and affects, the traffic in other classes.
This paper enables RB AQM by presenting a technique for calculating and controlling
c;, the capacity allocated to each class. Class Dimensioning, or controlling the number
of users per class is beyond the scope of this paper.

A basic algorithm is introduced in Subsection 2.1 which results in a functional work
conserving RB system, where each class is guaranteed its minimum share, M,.
However, the capacity above the minimum is not distributed with any notion of
fairness. Instead, the classes with the most aggressive traffic win the slack capacity. In
Subsection 2.2, we present a notion of proportional fairness, and a mechanism to
enforce it.

2.1 Basic Algorithm
2.1.1 Capacity Estimation

Consider a stream of packets scheduled by a work-conserving WFQ scheduler, of N
classes. Let B be the vector representing the sizes (bits) of the H packets that have
been served most recently. The order of the elements of vector B are in reverse order
to their service completion times. In other words, By is the size of the most recently
served packet, B; is the size of the previous packet and so on. Finally, By is the size
of the oldest packet packet in B. Similarly, we define the vector C, of H elements,
such that C; is the class (Cj € {1, 2, 3, ... N}) of the packet represented by B;, j = 1, 2,
3,...H.

Let S(t) be the physical capacity of the link at time #. When S(?) is time varying, such
as with Ethernet, DSL, or radio, it can be estimated from the last packet’s
transmission time. The scheduling algorithm, such as WFQ, may guarantee minimum
rates to each class. Let W be a vector whose element W; corresponds to the share of
capacity that each class i is guaranteed. For a WFQ scheduler, W; corresponds to the
service quantum for class i.

In a work conserving scheduler, the actual capacity available to a class depends on the
traffic in other classes as well as on the minimum rate allocation W. Without apriori
knowledge of the traffic, the future capacity available to a class, can only be estimated
from the previous capacity. Let the identity function (j,i) be:

1 if C=i

I(]7 l) = {O otherwise. 2.0

The estimate class capacity, Si(t), is calculated from the portion of server time
allocated to class i by the scheduling mechanism in the past H packets:

High Performance DiffServ Mechanism for Routers and Switches 67

H
> B,(1)-1(j.i)
SH=""— — 85@0) where i<N. (2.2)

H
2.5,

Jj=0

Note reduced complexity techniques such as exponential averaging could be
employed to compute (2.2).

2.1.2 Capacity Allocation
The minimum service rate guaranteed by the WFQ scheduling mechanism, M, is
given by:

M. (t)= W, S(r)- 3)

N
Jj=l

The capacity allocated to each class is therefore also bounded by the minimum rate
enforced by the WFQ scheduling policy. The capacity allocated to class i, denoted
ci(t), is:

c.(t) = Max(M (1),S,(1)). 4)

Notice that ¢() is the capacity allocated to class #, not the capacity actually consumed
by class i. The capacity not consumed by the class to which it is allocated, may be
used by other classes. If for example, no class i packets arrive, si(t) will be 0, and
ci(t)=M,(t). Although in this case no capacity is consumed by class i, if a burst of class
i packets were to arrive, M,(t) capacity is guaranteed. Note (4) is evaluated at each
update of the AQM process (1), which at the maximum rate, is at every enqueue
event.

2.2 Extended Fair Share Algorithm

The algorithm in 2.1 is extended here to enforce a notion of proportional fairness. The

fair allocation enforcement applies only to bottlenecked classes, where x;(t) = c(t).
Classes which are not bottlenecked at the link, x;(f) < c;(t), need no enforcement of
fairness, since their rate is below their fair capacity and their bandwidth demand is
satisfied. We define a fair allocation of capacity to a bottlenecked class i, Fi(t), as:

w.
— i
F(1)= (S(r)- Y x)). 5)
Jj=all non—bottlenecked classes
Wj
j=all bottlenecked classes

68 B. Wydrowski and M. Zukerman

In the extended algorithm, the capacity of non-bottlenecked classes is given by (4),
and for bottlenecked classes, the capacity is given be (5). Notice that the sum of c,(t)
for non-bottlenecked by (4) and F(z) by (5) may be more than S(z). However, the non-
bottlenecked classes do not utilise their allocated capacity c;(t), and the aggregate
arrival rate is controlled below the capacity S(z).

