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Abstract. This paper presents bounds on the quality of partitions in-
duced by space-filling curves. We compare the surface that surrounds
an arbitrary index range with the optimal partition in the grid, i. e. the
square. It is shown that partitions induced by Lebesgue and Hilbert
curves behave about 1.85 times worse with respect to the length of the
surface. The Lebesgue indexing gives better results than the Hilbert
indexing in worst case analysis. Furthermore, the surface of partitions
based on the Lebesgue indexing are at most 5

2·√3
times larger than the

optimal in average case.

1 Introduction

Data structures for maintaining sets of multidimensional points play an impor-
tant role in many areas of computational geometry. While for example Voronoi
diagrams have been established for efficient requests on neighborhood relation-
ships, data structures based on space-filling curves are often used for requests on
axis aligned bodies of arbitrary size. The aim of the requests is to find all points
located in such multidimensional intervals. Those types of requests are needed in
many applications like N-body simulations [12], image compression and brows-
ing [10, 4], databases [2], and contact search in finite element analysis [5]. An
overview on this and other techniques for range searching in computational ge-
ometry is given in [1]. Space-filling curves have other locality properties which
are e. g. useful in parallel finite element simulations [3, 7].

Space-filling curves are geometric representations of bijective mappings
M :  {1, . . . , Nm}→ {1, . . . , N}m. The curve M traverses all Nm cells in the
m-dimensional grid of size N . An (historic) overview on space-filling curves is
given in [11]. Experimental work and theoretical analysis have shown, that algo-
rithms based on space-filling curves behave well on most inputs, while they are
not well suited for some special inputs. Therefore, an analysis for the average
case is often more important than for the worst case.

Due to the varying requirements on the locality properties, different metrics
have been used to qualify, compare, and improve space-filling curves. A major
metric for the analysis of the locality of space-filling curves is the ratio of index
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interval to maximum distance within this index range. Results are published for
different indexing schemes like Hilbert, Lebesgue, and H-indexing for Manhattan
metric, Euclidean metric, and maximum metric [6, 9].

Other examinations concentrate on the number of index intervals which have
to be determined for a given request region. Sharp results are given in [2] for
squares in two-dimensional space. The costs for arbitrary shaped regions is dis-
cussed in [8].

Here we examine the surface of a partition which is induced by an interval of
a space-filling curve. Practical results of this relationship for uniform grids and
unstructured meshes can be found in [14]. We define a quality coefficient which
represents a normed value for the quality of the induced partition in an uniform
grid of size N ×N . We use the shape of an optimal partition, the square, as a
reference:

Definition 1 (quality coefficient). Let curve be an indexing scheme, p an
index range, S(p) the surface of a partition and V (p) = |p| the size (volume) of
it. Ccurve(p) defines the quality coefficient of the partition given by index range
p:

Ccurve(p) =
Scurve(p)

4 ·√V (p)
(1)

This formulation can be extended to a quality coefficient of an indexing scheme:

Ccurve
max = maxp{Ccurve(p)} (2)

Ccurve
avg = avgp{Ccurve(p)} (3)

Definition 1 implies that C(p) ≥ 1  for all indexing schemes.

2 Lebesgue Curves

Figure 1 illustrates the recursive definition of the Lebesgue indexing. The result-
ing curve is also known as bit interleaving or Z-code. In the following the edges
of cells are assigned a level, depending on the step in which they were introduced
during the recursive construction. The lines of the final step are of level 0. In the
example shown dashed lines are of level 1, dotted lines of level 0. It is obvious
that an arbitrary edge is of level l with an asymptotic probability of 2−(l+1).

Fig. 1. Production rule for Lebesgue indexing.
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Fig. 2. Construction of a lower bound for Lebesgue indexing.

2.1 Lower Bound on Worst-Case Partitions

Theorem 1. For the Lebesgue curve the quality coefficient is larger than or

equal to 3 ·
√

3
8 − ε with decreasing ε for increasing partition size.

