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Abstract. This paper studies and discusses the presence of LRD in
network traffic after classifying flows into traffic aggregates. Following
DiffServ architecture principles, generic QoS application requirements
and the transport protocol in use, a classification criterion of Internet
traffic is established. Using fractal theory, the resulting traffic classes are
analysed. The Hurst parameter is estimated and used as a measure of
traffic burstiness and LRD in each traffic class. The traffic volume per
class and per interface is also measured. The study uses real traffic traces
collected at a University of Minho major backbone router in different
periods of network activity.

1 Introduction

The diversity of quality of service (QoS) requirements of the actual and emer-
gent services will force the network to differentiate traffic so that an adequate
QoS level is offered. One of the most promising solutions proposed by the In-
ternet Engineering Task Force (IETF) is the Differentiated Services architecture
(DiffServ) [1], which aggregates traffic in a limited number of classes of service
according to QoS objectives. This new network traffic paradigm poses renewed
interest and challenge to network traffic analysis and characterisation. Although,
several other studies focus on general Internet traffic characterisation, the effects
of aggregating traffic in classes are still unclear. Will a particular traffic class be
responsible for the behaviour expressed in [2]? Does aggregation affect bursti-
ness at network nodes and links? The major objective of our work is to study
fractal properties such as the long-range dependence (LRD) in Internet traffic
aggregates.
Netflow[3] traffic samples collected at different time periods of network activ-

ity in a backbone router at the University of Minho were used. After establishing
a traffic classification criterion based on a DiffServ model multi-field approach,
all the samples are analysed applying that criterion. The time characteristics of
each traffic class are studied resorting to the Mathematica software.
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2 The DiffServ Model

In the DiffServ model, network traffic is classified and marked using the DS-field
[11]. This identifier determines the treatment or Per-Hop-Behaviour (PHB) [4,5]
traffic will receive in each network node. The IETF has proposed the Expedited
Forwarding PHB [4] and the Assured Forwarding PHB Group [5] (EF and AF
PHBs), besides best-effort (BE PHB). The EF PHB can be used to build ser-
vices requiring low loss, reduced delay and jitter, and assured bandwidth. The
AF PHB group, consisting of four classes, can be used to build services with
minimum assured bandwidth and different tolerance levels to delay and loss.

3 Network Traffic Characterisation

The knowledge of the network traffic characteristics as a whole and, in particular,
of traffic aggregates is relevant to allow a proper network resources allocation and
management, to help traffic engineering, traffic and congestion control, and to
specify services realistically. In our study, the analysis is based on the fractal time
series theory since recent studies related to the characterisation and modelling
of network traffic point to the presence of self-similarity and LRD. This last
property may directly affect the items highlighted above, with strong impact on
queuing and on the nature of congestion [6].

3.1 Fractal Traffic Properties

Self-similarity expresses the invariance of a data structure independently of the
scale that data is analysed. From a network traffic perspective, self-similarity
expresses a new notion of burstiness, i.e. there is no natural length for a burst
and bursty structure of traffic is maintained over several time scales.
As an example of processes which exhibit self-similarity and LRD, one may

consider X(t) , an asymptotically second order self-similar stochastic pro-
cess, with Hurst parameter 1

2 < H < 1 , i.e., limm→∞ γ(k) = ((k + 1)2H −
2k2H +(k − 1)2H)σ2

2 . X(t) has the following properties: long-range dependence -
the autocorrelation function ρ(k) decays hyperbolically (ρ(k) is non-summable)
limk→∞

ρ(k)
ck−β = 1; slowly decaying variances - the variance of the aggregated

series processes X(m), X
(m)
k = 1

m

∑km
i=km−m+1 Xi(k = 1, 2, ... and m = 1, 2, ...),

is expressed by var(X(m)) ∼ var(X)m−β , with c > 0 constant, β = 2 − 2H,
0 < β < 1.
H is commonly used to measure LRD, and a valuable indicator of traffic

burstiness (burstiness increases with H). If 1
2 <H< 1 then an infinite persistence

(indicating LRD) can be noticed. If 0 <H< 1
2 then no-persistent behaviour

occurs, whereas if H= 1
2 the variables are independent.

