
Balanced Partition of Minimum Spanning Trees

Mattias Andersson1, Joachim Gudmundsson2�, Christos Levcopoulos1, and
Giri Narasimhan3

1 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.
christos@cs.lth.se, dat97mae@ludat.lth.se

2 Department of Computer Science, Utrecht University, PO Box 80.089, 3508 TB
Utrecht, the Netherlands. joachim@cs.uu.nl

3 School of Computer Science, Florida International University, Miami, FL 33199,
USA. giri@fiu.edu.

Abstract. To better handle situations where additional resources are
available to carry out a task, many problems from the manufacturing
industry involve “optimally” dividing a task into k smaller tasks. We
consider the problem of partitioning a given set S of n points (in the
plane) into k subsets, S1, . . . ,Sk, such that max16i6k |MST (Si)| is min-
imized. A variant of this problem arises in the shipbuilding industry [2].

1 Introduction

In one interesting application from the shipbuilding industry, the task is to use
a robot to cut out a set of prespecified regions from a sheet of metal while mini-
mizing the completion time. In another application, a salesperson needs to meet
some potential buyers. Each buyer specifies a region (i.e., a neighborhood) within
which the meeting needs to be held. A natural optimization problem is to find
a salesperson tour of shortest length that visits all of the buyers’ neighborhoods
and finally returns to his initial departure point. Both these problems are related
to the problem known in the literature as the Traveling Salesperson problem with
Neighborhoods (TSPN) and which has been extensively studied [4, 5, 7–10]. The
problem (TSPN) asks for the shortest tour that visits each of the neighborhoods.
The problem was recently shown to be APX-hard [8].

Interesting generalizations of the TSPN problem arise when additional re-
sources (k > 1 robots in the sheet cutting problem, or k > 1 salespersons in the
second application above) are available. The k-TSPN problem is a generalization
of the problem where we are given k salespersons and the aim is to minimize the
completion time, i.e., minimize the distance traveled by the salespersons making
the longest journey.

The need for partitioning the input set such that the optimal substructures
are balanced gives rise to many interesting theoretical problems. In this paper we
consider the problem of partitioning the input so that the sizes of the minimum

� Supported by the Swedish Foundation for International Cooperation in Research
and Higher Education

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 26−35, 2002.
 Springer-Verlag Berlin Heidelberg 2002

spanning trees of the subsets are balanced. Also, we restrict our inputs to sets
of points instead of regions. More formally, the Balanced Partition Minimum
Spanning Tree problem (k-BPMST) is stated as follows:

Problem 1. Given a set of n points S in the plane, partition S into k sets
S1, . . . ,Sk such that the weight of the largest minimum spanning tree,

W = max
1�i�k

(|M(Si)|)

is minimized. Here M(Si) is the minimum spanning tree of the subset Si and
|M(Si)| is the weight of the minimum spanning tree of Si.

The paper is organized as follows. In section 2, we show that the problem is
NP-hard. In section 3, we present an approximation algorithm with approxima-
tion factor 4/3+ ε for the case k = 2, and with an approximation factor (2 + ε)
for the case k � 3. The algorithm runs in time O(n log n).

2 NP hardness

In this section we show that the k-Bpmst problem is NP-hard. In order to do
this we need to state the recognition version of the k-Bpmst problem:

Problem 2. Given a set of n points S in the plane, and a real number L, does
there exist a partition of S into k sets S1, . . . ,Sk such that the weight of the
largest minimum spanning tree,

W = max
1�i�k

(|M(Si)|) ≤ L?

In a computational model in which we can handle square roots in polynomial
time, such as the real-RAM model (which will be used for simplicity), this for-
mulation of the problem is sufficient in order to show that the k-Bpmst problem
is NP-hard. Note, however, that it may be inadequate in more realistic models,
such as the Turing model, where efficient handling of square roots may not be
possible. The computation of roots is necessary to determine the length of edges
between points, which, in turn, is needed in order to calculate the weight of a
minimum spanning tree. So in a realistic computational model the hardest part
may not be to partition the points optimally, but instead to calculate precisely
the length of the MST’s. Thus, in these more realistic computational models we
would like to restrict the problem to instances where the lengths of MST’s are
easy to compute. For example, this can be done by modifying the instances cre-
ated in the reduction below, by adding some points so that the MST’s considered
only contain vertical and horizontal edges.