3 Implementation and Transient Performance Evaluation
3.1 Implementation

For class i, RB control was implemented in a WFQ scheduler with a variation of
GREEN as the AQM algorithm, as follows:

P(1) = P,(0)+ AP(1)-U(x,(t) —u, - ¢,(1)). 6.1)
where
Utx) = +1 x=0 6
P01 x<o ©2
and
AP.(1) = max(abs(x,(t) —u, - ¢,(1)),k). 6.3)

where u; controls the target utilisation and hence also the level of queuing, and & is a
constant which limits the minimum adjustment to P(¢), to improve convergence. The
values of Pi(t), x,(t) and c,(t) are updated with every class i packet arrival. The pseudo-
code for the WFQ scheduling algorithm used is:

pkt* wfqg.deque()
{
while (TRUE)
{
for I =1 to N {
if (class[I].nextpkt.size < S[I])
{
S[I] = S[I] - class[I].nextpkt.size();
return (class[I].dequeue) ;
}
}
for I =1 to N {
if (S[I] < MaxS);
S[I] = S[I] + W[I];

}
}
wfqg.enque (pkt *packet)
{
class[packet.class].enque (packet) ;

}
Fig. 2. Low jitter WFQ scheduler

This particular WFQ variant minimizes the jitter of higher priority classes, lower class
number. The wfg.deque function is invoked when the link is ready to transmit the next
packet and the wfg.enque function is invoked when a packet is received for
transmission onto the link. A packet queued in a higher priority class will always be

High Performance DiffServ Mechanism for Routers and Switches 69

served next, so long as the class’s work quantum, W, has not been exceeded. Note
that the function class[I].nextpkt.size returns the size [bits] of the next packet in class
1, or infinity if there are no packets left in the class. The constant MaxS controls the

maximum burst size allowable to be transmitted in a class that has been previously
idle.

3.2 Performance Evaluation

The system was simulated using Network Simulator 2 [9]. Three scenarios simulated
are presented in this paper. All scenarios used the same network topology, as depicted
in Fig. 3. For Scenarios 1 and 2, the Diffserv managed link X has a 1 Mbps capacity
and it is 2Mbps in Scenario 3. Multiple TCP or UDP sessions are aggregated to form
the traffic of each of the four classes presented to the link. All data packets are 1000
bytes. We will now describe each simulation scenario and the results.

Class 1 Sources

X Mbps

Class 2 Sources [——P WEFQ with Destination
4 class RB AQM > node

Class 3 Sources

Class 4 Sources

Fig. 3. Overview of Simulation Topology

Scenario 1A and 1B: TCP Traffic

The traffic of this scenario consists only of TCP sources. Scenario 1A uses RB and
WFQ with the fairness enhancement (5). Scenario 1B uses WRED and WFQ. The
flow rates of traffic in each class and the total number of packets backlogged for all
classed was measured. The parameters for this scenario are listed in Table 1.

Table 1. Simulation Parameters for Scenario 1

Class u; Utilisation W, Sources Start (sec) Stop (sec)
1 0.93 8001 8 TCP 40ms RTT 0 100
2 0.93 4001 8 TCP 40ms RTT 20 140
3 0.93 2001 16 TCP 40ms RTT 40 180
4 0.93 1001 16 TCP 40ms RTT 60 220

The WRED implementation uses a weighted average of backlog, denoted B,(?), to
determine the packet marking/dropping probability. The marking probability is
related linearly to B,(t), by P(t) = aB,(t), where « is the reciprocal of the maximum
queue size g. In Scenario 1B ¢ equals 10.

70 B. Wydrowski and M. Zukerman

Fig. 4 confirms that a fair allocation of capacity is achieved with the RB and WFQ, as
the magnitude of the flow rate from each class is proportional to its minimum rate W
when the traffic from different classes is switched on and off.

Figures 5 and 7 show the backlog of the RB and BB (WRED) system, with the thick
black line being the average backlog measured over 300 packets. The figures illustrate
the poorer queuing performance of WRED and WFQ compared to RB and WFQ
congestion control. In the interval 50s to 100s, when all classes are active, note how
backlog increases with increasing traffic load. This illustrates the previous analysis,
that with BB control where P(t)=f(b(t)), backlog is necessitated by the control system.
With increased traffic load, the feedback signal P(7) must also increase to control the
sources, and since P(¢) is coupled with backlog, the backlog must also increase.
Compare this with RB congestion control in Fig. 5, where the backlog varies about 0
regardless of the traffic.

Fig. 4. Scenario 1A: RB Packet flowrate Fig. 5. Scenario 1A: RB Aggregate Backlog
45
1000000 4 T
3000 'f“’i | =
. 800000 $—] |
§ 700000 IL —t
= 6000 'z'r‘.‘*ﬁd _ i
& 500000 qﬂ‘h:,. ,m?f wike o
E 400000 L. -
) IS m
O 300m0 T R |
e z0omo L — s TP
L H et A S LS J
Il‘ﬂ: ?{ e WY
o 50 100 150 a0 0
Time (Sec) 0 50 100 150 200
] Time (Sec)
Fig. 6. Scenario 1B WRED Packet flow ratie Fig. 7. Scenario 1B:WRED Aggregate
000000
Backlog
. E00000 i
& oo
F=1
= 5000 i
£ |
E oom ‘ ‘
E 300000
o
200000
00000 ‘ y T
o i
Time (Sec) 0 50 100 150 200
Time (Sec)

Scenario 2: TCP and UDP Traffic

This traffic scenario consists of both UDP and TCP sources. Classes 1 and 4 are UDP
constant bit rate sources transmitting at 0.8 Mbps and 0.05 Mbps respectively. UDP
sources ignore congestion notification. Classes 2 and 3 are comprised of TCP sources.
For the complete parameters refer to Table 2.