There are several methods to estimate the H parameter [7,2]. While methods
such as the test of variances, the R/S statistic or the periodogram are based
on graph analysis, the Whittle’s estimator provides an analytical method to
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estimate H. Although the limitation of working with finite data samples and the
error probability associated with graph based methods, they are widely used. The
test of variances, which was used in this study, is based on the slowly decaying
variance property, and H is obtained by H = 1− β

2 resorting to a log-log plot of
(var(Xm), var(X)m−β).

3.2 Collecting and Preparing Traffic Samples

Traffic samples were collected from a major backbone router located at the
Department of Informatics in University of Minho, using Cisco NetFlow tool [3].
NetFlow considers a flow as a unidirectional stream of packets from a source to
a destination and records in each entry timing information, fields such as the
source and destination IP addresses, port numbers, the protocol identifier, the
input and output interfaces, and the number of packets and bytes sent.
The collection of traffic was carried out along different time periods and

several days. These time periods were chosen reflecting typical levels of network
activity (low: from 2 a.m. to 3 a.m.; medium: from 1 to 2 p.m. and from 10 to
11 p.m.; high: from 10 to 11 a.m. and from 3 to 4 p.m.). Each one-hour traffic
sample is filtered by output interface according to the classification criterion
presented in section 3.3 for different time intervals (100ms, 500ms, 1s and 10s).
This process resulted in around 150 sample sets for analysis.

3.3 Traffic Classification Criterion

Due to economical and technical reasons the definition of a traffic classification
criterion is a subjective task. For instance, for identical traffic types, a client
may be willing to pay more than other to obtain a better service quality. More-
over, when a criterion is based on TCP/UDP/IP packet headers both packet
fragmentation1, packet encryption and the use of negotiated or unregistered ap-
plication ports difficult classification2. Therefore, a classification criterion should
be generic enough to be easily adopted and implemented. Most of the criteria sug-
gest distinct classes for UDP and TCP traffic so that non-reactive and reactive
applications do not compete for the same resources. Some go further suggesting
that the duration of flows, the transmission rate and packet size characteristics
should also be considered [9]. A classification method based on QoS application
requirements such as delay or loss sensitivity is also proposed [10].
Considering the aspects above and the Type of Service (ToS) proposed for

classical applications [10], our classification criterion is oriented to traffic aggre-
gation which can easily be mapped to a class-based QoS architecture. As a first
1 While fragmentation of UDP traffic is increasing, TCP traffic (around 85% of Inter-

net traffic [8]) is virtually not fragmented due to the widespread use of MTU path
discovery techniques and relatively small default packet sizes.

2 The use of a modified IP Encapsulating Security Payload (which leaves protocol
ports unchanged), the analysis of traffic at the control channels (which uses well-
known ports) and/or the applications’ usual range of ports or addresses might be
possible solutions.
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approach, the classification process distinguishes TCP from UDP traffic, and
then, the generic applications requirements are taken into account. A filtering
process based on more detailed rules to differentiate specific or proprietary ap-
plications (e.g. NetMeeting, Cisco IP/TV, and many other unicast or multicast
applications) was left for further study. The resulting traffic classes are:

– Class 1 - delay sensitive TCP traffic, resulting from interactive protocol
applications such as Telnet, SSH or FTP control;

– Class 2 - loss and throughput sensitive TCP traffic, resulting from bulk
transfer protocol applications such as FTP data, DNS zone transfers, SMTP,
POP, IMAP, NNTP;

– Class 3 - essentially, HTTP traffic. Other TCP traffic not included in classes
1, 2 and 4 (a reduced volume) is mapped to this class;

– Class 4 - priority traffic e.g. routing or management protocols (TCP/UDP);
– Class 5 - generic UDP traffic e.g. TFTP, DNS, POP, IMAP or HTTP/UDP;
– Class 6 - traffic from applications using transient ports (not allowing their
classification) or UDP ports not covered by classes 4 and 53.

There is not a direct mapping between the defined classes and the DiffServ
PHBs. Such mapping would depend on the administrative and contractual ser-
vice policies. However, a possible match could be: classes 1 and 3 supported by
high priority AF PHBs; class 4 by EF PHB; classes 2 and 5 by BE or low priority
AF PHBs; class 6, could be either EF or AF depending on the relevance given
to the diversity of applications.

