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Abstract. The reliable multicast protocol guarantees that all receivers place the
source messages in the same order. We have changed this protocol from an event
driven protocol to a  timed protocol in order to also guarantee that all of the
receivers have the message by a  dead line. In this work we present two
modifications to the timed protocol that provide shorter deadlines. In the examples
that we consider the tighter deadlines approach the nominal network delay.

1 Introduction

The Internet uses very simple protocols in the core of the network and relegates many
functions to the end user. This strategy makes it possible to introduce new services by
changing the programs at the users that require the services, rather than changing the
entire network.

The Internet provides best effort delivery. It does not guarantee the message delay or
that the message will be delivered at all. In order for the end user to guarantee that
messages are delivered within a certain interval, the end user must have a concept of
time and take action within the interval. In conventional ARQ protocols the source
users a timer to periodically retransmit a message until it receives a response from the
receiver. Alternatively, if the source transmits at known times, a  receiver that has a
clock and knows the source schedule can take action when messages aren’t received.
Periodic updates have been used in point to point transport protocols [ 1]. Recently,
time has been added to the reliable broadcast protocol [ 2], RBP, to guarantee that all
of the receivers have a message in a specified interval [3]. In the modified protocol
messages are acknowledged according to a  schedule and the receivers use absolute
time to recover missing acknowledgements and source messages. Receivers that
receive the acknowledgements and source messages do not have to send any further
messages.

RBP was invented in 1984. This protocol used as few as one control message for
each broadcast message, independent of the number of receivers, to guarantee that all
of the receivers correctly received a broadcast message. In addition to guaranteeing
that all of the receivers correctly receive every broadcast message, it guarantees that
every receiver places the broadcast messages in the same sequence.

RBP was originally used to build a distributed database on an Ethernet[4]. In the
early 90’s, this protocol was adapted to operate on a multicast network over the

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 10−27, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Internet and was renamed the reliable multicast protocol[5], RMP.



RMP is event driven. The receivers do not take any action until a message is received.
The protocol guarantees that all of the receivers "eventually" receive a message, rather
than guaranteeing when they receive the message. If there are N  receivers, the
protocols guarantees that all of the receivers have a  message after N  − 1 additional
messages have been acknowledged. RMP is described in section 2.

In 1999 RMP was applied to an international, distributed stock market[3]. By adding
a knowledge of absolute time to the protocol, and making the protocol time driven,
rather than event driven, the earlier characteristics of RMP are maintained while also
guaranteeing that every receiver receives every broadcast message within a specified
time. The timed version of RMP, T-RMP, is described in section 3.

T-RMP periodically sends a control message that simultaneously acknowledges all of
the unacknowledged source messages. All of the receivers know when a  control
message is scheduled to be transmitted and begin the recovery process soon after the
scheduled transmission time, rather than waiting for a  message. Once the control
message is received, the receivers request any missing source messages that it
acknowledged. When the period between control messages equals the average
interarrival time of source messages one source message is acknowledged by each
control message, on the average, and the message efficiency of T-RMP and RMP is
the same. When the period between control messages is greater than the average
interarrival time of source messages, more than one source message is acknowledged
by each control message, and the efficiency of T-RMP is higher than RMP. However,
as the period between control messages decreases, the message efficiency of T-RMP
also decreases.

The version of T-RMP that is used in the stock market application is relatively easy to
understand because the period between control messages is large enough for all of the
receivers that have missed the control message or any of the source messages that it
acknowledged to recover those messages before the next control message is
transmitted. We can guarantee that the control message period is large enough for a
receiver to recover a missing message because the ARQ protocol is not open ended.
After a  fixed number of attempts, the requesting site assumes that the site with the
message has failed and enters a  reformation process. Therefore, at the end of each
control message period either all of the operable receivers have all of the
acknowledged messages, or the system has entered a reformation process to identify
failed sites.

The reformation process is a  lengthy process. In order to prevent the protocol from
performing a reformation when the network experiences slightly longer than normal
delays, the message recovery time is much greater than the average message delay in
the Internet.
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The control message period is the guaranteed delivery delay for an acknowledged
message. The delay guarantee that is provided by the original version of T-RMP is
adequate for the stock market application, but reducing the delay will make the
protocol applicable to a larger class of applications, such as remote classrooms where
students ask questions.