The proof is done (considering the real-RAM model) by a straight-forward
polynomial reduction from the following recognition version of Partition.

27Balanced Partition of Minimum Spanning Trees

Problem 3. Given integers a = {a1 ≤ . . . ≤ an}, the recognition version of the
partition problem is: Does there exist a subset P ⊆ I = {1, 2, . . . , n} such that

#P = #I/P and
∑
j∈P

aj =
∑

j∈I/P

aj

We will denote #P by h, h = n/2. This version of Partition is NP-hard [3].

U1UV1 V 22

c) d)b)

iλiaδ +

a)

n

i

2

1

a’

a’

a’

a’

l

δ + a1

δ + an

γ
γ

i

i

λ

λ1

l

l’

ln

l’i

li

2
2

l’1
1

n

i

i

2

1

1

r

r

r

r

r’

r’

r’

2

Fig. 1. The set of points S created for the reduction. In Figure (a) all notations for
the points are given. Similarly, in Figure (b) the notations for the distances between
points are given. Figure (c) illustrates a class 1 partition, and (d) illustrates a class 2
partition.

Lemma 1. The k-Bpmst problem is NP-hard.

Proof. The reduction is done as follows. Given a Partition instance we create
a 2-Bpmst instance, in polynomial time, such that it is a yes-instance if, and
only if, the Partition-instance is a yes-instance. Obviously Partition then
polynomially reduces to 2-Bpmst. Given that the Partition-instance contains
n integers a1, . . . , an, we create the following 2-Bpmst instance. A set of points
S, as shown in Figure 1a is created, with inter point distances as shown in
Figure 1b. A closer description of these points and some additional definitions
is given below:

– a′ = {a′1, . . . , a′n}, where a′i = (0, iλ),
– l = {l1, . . . , ln}, where li = (−δ − ai, iλ),
– r = {r1, . . . , rn}, where ri = (δ + ai, iλ),
– l′ = {l′1, . . . , l′n−1}, where l′i is the midpoint on the line between li and li+1,
and

28 M. Andersson et al.

– r′ = {r′1, . . . , r′n−1}, where r′i is the midpoint on the line between ri and ri+1

We also define the following set of points, a∗ = {a′P [1], . . . , a
′
P [h]}. Further, let

λ = 11n(an + n) and let δ = 7n(an + n). Note that λ2
i � λ2 + a2

n which implies
that λi � 12n(an + n), which means that γi = λi/2 � 6n(an + n). Finally let
(see definition 2)

L = (
∑
i∈I

ai)/2 + n/2 · δ +
n−1∑
i=1

λi

Since the number of points in S is polynomial it is clear that this instance can
be created in polynomial time. Next we consider the ”if”, and the ”only if” parts
separately.

If If P exists and we have a yes Partition-instance it is clear that the
corresponding 2-Bpmst instance is also a yes-instance. This follows when the
partition S′

1 = a∗ + l + l′, S′
2 = S − S1 (a class 1 partition, as defined below)

is considered. The general appearance of M(S′
1) and M(S′

2) (see Figure 1c) is
determined as follows. The points l + l′ and the points r + r′ will be connected
as illustrated in Figure 1c, which follows from the fact that γi < δ < δ + a1.
Next consider the remaining points a′. Any point a′i will be connected to either
li (in M(S′

1)) or ri (in M(S′
2)), since ri and li are the points located closest to

a′i (follows since λ > δ + an). Thus,

|M(S′
1)| = |M(S′

2)| = (
∑
i∈I

ai)/2 + n/2 · δ +
n−1∑
i=1

λi

and we have that the created instance is a yes-instance.
Only if We have that P does not exist and we therefore want to show that

the created 2-Bpmst is a no-instance. For this two classes of partitions will be
examined:

– All partitions V1,V2 such that l + l′ ⊆ V1 and r + r′ ⊆ V2

– All other partitions U1,U2 not belonging to class 1.