Fig. 8 shows that RB control allocates bandwidth fairly, despite the presence of an
unfriendly, non-congestion-controlled UDP sources. Notice that at 50sec, when Class
2 traffic is switched on, the UDP traffic in Class 1 is throttled down to its fair share by
an increased packet dropping rate. At this point Class 1 becomes a bottlenecked class.

High Performance DiffServ Mechanism for Routers and Switches 71

In this way, the TCP sources can attain their fair share despite the aggressive UDP
source.

Fig. 8. Scenario Z Packet flowrate indll Fig. 9. Scenario 3: WRED and RB Delay
clesses Performance
s :
o 3z e X
£ 30000 oo | S e [wReDs
g ‘\L n = § 600000 S —.&-~WRED10
e Cloos 2 ® 2500000 = -
g NMTMM‘&WP}-‘“ e s 5 2 400000 WRED20
B e el | B 200000 N
% . .) 255 £2 o00000 —x—RBBO
E FCD — et e 2.£ 100000
TR =3 0 : : T T
8
Ja : - 1 101 201 301 401
X 150 Number of TCP Sessions (Class 1 traffic)

£0 3
Time (3ec)

Scenario 3: Real-Time Traffic

In this scenario, it is demonstrated how a RB Diffserv architecture outperforms BB
control for real-time traffic. Two classes are used to simulate the interaction of data
traffic and real-time traffic. Class 2 contains TCP/FTP data traffic, and is insensitive
to delay. Class 1 is the real-time traffic, with a hard maximum queuing delay
requirement of 50 ms. The traffic in Class 1, the real-time traffic, consists of saturated
TCP transfers, with the number of sessions increasing linearly from 1 to 450. A
number of trails were simulated, using WRED with queue size value g set to 5
(WREDS),10 (WRED10) and 20 (WRED20) packets, and using RB control with
parameter u; set to 0.8 (RB80) and 0.85 (RB85). The Diffserv link capacity is 2Mbps,
with 1Mbps assigned to Class 1 and 1Mbps assigned to Class 2.

Table 2. Simulation Parameters for Scenario 2

Clas u; Utilisation | W; Sources Start (sec) Stop (sec)
S
1 0.93 8001 1 UDP 20ms RTT 0.8 Mbps 0 150
2 0.93 4001 16 TCP 20ms RTT 50 150
3 0.93 2001 16 TCP 20ms RTT 100 150
4 0.93 1001 1 UDP 20ms RTT 0.05 Mbps 0 150

Table 3. Simulation Parameters for Scenario 3

Class u; Utilisation W, Sources Start (sec) Stop (sec)
1 0.8,0.85 2001 50-450 TCP 40ms RTT 0 450
2 0.95 2001 8 TCP 40ms RTT 0 450

TCP is used to approximate a real-time adaptive multi-rate source [11] [12] [13].
Audio and video protocols are typically based on UDP, RTP and RTCP. Recent real-
time multimedia protocols respond to loss by adjusting their rate, and are thus in
principle similar to TCP [11] [13]. Although their transient behaviour, and amount of

72 B. Wydrowski and M. Zukerman

response to loss is different than TCP, any real-time protocol that seeks to take
advantage of available capacity on a best effort network, must in principle be
congestion controlled. Unless the real-time source increases its rate when there is
available capacity, and decreases it when capacity decreases, the quality of
transmission is suboptimal. Many existing CODECS are designed for varying channel
conditions, such as a best effort network. For instance, the G.723.1 Audio speech
codec adjusts its output rate, and adapts to the available bandwidth. Similarly, MPEG-
4 includes extensive support for multi-layered, multi-rate video. The RTP
communicates the amount of packets lost, which allows the sender to adapt its rate to
the channel. At a bottleneck link, adaptive multimedia sources are like saturated
sources, such as an FTP transfer, as the source always has more video or audio
information that it could possibly send to improve quality.

In the simulation we measure the amount of packets, in Mbps, which are delivered
with less than 50ms queuing delay in the Diffserv queue. Packets served late, >50ms,
no longer contain useful information to a real-time application and do not contribute
to the Mbps. Since real-time sources do not retransmit packets, the TCP packet
retransmissions are considered as new packets in the simulation. The results, in Fig. 9,
show how for a variety of settings, and traffic loads, RB control effectively delivers
more useful data.