One way to reduce the control message interval is to reduce the time between retry
attempt to recover a lost message. As we make the retry intervals smaller we can take
advantage of the small delays that usually occur in the network. However, the smaller
retry intervals result in more frequent retries when a message has not been lost but is
only delayed by the network. As the retry interval goes to zero, the time to recover a
message can track the distribution of delays in the network, but the number of retries,
and hence the number of overhead messages, becomes large. This effect occurs for
all ARQ protocols that are used on the Internet, or any other network with variable
delays. The effect is not unique to T-RMP and is not investigated in this paper.

In sections 4 and 5 we consider two ways to reduce the guaranteed delivery time that
are unique to T-RMP. The original version of T-RMP uses separate retry counters to
recover the control message and the source messages that it acknowledged. In section
4 we combine the counts and show that we can significantly reduce the control
message period without increasing the probability of erroneously entering the
reformation process. In the original version of T-RMP the control message interval,
the time until a message is recovered by all of the receivers, and the time to enter the
reformation process, are all the same. In section 5 we consider using different time
intervals for each of these events. The operation of the protocol is more complicated.
We show that the protocol operates as a  D/G/1 queue and show, by an approximate
analysis of the queue, that using different intervals fro the three events can
significantly reduce the delay guarantees.

2 The Reliable Multicast Protocol

RMP has three characteristics that distinguishes it from earlier protocols:

1. Every receiver places the messages from the sources in the same sequence.

2. Every receiver eventually knows that every other receiver has the data.

3. When there aren’t any losses, there is only one control message per source
message, independent of the number of receivers. (In reference 6 there is an
analysis of the number of messages that are transmitted when there are losses.)

The RMP protocol has two parts. The first part operates on multicast messages
during normal operation. It guarantees delivery and ordering of the messages from
the sources. The second part is a reformation protocol that reorganizes the broadcast
group and guarantees the consistency of message sequences at the receivers after
failures and recoveries. The complete protocol is described in reference 2. In this

12 N.F. Maxemchuk

presentation we are concerned with the first part of the protocol.



There are n sources and m receivers that participate in the protocol, as shown in figure
1. The sources and receivers may be the same or different. A  single receiver, called
the token site, acknowledges a  source message and assigns the message a  sequence
number. All of the receivers place the messages in the order indicated by the
sequence number.

We guarantee that every receiver has all of the messages by sequentially passing the
token to each receiver. A  receiver does not accept the token until it acquires all of the
preceding acknowledgments and the messages that they acknowledged. Therefore,
when the receiver with the token sends an explicit acknowledgment for a  source
message, it implicitly acknowledges that it has received all of the source messages
that have been acknowledged prior to this message.
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Fig. 1. The Reliable Broadcast Protocol

The sources use a  positive acknowledgment protocol. A  message from source s
contains the label (s, Ms) to signify that it is the M th

s message from source s. Source
s transmits message Ms at regular intervals until it receives an acknowledgment or
decides that the token site is not operating. If a source decides that the token site is
not operating it initiates a reformation.
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The receivers take turns acknowledging messages from sources by passing a token. A
single control message, acknowledgment t from receiver r, serves three separate
functions:

1. it acknowledges (s, Ms) and assigns it sequence number t,

2. it is an acknowledgment to receiver (r − 1) mod m that the token was
successfully transferred to r, and,

3. it transfers the token to receiver (r + 1) mod m.

The token transfer uses a positive acknowledgment protocol. Token site r
periodically sends acknowledgment t until it receives acknowledgment t + 1 or greater
or it receives a separate token acknowledgment. If the acknowledgment isn’t received
in a specified number of attempts, receiver r decides that receiver r + 1 is inoperable
and initiates a reformation.

When r sends acknowledgment t it stops acknowledging source messages, even
though receiver (r + 1) mod m may not have received, or may not be able to accept
the token. This guarantees that at most one receiver can acknowledge source
messages.

When a receiver accepts the token it also assumes responsibility for servicing
retransmission requests. Receiver (r + 1) mod m does not accept the token until it has
all of the acknowledgments and source messages that were acknowledged up to and
including t. Receiver r does not stop servicing retransmission requests until it
receives the acknowledgment for passing the token. This guarantees that there is
always at least one site, that has all of the source and control messages, that is
responding to retransmission requests.