Proof. We construct a partition of size V and surface S which follows the
Lebesgue curve and gives the stated bad quality: The symmetric partition is split
by a high level border. Each half contains squares of size 4k, 4k−1, 4k−2, . . . , 41,
40. The first half of the partition is illustrated in Fig. 2. It follows:

V = 2 · 4k+1 − 1

3
and S = 2 · 6 · 2k − 4 . (4)

The quality coefficient of this partition is given by

S

4 ·√V >
3

2
·
√

3

2
· 2k − 4

2k
= 3 ·

√
3

8
− ε ≈ 1.83 . (5)

',

2.2 Upper Bound on Worst-Case Partitions

For the determination of an upper bound we examine partitions which start at
the lower left corner of the grid. Due to the construction scheme the partition is
always contiguous and its surface is equal to the surface of its bounding box.1

We analyze the surface of those partitions with respect to a coarse granularity,
to be able to examine a finite number of cases.

Lemma 1. For each partition p = [1, V ] induced by the Lebesgue indexing
CLebesgue

max ≤ 12
4·√5

.

Proof. For a given partition size V chose k ∈ IN that 4 · 4k < V ≤ 16 · 4k.
For each V in the interval we can determine v with v · 4k < V ≤ (v + 1) · 4k.
The surface S(p) of V is smaller than or equal to the surface of the partition
[1, (v+1)·4k]. The following table states upper bounds for surfaces of partitions v
in granularity 2k called s with s·2k ≥ S (values for v < 4 are used in Theorem 2):

1 This fact does not apply to all indexing schemes, e. g. Hilbert indexing.
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v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
s 4 6 8 8 10 12 12 12 14 14 16 16 16 16 16 16

S

4 ·√V ≤ s

4 ·√v ≤
12

4 ·√5
≈ 1.34 (6)

It is obvious that the equation holds for all unexamined partitions smaller than
4 · 40, too. ',
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Fig. 3. Partition within a coarse structured Lebesgue indexing.

Example 1. Figure 3 shows the maximal partition induced by the Lebesgue in-
dexing for v = 4. All partitions with size V , 4 · 4k < V ≤ 5 · 4k are covered in
this case. For all those partitions S ≤ 10 · 2k holds. It follows s = 10.

For the analysis of an arbitrary partition p within the Lebesgue indexing we
use the fact that the curve is split at most into two sub-curves. The second part
only has cells which lie in the same or a more right column and in the same or an
upper row. It behaves like the partitions examined in Lemma 1. The same holds
for the first part due to the symmetry of the curve. A partition p is examined
as partitions p1 and p2 with p = p1 ◦ p2 and V = V1 + V2. Again, the analysis is
done on the coarse granularity used above.

Theorem 2. CLebesgue
max ≤ 7

2·√3
.

Proof. From V = V1 + V2 follows 3 ≤ v1 + v2 ≤ 15 with v1, v2 ∈ [0, 15]. For the
quality coefficient holds

C(p1 ◦ p2) ≤ s1 + s2
4 ·√v1 + v2

. (7)

The enumeration of all possible combinations for v1 and v2 shows that the max-
imum is achieved for v1 = 1 and v2 = 2. It follows s1 = 6 and s2 = 8 (compare
table of Lemma 1) and

C(p1 ◦ p2) ≤ 6 + 8

4 ·√1 + 2
=

7

2 ·√3
≈ 2.02 . (8)

',
The analysis of the upper bound is an enumeration of a finite number of

cases with a maximum determination. We can shift the examined interval of
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partition size V by a refinement of the underlying granularity with the help of
computational evaluation. For the listed refinement steps the result improves
towards the following values:

4 · 4k < V ≤ 16 · 4k ⇒ CLebesgue
max ≤ 6 + 8

4 ·√1 + 2
< 2.021 (9)

16 · 4k < V ≤ 64 · 4k ⇒ CLebesgue
max ≤ 24 + 24

4 ·√21 + 21
< 1.852 (10)

256 · 4k < V ≤ 1024 · 4k ⇒ CLebesgue
max ≤ 192 + 192

4 ·√1365 + 1365
< 1.838 (11)

Corollary 1. For the quality coefficient of the Lebesgue indexing holds:

1.837 < 3 ·
√

3

8
− ε ≤ CLebesgue

max ≤ 96√
2730

< 1.838 (12)

2.3 Upper Bound in Average Case

In this section we will focus on the average case. As stated in the introduction,
most algorithms based on space-filling curves profit from a good behavior in the
average case of all performed operations. Due to space limitations we present
an asymptotical estimation. An exact but rather complex solution is presented
in [13].

p

q

Fig. 4. Neighboring levels for an arbitrary cell within a grid structured by Lebesgue
indexing.