4 Statistical Data Analysis

4.1 Traffic Volumes

Table 1 presents the percentage of traffic each class contributes for the total
load in the router. The results show that the only class which contents is not
clearly identified (Class 6) represents a small amount of traffic4, which shows
the broadness of the classification criterion proposed. As expected, classes 2 and
3, including mainly bulk and web traffic respectively, contribute heavily to the
global router load. The results also show a correlation between the percentages
of packets and bytes for all classes, although, classes 2 and 5 denote the presence
of large and small packet sizes, respectively.

3 According to [8], traffic from Real Audio and online game applications is likely the
most significant one can consider in this class. Other real-time unicast/multicast
traffic is also included here.

4 For this reason, the statistical analysis of this class will be considered in a later stage
of our study.
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Table 1. Traffic volume per class

class 1 2 3 4 5 6
bytes 2.31 % 26.40 % 67.04 % 0.01 % 1.67 % 2.67 %

packets 2.37 % 18.95 % 68.41 % 0.04 % 5.94 % 4.27 %

4.2 Testing Long-Range Dependence

In order to analyse statistically whether a particular traffic class exhibits LRD
tests of variance and autocorrelation analysis were carried out. For most of the
samples, these tests illustrate similar results both for the analysis of the time
series of packets and bytes.

Table 2. Percentage of samples and traffic volume with: a) H < 0.45, b) 0.45 ≤ H ≤
0.5, c) 0.5 < H < 0.7, d) H ≥ 0.7.

Perc. of Samples Traffic Volume
classes a) b) c) d) a) b) c) d)

1 76.5% 0.0% 17.6% 5.9% 99.3% 0.0% 0.6% 0.1%
2 50.0% 6.7% 30.0% 13.3% 37.5% 3.3% 43.7% 15.5%
3 17.2% 6.9% 20.7% 55.2% 4.9% 6.6% 7.5% 81.0%
4 91.7% 8.3% 0.0% 0.0% 98.9% 1.2% 0% 0.0%
5 40.9% 18.2% 22.7% 18.2% 37.0% 30.4% 19.0% 13.7%

For each class, Table 2 shows the percentage of samples and the corresponding
traffic volume for H within specific intervals when submitted to the variance
analysis. The analysis of these tables demonstrates that distinct classes can
behave very differently. Note that most of the class 3 traffic volume is included
in these samples. Class 3 (HTTP traffic) is clearly the one showing the higher

Table 3. Class 3: Percentage of samples and traffic volume with an estimate H > 0.5.

Perc. of Samples Traffic Volume
Network activity 0.5 < H < 0.7 H ≥ 0.7 0.5 < H < 0.7 H ≥ 0.7

High 14.3% 78.6% 4.0% 95.5%
Medium 33.3% 66.7% 1.6% 98.4%

Low 22.2% 11.1% 25.6% 14.3%

degree of burstiness. Most of the samples (76%) exhibit an H > 0.5, and 55%
of them have an H > 0.7. Table 3 extends this analysis to the activity periods
defined in section 3.2. Similar analysis was also carried out for the other classes.
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It is notorious that H increases with network activity, which is consistent
with [7]. Although the above tables do not differentiate the results by interface,
the analysis of classified traffic per interface shows the same tendency. Excluding
class 2, the relation between H and the traffic volumes is not clear for the remain-
ing classes which may indicate an application type dependence. In fact, class 1
behaves in opposite way, and class 4 does not show evidence of burstiness for
the different activity periods. This can be due to the regular nature of traffic it
emcompasses (e.g. routing traffic). As regards the autocorrelation, almost all the
samples with autocorrelation functions decaying slowly to zero (which suggests
LRD) had an H above 0.5 in the variance time plots, which is consistent.

5 Conclusions

In this study, the Hurst parameter was used to measure LRD in real traffic sam-
ples classified according to a proposed criterion. The values for H were deter-
mined for the defined traffic classes and for periods of different network activity.
The results show that classes 2 and 3 (bulk transfer and HTTP traffic) play

a major role in the total load per interface. In particular, Class 3 is clearly the
one showing a higher evidence of burstiness, which increases with traffic load.
While Class 2 has similar characteristics, Class 1 behaves in opposite way. Class 4
presents an estimated H below 0.5 independently of the network activity period.
For most of the samples, the tests illustrate similar results either analysing

the time series of packets or bytes.
Currently, a larger set of samples are being analysed to consolidate these

results. Obtaining complementary statistics is also a matter of concern.
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