Receivers place the messages in the sequence assigned by the acknowledgments.
Each receiver, r, tracks tr , the next acknowledgment that it expects. If an
acknowledgment number greater than tr is received, acknowledgment tr is missing. If
acknowledgment tr is received and the source message that is acknowledged is not in
the receiver’s queue of unacknowledged messages, then the source message is
missing. The receivers use a negative acknowledgment strategy. No control messages
are sent unless a missing message is detected. When a receiver detects a missing
message it recovers the message using a positive acknowledgment protocol. The
receiver periodically requests the message until it receives the message or decides that
the retransmit server is inoperable and initiates a reformation.

As the token is passed, the token site can infer information about the other receivers.
When receiver r transmits acknowledgment t, receiver r and any receiver that receives
the acknowledgment knows that
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— receiver r has all of the acknowledged messages up to and including the t th

message,

— receiver (r − 1) mod m has all of the acknowledged messages up to and
including the (t − 1)th message,

— . . ., and

— receiver (r − m + 1) mod m has all of the acknowledged messages up to and
including the message acknowledged by t − m + 1.

Since (r − m) mod m = r, receiver r knows that all of the receivers have all of the
source messages up to and including the message acknowledged by t − m + 1. By a
similar argument all of the receivers know that all of the other receivers have all of the
messages up to and including the (t − m + 2)th message.

Figure 2 is an extended finite state machine, E-FSM, representation of the actions that
a receiver takes when an acknowledgment is processed. The states indicate tests that
are performed or situations where the receiver waits for an external stimuli, such as a
message or a time out. The transitions between states are labeled with the event that
caused the transition, followed by a "*"’ed list of actions that occur during the
transition.

3 The Timed Reliable Multicast Protocol

T-RMP uses the same token passing mechanisms and retransmission strategies as
RMP, as shown in figure 1. The difference is that T-RMP is time driven rather than
event driven. Acknowledgments are transmitted by the token site at scheduled times
separated by ÿ

t seconds. In addition, T-RMP is a bulk acknowledgment protocol. An
acknowledgment message contains a list of all of the source message that the token
site has received, but which have not been acknowledged by the previous token sites.
The t th token passing message acknowledges a sequence of k source messages, where
k is variable. The messages are assigned sequence numbers s + 1 to s + k, where s is
the last sequence number assigned in the (t − 1)th acknowledgment.

In T-RMP we assume that the receivers have synchronized clocks. Synchronization
may be performed on the multicast network using other protocols [7, 8, 9] or may be
performed on a parallel network, such as a satellite network, with deterministic
delays. The clock synchronization technique is not part of T-RMP and is not
considered in this presentation.

The primary advantage of the timed protocol is that a receiver detects a missing token
based upon the time that it was scheduled to be transmitted, rather than later events
that occur at undetermined times in the future. Negative acknowledgments have
much more significance in the scheduled protocol than in the event driven protocol.

In the event driven protocol, RMP, we cannot assume that a receiver that has not sent
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e = number of expected acknowledgment
r = number of received acknowledgment
Msg(e) = message acknowledged by Ack(e)
te = scheduled transmission time for Ack(e)
TR = time out for retransmission request
nr = number of recovery attempts
nmax = maximum number of recovery attempts

Fig. 2. An E-FSM representation of acknowledgment processing at a  receiver in
the RMP protocol

a negative acknowledgment has received a  source message. The receiver may also
have missed the positive acknowledgment for that source message and any subsequent
acknowledgments that would indicate that it missed the first acknowledgment. We
cannot be certain that the receiver has a  source message until that receiver sends an
implicit acknowledgment by sending a  positive acknowledgment for a  subsequent
message.

In the scheduled protocol, T-RMP, a  receiver is aware that it has missed an
acknowledgment one network delay time after the acknowledgment is scheduled.
Message recovery uses a  positive acknowledgment protocol that retransmits
unanswered requests at fixed intervals and declares a failure and places the system in
reformation after a  fixed number of unanswered requests. Therefore, after a  fixed
time following a message’s acknowledgment, either all of the operable receivers have
the message or the system is in reformation.
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Figure 3 is the E-FSM representation of how acknowledgments are processed in
T-RMP. We can use this state diagram to prove that all of the operable receivers have
received a source message, or have placed the system in reformation within time
(nmax + 1/2)TR of when it was scheduled to be acknowledged. If the token site, that
was scheduled to send the acknowledgment has failed, the system is placed in the
reformation phase by the receivers. The sources don’t have to detect a failed token
site.
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2Test nr

t > te + TR/2
*nr = 0

3

Wait for Ack(e)
nr < nmax
*Rqst Ack(e)
*nr + +
*ts = t
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7
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8