For the evaluation of the surface the number of edges common to two cells
is needed. It has to be subtracted twice from the number of all edges 4 · V . A
cell has an inner edge on the right hand or upper side, if the index of the right
or upper cell is small enough to be still a member of the partition. Given an
arbitrary situation illustrated in Fig. 4 with levels p on the right hand and q on
the upper side, the indices of the right and upper cell are Rq = 4 · 4q−1

3 + 2 and

Up = 2 · 4p−1
3 + 1.

Lemma 2. For the surface of a partition induced by the Lebesgue curve holds
in average case:

S ≤ 3
2k
V + 8

3 · 2k − 5
3 · 1

2k
for V ∈

[
2
4k − 1

3
+ 1, 4

4k − 1

3
+ 2

[
and

S ≤ 2
2k
V + 4 · 2k − 1

2k
for V ∈

[
4
4k − 1

3
+ 2, 2

4k+1 − 1

3
+ 1

[
,with k ∈ IN0 .
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Proof. The number of cells with a neighbor at level l is given by max{V −Rl, 0}
and max{V −Ul, 0} for right and upper neighbor, resp. These terms can be used
for a summation on all levels and its corresponding probabilities.

S ≤ 4V − 2
∞∑
i=0

1

2i+1
max{V − Uk, 0}− 2

∞∑
i=0

1

2i+1
max{V −Rk, 0} (13)

For further examinations of this formulation the evaluated space is split into two

classes of intervals: I1 = [2 4k−1
3 +1, 4 4k−1

3 +2[ and I2 = [4 4k−1
3 +2, 2 4k+1−1

3 +1[.
The size of the surface for all partitions p in intervals of class I1 is given by:

S ≤ 4V −
k∑

i=0

1

2i

(
V − 2

4i − 1

3
− 1

)
−

k−1∑
i=0

1

2i

(
V − 4

4i − 1

3
− 2

)

= 4V −
k∑

i=0

((
V − 1

3

)
1

2i
− 2

3
· 2i
)
−

k−1∑
i=0

((
V − 2

3

)
1

2i
− 4

3
· 2i
)

= 4V −
(
V − 1

3

)(
2− 1

2k

)
+

2

3

(
2k+1 − 1

)

−
(
V − 2

3

)(
2− 1

2k−1

)
+

4

3

(
2k − 1

)

=
3

2k
V +

8

3
2k − 5

3

1

2k
(14)

Using the same arithmetic technique, for interval class I2 holds:

S ≤ 4V −
k∑

i=0

1

2i

(
V − 2

4i − 1

3
− 1

)
−

k∑
i=0

1

2i

(
V − 4

4i − 1

3
− 2

)

=
2

2k
V + 4 · 2k − 1

2k
(15)

',

It has to be kept in mind that the occurrence of the different edges of level l
is not exactly p(l) = 1/2l+1. For l = 0 the possibility is larger than p(0), for all
other levels it is smaller than p(l). This results in an underestimation of inner
edges and therefore in an overestimation for the size of the surface. For large
grids the calculated values converge to the exact solutions (comp. [13]). However,
the quality of the given estimation does not depend on the size of the partition.

Theorem 3. The quality coefficient of the average case for the Lebesgue index-
ing scheme is less than or equal to 5

2·√3
.