We start by examining the first class (illustrated by Figure 1c). Note that an
optimal MST will contain the edges inM(V1) andM(V2) plus the edge between
a′1 and l1 or r1, hence |M(S)| = |M(V1)| + |M(V2)| + δ + a1. Note also that
|M(V1)| + |M(V2)| = 2 · L. For all partitions V ′

1 ⊆ V1,V ′
2 ⊆ V2 such that each

subset V ′
1,V ′

2 contains exactly |a′|/2 points from the set a′ it is clear, since P does
not exist, that max{|M(V ′

1)|, |M(V ′
2)|} > L. This is true also for the partitions

V∗
1 ⊆ V1,V∗

2 ⊆ V2 such that each subset does not contain exactly |a′|/2 points
from the set a′. To see this consider any such partition and the corresponding
subset V∗

i such that |V∗
i | = max{|V∗

1 |, |V∗
2 |}. We have that

|M(V∗
i)| ≥ δ + n/2 · δ +

n−1∑
i=1

λi > (
∑
i∈I

ai) + n/2 · δ +
n−1∑
i=1

λi > L

This implies that max{|M(V∗
1)|, |M(V∗

2)|} > L.

29Balanced Partition of Minimum Spanning Trees

Next consider the class 2 partitions (illustrated by Figure 1d). There is always
an edge of weight γi (1 ≤ i ≤ n) connecting the two point sets of any such
partition. This means that there can not exist a class 2 partition U1,U2 such that
max{|M(U1)|, |M(U2)|} ≤ L, because we could then build a tree with weight at
most 2 ·L+γi < |M(V1)|+ |M(V2)|+ δ+a1 = |M(S)|, which is a contradiction.
Thus, max{|M(U1)|, |M(U2)|} > L, which concludes this lemma.

3 A 2 + ε approximation algorithm

In this section a 2 + ε approximation algorithm is presented. Note also that
a straight-forward greedy algorithm, that partitions M(S) into k sets by re-
moving the k − 1 longest edges gives an approximation of k. The main idea
of the 2 + ε approximation algorithm is to partition S into a constant num-
ber of small components, test all valid combinations of these components and
give the best combination as output. As will be seen later, one will need an
efficient partitioning algorithm, denoted ValidPartition or VP for short. A
partition of a point set S into two subsets S1 and S2 is said to be valid if
max(|M(S1)|, |M(S2)|) � 2/3 · |M(S)|. The following lemma is easily shown [1]
using standard decomposition methods.

Lemma 2. Given a set of points S, VP divides S into two sets S1 and S2

such that (i) max{|M(S1)|, |M(S2)|} � 2
3M(S), and (ii) |M(S1)| + |M(S2)| �

|M(S)|. If VP is given a MST of S as input then it holds that the time needed
for VP to compute a valid partition is O(n).

3.1 Repeated ValidPartition

ValidPartition will be used repeatedly in order to create the small components
mentioned in the introduction of this section. Consider the following algorithm,
given a MST of S and an integer m. First divide M(S) into two components
using VP. Next divide the largest of these two resulting components, once again
using VP. Continue in this manner, always dividing the largest component cre-
ated thus far, until m components have been created. Note that in each division
the number of components increase by one. This algorithm will be denoted Re-
peatedValidPartition, or RVP for short. The following lemma expresses an
important characteristic of RVP.

Lemma 3. Given a minimum spanning tree of a set of points S and an integer
m, RVP will partition S into m components S1, . . . ,Sm such that
max(|M(S1)|, . . . , |M(Sm)|) � 2

m |M(S)|.
Proof. Consider the following algorithmA. Start withM(S) and divide with VP
until the weight of all components is less than or equal to 2

m |M(S)|. The order in
which the components are divided is arbitrary but when a component weighs less
than or equal to 2

m |M(S)| it is not divided any further. If it now could be shown
that the number of resulting components is at most m the lemma would follow.

30 M. Andersson et al.

This is seen when the dividing process of RVP is examined. Since RVP always
divides the largest component created thus far, a component of weight at most
2
m |M(S)| would not be divided unless all other components also have weight
at most 2

m |M(S)|. Further, VP guarantees that the two components resulting
from a division always have weights less than the divided component. Thus,
when m components have been created by RVP these m components would also
have weight less than or equal to 2

m |M(S)|. Therefore, the aim is to show that
algorithm A, given M(S), produces at most m components. The process can
be represented as a tree. In this tree each node represents a component, with
the root being M(S). The children of a node represent the components created
when that node is divided using VP. Note that the leaves of this tree represent
the final components. Thus the aim is to show that the number of leaves do
not exceed m. For this purpose we will divide the leaves into two categories.
The first category is all leaves whose sibling is not a leaf. Assume that there are
m1 such leaves in the tree. The second category is all remaining leaves, that is,
those who actually have a sibling leaf. Assume, correspondingly, that there are
m2 such leaves.