X(e) Empty

X(e) Empty

Finish

e = number of expected acknowledgment
Msg(e) = set of messages acknowledged by Ack(e)
X(e) = subset of Msg(e) that are not received
te = scheduled transmission time for Ack(e)
TR = time out for retransmission request
nmax = maximum number of recovery attempts
nr = number of recovery attempts

Fig. 3. An extended finite state machine representation of acknowledgment
processing at a receiver in the timed RMP protocol

A source message is scheduled to be acknowledged at time te. If the acknowledgment
is received before te + TR/2, the receiver moves to state 4, with nr = 0. Otherwise, at
te + TR/2 the receiver moves to state 2 with nr = 0, requests the missing
acknowledgment, increments nr to 1, and moves to state 3. If the missing
acknowledgment is received within TR seconds, the receiver moves to state 4,
otherwise it returns to state 2. The receiver circulates around the loop between states
2 and 3 at most nmax times. Either the receiver enters state 4 before
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te + (nmax + 1/2)TR, or enters state 7, and initiates a reformation at time
te + (nmax + 1/2)TR.

If a receiver enters state 4 at time t4 such that
te + (k4 − 1/2)TR ≤ t4 < te + (k4 + 1/2)TR, then nr = k4. If the receiver has the
acknowledged source message, then the receiver move to state 8, otherwise it moves
to state 5. If k = nmax, the receiver moves immediately to state 7, otherwise it follows
the 5->6->5 recovery loop up to nmax − k times. The receiver enters state 7 at time
t4 + (nmax − k)TR < te + (nmax + 1/2)TR, if it does not enter state 8 prior to this time.
Therefore, by te + (nmax + 1/2)TR all operable receivers either have the message, or
have started a reformation process. If the token passing period is
TP ≥ (nmax + 1/2)TR, the next token site has recovered all of the messages, and is
ready to acknowledge messages before the next acknowledgment is scheduled to be
transmitted.

The structure of the state machine for T-RMP is similar to the state machine for RMP
in figure 2. Two obvious differences are that:

1. T-RMP moves from state 1 to state 2 when the local clock exceeds the
scheduled acknowledgment time plus a reasonable network delay, while RMP
makes the same transition when it receives a token with a larger sequence
number than expected, and,

2. T-RMP checks for, and may have to recover, a set of source messages for each
acknowledgment, while RMP only checks for a single source message.

There are two other things that should be noted in the T-RMP state machine,

1. the time out that activates the transition from state 1 to state 2 is half the time
out that activates the transitions between states 2 and 3 or 5 and 6, and,

2. the sum of retries to recover a missing acknowledgment and a missing
message, is limited, rather than separately limiting the number of retries to
recover each.

The sum of the timer delays in T-RMP determine how frequently we can transfer the
token. The smaller the timers, the more frequently we can transfer the token. The
more frequently we are able to transfer the token, the smaller the time until we are
certain that all of the receivers have a message. In addition, smaller token transfer
times result in a smaller waiting time until source messages are acknowledged.
Therefore, we would like to make the total timer delays as small as possible.

4 Merged Retry Count

We merge the count of retry requests to recover lost acknowledgments and lost
messages because it reduces the maximum time that we allow to recover messages,
without increasing the probability of erroneously entering the reformation phase. As
an example, consider a system with independent messages losses, PL :

18 N.F. Maxemchuk



— The probability that a receiver does not receive an acknowledgment is P A = PL ;

— The probability that the receiver misses at least one of k source messages that
are covered by an acknowledgment is PS = 1 − (1 − PL)k ;

— And, the probability that the request for a retransmission from a receiver, or the
retransmitted acknowledgment message, or retransmitted source messages, is
lost is PR = 1 − (1 − PL)2.

In a system that allows n1 attempts to recover a missing acknowledgment and a
separate n1 attempts to recover any missing source messages, the probability of
initiating a reformation process because a sequence of messages has been lost, rather
than because a component has failed, is

PR,1(n1) = (P A + PS)Pn1
R − P APS P2n1

R .