Proof. For the determination of the upper bound for the average case the limits
of the intervals of classes I1 and I2 has to be examined. For the upper limit of
I1 we get:
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V = 4
4k−1 − 1

3
+ 2⇔ √

3V − 2 = 2k (16)

Using the result of Lemma 2 gives:

S ≤ 4

2k
V + 2

(
2k − 1

2k

)
=

4V − 2√
3V − 2

+ 2 ·√3V − 2 =
10V − 6√
3V − 2

≤ 10√
3

√
V (17)

The corresponding lower limit of I1 (eq. to upper limit of I2) results in:

S ≤ 7
√

2√
3

·
√
V (18)

The surface size is obviously larger in the first case. The quality coefficient for
the average case is:

CLebesgue
avg ≤ 10√

3
· 1

4
=

5

2 ·√3
≈ 1.44 (19)

',

2.4 Summary

In Fig. 5 the analytical results are compared with computational results. Within
a uniform 1024 × 1024 grid all possible partitions of size V (volume) are exam-
ined and the maximum, minimum, and average surface size is determined. The
resulting values are plotted as solid lines while the analytical formulations for
the worst case and average case are indicated by dashed lines. Two positions
are tagged with an exclamation mark, where the computational results are very
close to the analytical formulations.
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Fig. 5. Locality of partitions induced by the Lebesgue indexing.
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3 Hilbert Curves

The Hilbert curve is presumably the most used and studied space-filling curve.
It was introduced by Peano and Hilbert in the late 19th century [11]. It is known
to be highly local in terms of several metrics mentioned in the introduction. The
recursive definition of the curve is illustrated in Fig. 6. For the locality metric
based on the quality coefficient this curve is much harder to analyze because the
distance within the indexing for neighboring cells depends on the context during
construction. An important result is that the lower bound on CHilbert

max is larger
than the upper bound on CLebesgue

max .

Fig. 6. Production rule for Hilbert indexing.

3.1 Lower Bound on Worst-Case Partitions

Theorem 4. For the Hilbert curve the quality coefficient is larger than or equal

to 3
√

5
13 .

Proof. We construct a partition of size V and surface S which follows the Hilbert
curve and gives the stated bad quality: Let k be an even number. The center of
the partition is given by a square of size 4k+1. On two sides of it 3 squares of
sizes 4k, 4k−2, . . . , 42, 40 are appended. Figure 7 shows the construction of the
partition and its location within the Hilbert curve. It follows:

V = 4k+1 + 2

k/2∑
i=0

3 · 42i =
52

5
4k − 2

5
(20)

and

S = 8 · 2k + 12

k/2∑
i=0

22i = 24 · 2k − 4 . (21)

The quality coefficient of the partition is given by

S

4 ·√V =
24 · 2k − 4

4 ·
√

52
5 · 4k − 2

5

>
24 · 2k

4 ·
√

52
5 · 2k

= 3 ·
√

5

13
≈ 1.86 . (22)

',
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2 2k+1 k

Fig. 7. Construction of lower bound for Hilbert indexing.

3.2 Summary

Figure 8 compares the lower bound on CHilbert
max with computational results in a

1024×1024 grid. It can be expected that the determined lower bound is close to
the exact solution of CHilbert

max . The dashed line for C = 1.38 seems to be an upper
bound in the average case. This value would be lower than the corresponding
for the Lebesgue indexing which proves the high locality of the Hilbert curve in
another metric.
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Fig. 8. Locality of partitions induced by the Hilbert indexing.

4 Concluding Remarks

The shown analytical results indicate that partitions based on the Lebesgue
space-filling curve have good quality. We proved that they are slightly superior
to Hilbert curves in the worst case. Computational results indicate that Hilbert
curves behave better in average case. This is due to the fact that index intervals
of the Hilbert curve are always connected.

It appears to be much harder to give sharp bounds for the Hilbert in-
dexing than for Lebesgue indexing. We are near by an upper bound for

CHilbert
max ≤ 26 2

3

8·
√

41
15

≈ 2.02, which still means a weaker result than for the Lebesgue

curve.
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Obviously, an open question is the lower bound on the quality coefficient for
an arbitrary indexing scheme. It is hard to argue whether this bound is closer to
the coefficients of the Lebesgue and Hilbert indexings or to 1, the optimal value
given by the square. It is easy to generate bad cases for very small partitions,
e. g. V = 3. This partition has a surface of at least 8. It follows C = 8

4·√2
=
√

2.

Excluding small volumes we can generate partitions with much lower quality
coefficients. But it is an open question whether it is true for arbitrary partitions
of an indexing scheme.
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