As discussed previously, the problem with BB schemes such as WRED, is that the
backlog must be positive for source rate to be controlled. In this trial, the maximum
queue size for WRED was reduced from 20 to 10 and then to 5. Reducing the
maximum queue size gave diminishing returns since the utilisation was significantly
lowered. On the other hand, increasing the queue size resulted in a higher average
backlog, which delayed more traffic beyond the 50ms requirement. Also, as evident in
Fig. 9, unlike RB control, the optimal setting of parameters for WRED varied widely
with the traffic load. RB control was able to deliver more data in the delay
specification, since it was able to control the arrival rate to some specified fraction
below the service capacity, leaving spare capacity for the bursts in the traffic.

3.3 UDP: Throw Away — No Delay

In result in this section we focused on the possible disruptive effect of UDP traffic on
TCP traffic, or the interaction between TCP traffic in different classes. An important
issue is the performance of non-congestion controlled UDP traffic. UDP is typically
used for real-time services with an upper bound delay requirement. If such traffic
receives enough capacity, both BB and RB schemes function identically. However,
when the amount of non-congestion controlled UDP traffic exceeds the capacity, BB
schemes, such as WRED will increase backlog and delay, whereas RB control will
prevent excessive delay by increasing the dropping rate. This means, that is instead of
being excessively delayed, packets are discarded. Therefore in a congestion situation,
the portion of packets which are transmitted, still meet the delay requirements. The
portion which are discarded would likely not have been able to be served within the
delay requirement. With WRED, in a congestion situation, the delay performance of
all packets suffers.

High Performance DiffServ Mechanism for Routers and Switches 73

4 Conclusion

We have presented a technique for applying rate based active queue management to a
class based scheduling algorithm. The method presented is scalable, and low in
computational complexity. It forms a solid architecture for DiffServ implementation
in routers and switches and has been shown to outperform the current WRED with
WEFQ architecture. Furthermore, this work will enable the wide body of research into
rate based congestion control schemes to be applied to improving the performance of
DiffServ.

References

1.

11.

12.

13.

14.

Cisco Systems Document, “Class-Based Weighted Fair Queueing”

Cisco Systems Document, “Low Latency Queueing”,
ttp://www.cisco.com/warp/public/732/Tech/qos/techdoc/diffserv.shtml

S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”

IEEE/ACM Transactions on Networking, 1(4):397--413, August 1993.

Wu-chang Feng, Dilip D Kandlur, Debanjan Saham Kang G.Shin, “Blue: A new class of

active queue management”. Department of EECS University of Michigan

S. H. Low and D. E. Lapsley, “Optimization Flow Control, I: Basic Algorithm and

Convergence”, IEEE/ACM Transactions on Networking, vol 7 part 6 pp861-875, Dec.
1999.

Internet Engineering Task Force IETF, “Recommendations on Queue Management and

Congestion Avoidance in the Internet”, RFC 2309.

F. P. Kelly, A.K. Maulloo and D.K.H, “Rate control in communication networks: shadow

prices, proportional fairness and stability”, Tan (Statistical Laboratory, University of

Cambridge), Journal of the Operational Research Society, vol. 49, pp 237-252. 1998

B. Wydrowskl and M. Zukerman “GREEN An Active Queue Management Algorlthm

F. Paganini, J. C. Doyle and S. H. Low, “Scalable Laws for Stable Network Congestion
Control”, submitted to CDCO1. March 2, 2001.

J. Padhye, J. Kurose, D. Towsley, and R. Koodli, "A model based TCP-friendly rate
control protocol," in Proc. International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), Basking Ridge, NJ, June 1999.

I. Busse, B. Deffner, and H. Schulzrinne, "Dynamic QoS control of multimedia
applications based on RTP," Computer Communications, Jan. 1996.

R. Rejaie, D. Estrin, and M. Handley, "Quality Adaptation for Congestion Controlled
Video Playback over the Internet," Proc. of ACM SIGCOMM '99, Cambridge, Sept. 1999.
Anupama Sundaresan, Gowri Dhandapani, “Diffspec - A Differentiated Services tool”,
The University of Kansas Lawrence, KS 66045-2228, December 19, 1999.
http://qos.ittc.ukans.edu/DiffSpec/diffspec.html.

http://www.cisco.com/warp/public/732/Tech/qos/techdoc/diffserv.shtml
http://www.ee.mu.oz.au/pgrad/bpw
http://www.isi.edu/nsnam/ns/

	Introduction
	Congestion Control Overview
	Need for Scheduling: Classless vs. Class Based Differential Service
	Need for Rate Based Control: Rate vs. Backlog Based Congestion Control

	Algorithm Background
	Basic Algorithm
	Capacity Estimation
	Capacity Allocation

	Extended Fair Share Algorithm

	Implementation and Transient Performance Evaluation
	Implementation
	Performance Evaluation
	UDP: Throw Away – No Delay

	Conclusion
	References