In a system that allow a total of n2 attempts to recover both the missing
acknowledgments and retries, the probability of initiating the same erroneous
reformation is

PR,2(n2) = (P A + PS)Pn2
R + P APS



n2Pn2−1

R (1 − PR) − Pn2
R




.

When PL << 1, using a Taylor series expansion,

PR,1(n1) ≈
k + 1

2
(2PL)n1+1 , and,

PR,2(n2) ≈ 


k + 1

2
+

kn2

4


(2PL)n2+1 .

For n2P < 1, which is reasonable considering that PL << 1,

PR,2(n1) > PR,1(n1) > PR,2(n1 + 1)

In other words, if we make the sum of the retries one greater than the number of
separate retries to recover the acknowledgment and source messages, we are less
likely to initiate an erroneous reformation process. A system that allows 3 separate
tries to recover acknowledgments and source messages must allow 6 recovery
intervals before passing the token. A system that monitors the sum of the retries can
provide better performance while only allowing 4 recovery intervals before passing
the token.

Of course we can make the above model more accurate by

— allowing different loss probabilities for different length messages, a short
acknowledgment message versus up to k source messages,

— considering time correlation of the losses, and

— taking into account other receivers that may miss the same messages.
Our objective, however, is to demonstrate the advantage of summing the retry
attempts, rather than to recommend a specific number of attempts for a particular
network condition. In a real network the loss and delay change continuously. We
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recommend increasing n2 by one, and slowing down the token passing, when the
receivers initiate unnecessary reformations, and decreasing n2, and speeding up the
token passing, when there is a long time between erroneous reformations. How long
is long depends upon how badly we want to avoid erroneous reformations.

5 Separating Events

At each time te acknowledgment Ack(e) is scheduled to be transmitted. ∆T = te+1 − te

is the token passing period. Let Ack(e) and the source messages that it acknowledges
comprise the message set Msg(e). At te + ∆C all of the receivers that have recovered
the source messages in Msg(e) commit those messages. We assume that at te + ∆C

most, if not all, of the receivers have these messages. At te + ∆R any receiver that has
not recovered Msg(e) initiates a reformation.

In our initial description of T-RMP ∆T = ∆C = ∆R = ∆init . This simplified the
description and understanding of the protocol because the operation of the protocol is
the same at every receiver and token site during every token passing interval. At each
te, if the system is not being reformed all of the receivers, including the token site,
have all of the Msg(i) for all i < e. At te the token site transmits Ack(e). At
te + TR/2 all of the receivers that do not receive Ack(e) try to recover it. At
te + ∆R(≤ te+1) any receiver that has not recovered Msg(e) initiates a reformation
process. Therefore, if the system is not being reformed, the operation at te+1 is the
same as the operation at te. In addition, te+1 is the commit time for the messages
acknowledged at te, since we can guarantee that all of the receivers have those
messages.

When a source message is received at the token site it may wait up to ∆T before the
token is transmitted, and then must wait an additional ∆C before the receivers commit
the acknowledged message. We would like to make ∆max = ∆C + ∆T as small as
reasonable, in order to provide stronger quality of service guarantees. In the initial
system ∆max,init = 2 * ∆init . In this section we set ∆T < ∆init . Howev er, in order to
keep the probability that a receiver has a message the same as in the initial system, we
must make ∆C > ∆init . We show that ∆max = ∆T + ∆C < ∆max,init , for a certain range of
∆T . We further reduce ∆max by making ∆C < ∆R. We justify this reduction by noting
that false alarms, that cause unnecessary reformations, are generally more costly than
the late arrival of a message.

When we make ∆T < ∆R Msg(e) may be recovered after Ack(e + 1) is scheduled to be
transmitted, since te+1 < te + ∆R. Recovering Msg(e) after te+1 does not have to affect
the operation of a receiver that is not also the token site. The receiver can start
recovering the missing components of Msg(e + 1) at the scheduled time whether or
not is has completed the recovery of any Msg(i), i < e + 1. A receiver may have
several recovery processes in progress simultaneously, or, since all of the requests for
missing messages are directed to the current token site, the receiver may combine all
of the requests into a single message.
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However, when the site that is scheduled to transmit Ack(e + 1) fails to recover
Msg(e) before te+1, all of the receivers are affected. By the conventions of the
protocol, the token site does not transmit an acknowledgment until it recovers the
earlier messages and can service all retransmission requests. All of the other
receivers may start transmitting their retransmit requests at te+1 + TR/2, but the
recovery cannot start in earnest until after the token site completes its recovery and
transmits the acknowledgment. In our model, the number of retries needed to recover
messages, and the distribution of the recovery time, is independent of when the
recovery starts. Therefore, if the recovery starts later than te+1 + TR/2, it will end
later. If we make ∆T < ∆init , we must make ∆R > ∆init order to keep the probability of
reformation when there isn’t a failure the same.

The operation of the token sites can be mapped onto the operation of a D/G/1 queue,
where the period of the arrival process is ∆T and the service process is the distribution
of times to recover Msg(e). In order to perform this mapping, site se, that transmits
Ack(e), arrives in the queue at time te. the scheduled time to transmit the
acknowledgment. If site se−1, that transmits Ack(e − 1), has successfully transmitted
Msg(e − 1) to se ( that is to say, se has successfully recovered Msg(e − 1) ) before te,
then the queue is empty, and immediately begins to service Msg(e). The service time
of Msg(e) is the time needed to successfully transmit Ack(e) from site se to site se+1,
which is responsible for transmitting Ack(e + 1), and for se+1 to recover any missing
source messages in Msg(e). If Msg(e − 1) is not transferred to se by te, se must wait
for the transfer to be complete before beginning to service Msg(e). Site se receiving
the token at te +

ÿ
and beginning the next token transfer is equivalent to se arriving at

the queue at te, and waiting until the previous service is completed at te +
ÿ

to begin
its own service. Note that se+1 begins trying to recover Msg(e) at te + TR/2, and
combines any other missing messages with this request. This makes the service time
independent of the past history of site se+1. Whenever se transmits the
acknowledgment, se+1 is ready to start recovery, without waiting for an earlier
recovery to be complete.

The queue builds up because of the token passing process, but the waiting time
distribution for the queue is the waiting time component for the delay at any receiver.
None of the receivers can start recovering Msg(e) until se has the token. Therefore
they all have the same waiting time. The delay between the time that a source
message is scheduled to be acknowledged and the time that a receiver has that
message is the convolution of the waiting time distribution with the service time
distribution. The service time distribution is the time needed for the receiver to
acquire a message set Msg(e), when the token sites have not failed. When the delay
at a receiver reaches ∆R, the receiver starts a reformation process, even though there
has not been a failure. The waiting time is zero after a reformation. Since the
probability of a false reformation is intentionally small, we approximate this
probability as the probability of exceeding ∆R in an infinite queue. The probability
that a receiver has not acquired a source message when it is scheduled to be
committed is the probability that the delay exceeds ∆C .
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Following the model in the previous section, the service time is

s = dn,1(1 − x A) +
TR

2
x A + j1TR + dn,2 + dn,3 x A + j2TR + dn,4 + dn,5 xS

where:
dn,i are delays through the network that depend on the source, the current token site
and the network congestion,

x A =




1

0

with probability PL

otherwise

xS =




1

0

with probability 1 − (1 − PL)r

otherwise

r is the number of arrivals from independent sources during ∆T and is distributed as

p(r) =
( ÿ A∆T )r e− þ A∆T

r!

and, ji are the number of unsuccessful retransmission attempts before acquiring a
missing message and is distributed as

p( j) = (1 − PR)P j
R for j = 0, 1, 2, . . . where PR = 1 − (1 − PL)2.

When the delay and retries are uncorrelated, the average service time is:

ÿ S = ÿ N




1 + PL + 2(1 − e−þ A∆T PL )





+
TR

2
PL + TR

PR

1 − PR





PL + 1 − e−þ A∆T PL



,

where ÿ N = E(dN , j). When PL << 1 and ÿ A∆T PL << 1,

ÿ S ≈ ÿ N + PL





TR

2
+ ÿ N (1 + ÿ A∆T )




.

It’s interesting to note that the time that it takes to transfer the token, s is a function of
the token transfer period ∆T and that ÿ S decreases as the token transfer rate increases.
When we transfer the token more frequently, fewer source messages arrive between
token transfers, and it is more likely that we have not lost one or more messages.
Therefore, when we transfer the token more often we are less likely to have to recover
a source message. In the remainder of this section we are interested in the effect of
decreasing ∆T . In our first order analysis we will assume that ÿ S is not a function of
∆T . If we replace ∆T with ∆init (≥ ∆T ), the value of ÿ S will not decrease as we
decrease ∆T , and the actual advantage of decreasing ∆T will be greater than we
predict.

We do not know the service time distribution. The component of this distribution that
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is the distribution of network delay between the receivers and token site is difficult to
determine and changes. We will use a negative exponential distribution for the
service time. This is reasonable because of the memoryless property of the process
that recovers lost messages. More importantly, this assumption replaces the D/G/1
queue with a D/M/1 queue, which we know something about. At this point we will
make a number of approximations in order to get a feel for the quantitative
relationship between ∆T , ∆C and ∆R.

The waiting time distribution in a G/M/1 queue[10] is:

W (y) = 1 − ÿ e−(1− þ )y/ý S fory ≥ 0, where,
ÿ = A*((1 − ÿ )/ ü S),

and A*(s) is the La Place transform of the arrival time distribution.

In our case the arrival time distribution is deterministic with period ∆T , so that

A*(s) = e−s∆T and ÿ = e−(1− þ )/û ,

where ú = ü S /∆T . ú is the utilization of the token passing channel. It if the fraction
of the time the the token is in the process of being moved.

The equation for ÿ has one solution for 0 ≤ ÿ < 1, when 0 < ú < 1. This can be
verified by considering the value of the exponential at y = 0 and y = 1, the slope at
y = 1, and the second derivative over the range. The solution for sigma is plotted as a
solid line in figure 4. Because of the shape of the curve, we approximate it with a
quadratic. The least mean squared error fit is the quadratic:

ÿ = 1. 168 ú
2−. 168 ú

The quadratic is plotted as the dashed line in figure 4. The fit is seen to be tight over
the entire range.

The distribution of the delay is the convolution of the waiting time and service time
distribution, and the probability of an erroneous reformation, Pref , is the probability
that the delay exceeds ∆R. Therefore,

Pref = e−(1+.168û −1.168û 2)∆R/ý S

In the initial system we expect the utilization of the token passing channel to be low
because ú is inversely proportional to ∆T , ∆T = ∆R and ∆R is large enough that
erroneous reformations occur infrequently. If ú is small, the delay distribution is
approximately equal to the service time distribution. This is a satisfying result for the
initial system because whenever the waiting time is greater than zero, the system is
put in reformation. The probability of reformation is approximately
Pref ,init ≈ e−∆init /ý S . The utilization is ú init = ü S /∆init = . 43/ ln(Pref ,init). If we adjust
∆init so that Pref ,init ≤ 10−6, then ú init ≤ . 07, which justifies our claim that it is small.
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Fig. 4. Plot of ÿ = e−(1− ý )/ü (solid curve) and ÿ = 1. 168 þ 2−. 168 þ (dashed curve)

Consider reducing ∆T < ∆init .
þ becomes larger. In order to keep Pref the same, we

must increase ∆R so that

e−[1+.168(û S /∆T )+1.168( û S /∆T )2]∆R/ û S = e−∆R/ û S .
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Fig. 5. Reformation delay ∆R versus token passing period ∆T for probabilities of
erroneous reformation Pref from 10−12 to 10−2.
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In figure 5 we plot equi-Pref curves for Pref from 10−2 to 10−12. On the axes ∆R and
∆T are normalized with respect to ÿ S , the average time that it takes to reliably transfer
information between two participants in the protocol. The axis are dimensionless, and
a value of 10 can be read as 10 average transfer times. The x-axis is also 1/ þ . This
axis is logarithmic with þ < 1. The dashed curve is ∆R = ∆T = ∆init . We see that as
we decrease ∆T from ∆init , ∆R remains almost constant until þ reaches about
30 − 60%, then grows rapidly as þ → 1. This graph shows us that there is almost no
penalty for reducing ∆T to 10 − 20% of ∆R.

Once a source message is received at the next token site, it may have to wait up to ∆T

until the next bulk acknowledgment message is scheduled to be transmitted, and then
an additional ∆C until the receivers use the message. The probability that a receiver
has not acquired a message by ∆C has the same form as the probability that the
receiver has not acquired the message by ∆R. The upper bound of this component of
the message delay, ∆T + ∆C , normalized with respect to the message transfer time, is
plotted in figure 6. The equi-probability lines are the probability that a receiver has
not acquired the message by ∆C . As ∆T is reduced from ∆init , the sum first decrease
because ∆C is increasing slowly. However, as þ → 1, ∆C starts increasing quickly
and the sum increases. There is a value of ∆T that minimizes the sum, but the
minimum is broad, so that the exact value of ∆T is not critical.
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Fig. 6. Maximum delay from reception at token site to commit, ∆C + ∆T versus
token passing period ∆T for probabilities that a receiver does not have a
message by the commit time from 10−12 to 10−2.

There are likely to be different penalties associated with a message arriving after the
commit time and a system with the components operating properly entering a
reformation. The quality of the information provided by a receiver may be adequate
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if 10−3 or 10−2 of the messages arrive after they are scheduled to be used. However, in
a system with 100 receivers, if each receiver places the system in reformation with
probability 10−2 each time the token is passed, the system will be placed in
reformation after most token passes, and will spend most of its time in reformation.
Therefore, ∆C and ∆R should be selected separately.

Suppose that the system can tolerate 10−4 of the messages arriving after they are
scheduled to be used. From figure 6, the minimum of ∆T + ∆C is approximately 14,
and is achieved when ∆T is about 3. If we also require that Pref = 10−10, from figure
5, the delay until we enter reformation, ∆R, is about 26, only 2 greater than it was for
∆init , as noted by the dashed line in figure 5. If we try to meet both constraints with
∆C = ∆R, ∆T ≈ 4, ∆T + ∆C ≈ 29, and ∆R ≈ 25. The reformation delay improves by
about 4%, but the component of the message delay more than doubles. Finally, if
∆C = ∆R = ∆T , as in the initial system, ∆T + ∆C ≈ 48 and ∆R ≈ 24. The message
delay is about 3.5 times as large as it is in the system with independent selections,
while the reformation delay improves by less than 8%. This example shows the
importance of separating the selection of the delay.

6 Conclusion

We have shown that the guaranteed delivery delay in T-RMP can be reduced by
combining the retry counters used to recover the token passing message and the
missing source messages, and by using different time intervals to pass the token, ∆T ,
commit messages, ∆C , and to enter the reformation process, ∆R. It is instructive to
determine the reductions using reasonable numbers.

In original system ∆T = ∆C = ∆R, and the same number of retries nr is allowed to
recover the token passing message and the source messages. The maximum time
from the reception of a source messages until it committed by all of the receivers is
∆S = ∆T + ∆C . In the initial system, ∆T = (2nr+. 5)∆N , where nr is the number of
retries used to recover a missing message, and ∆N is the nominal round trip network
delay that we use to retransmit message recovery requests. The factor of 2 results
from the two separate message recovery processes, and the factor .5 is the time that a
receiver waits for the token passing message before initiating the recovery process.
When the retry count for the two recovery processes are combined and PL << 1, the
total number of retries is limited to nt = nr + 1, so that ∆T = (nr + 1. 5)∆N .

In typical ARQ protocols nr = 3. Therefore, ∆S in the combined system is
4. 5

7. 5
= . 6

as large as in the original system. If the nominal round trip delay is one second, the
maximum source delay is 13 seconds in the original system and 9 seconds in the
combined system.

In the figures in section 5 all of the delays are normalized with respect to ÿ s. If the
selection of nr = 3 and a nominal network delay of 1 second results in a probability of
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erroneous reformation = 10−10, then, from the example at the end of section 5,
∆T = ∆C = ∆R = 24 ÿ s. If we select the three periods independently, and allow 10−4 of
the messages to arrive at some receivers after they have been committed by other
receivers, then we can set ∆T = 3 ÿ S , ∆C = 11 ÿ S , and ∆R = 28 ÿ S , and maintain
Pr = 10−10. This reduces ∆S from 48 to 14, and the maximum source delay from 9
seconds to 2. 625 seconds.

The two protocol modifications that we have studied provide a reduction in the
delivery delay, in this example, of nearly 80%. It is worth noting that the guarantee is
approaching the nominal network delay, so it is unlikely that further protocol
modification will provide large improvements. In order to provide stronger delay
guarantees we have to increase the number of retries in order to decrease the nominal
network delay toward ÿ s, or improve the operation of the network to reduce the actual
network delay.
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