We start by examining the first category. Consider any leaf li of this category.
Denote its corresponding sibling si and denote by pi the parent of li and si.
Further to each li we attach a weight w(li) which is defined as w(li) = |M(pi)|−
|M(si)|. Since si is not a leaf it holds that |M(si)| > 2

m |M(S)|, and since VP is
used we know that |M(si)| � 2

3 |M(pi)|. Thus, |M(pi)| > 3
m |M(S)| which implies

that w(li) � 1
3 |M(pi)| > 1

m |M(S)| and ∑m1
i=1 w(li) > m1 · 1

m |M(S)|.
Next the second category of leaves is examined. Denote any such leaf l′i and its

corresponding parent p′i. Since there are m2 leaves of this category and each leaf
has a leaf sibling these leaves have in total m2/2 parent nodes. Further, for each
such corresponding parent component M(p′i) we have that |M(p′i)| > 2

m |M(S)|
(they are not leaves). Thus,

∑m2
i=1 |M(p′i)| > m2

2 · 2
m |M(S)| = m2 · 1

m |M(S)|.
Next consider the total weight of the components examined so far. We have

that m1 · 1
m |M(S)| + m2 · 1

m |M(S)| <
∑m1

i=1 w(li) +
∑m2

i=1 |M(p′i)| � |M(S)|,
which implies that m1 + m2 � m. Thus, the number of leaves do not exceed
m. ��

3.2 The approximation algorithm

Now we are ready to state the algorithm CA. As input we are given a set S of n
points, an integer k and a positive real constant ε. The algorithm differs in two
separate cases, k = 2 and k � 3. First k = 2 is examined, in which the following
steps are performed:

step 1: Divide M(S) into 4
ε′ components, using Rvp, where ε′ = ε

4/3+ε . The
reason for the value of ε′ will become clear below. LetW denote the heaviest
component created and let w denote its weight.

step 2: Combine all components created in step 1, in all possible ways, into two
groups.

31Balanced Partition of Minimum Spanning Trees

step 3: For each combination tested in step 2, compute the MST for each of its
two created groups.

step 4: Output the best tested combination

Theorem 1. For k = 2 the approximation algorithm CA produces a partition
which is within a factor 4

3 + ε of the optimal in time O(n log n).

Proof. Let V1 and V2 be the partition obtained from CA. Assume that S1 and
S2 is the optimal partition, and let e be the shortest edge connecting S1 with S2.
According to Lemma 3 it follows that w � 2/(4/ε′)|M(S)| = ε′

2 |M(S)|. We will
have two cases, |e| > w, and |e| � w, which are illustrated in Figure 2 (a) and
Figure 2 (b), respectively. In the first case every component is a subset of either

e

e

S

b)

21S 2S1S

a)

Fig. 2. The two cases for CA, k = 2. The edge e (marked) is the shortest edge con-
necting S1 with S2

S1 or S2. This follows since a component consisting of points from both S1 and
S2 must include an edge with weight greater than w. Thus, no such component
can exist among the components created in step 1. Further, this means that
the partition S1 and S2 must have been tested in step 2 of CA and, hence, the
optimal solution must have been found.

In the second case, |e| � w, there may exist components consisting of points
from both S1 and S2, see Fig. 2. To determine an upper bound of the approxima-
tion factor we start by examining an upper bound of CA. The dividing process
in step 1 of CA starts with M(S) being divided into 2 components M(S′

1) and
M(S′

2), such that max(|M(S′
1)|, |M(S′

2)|) � 2
3 |M(S)|. These two components

are then divided into several smaller components. This immediately reveals an
upper bound of |CA| � 2

3 |M(S)|. Next the lower bound is examined. We have:

|opt| � |M(S)| − |e|
2

� |M(S)|
2

− ε′ ·M(S)
2

� (1 − ε′)
M(S)
2

.

Then, if the upper and lower bound are combined we get:

|CA|/|opt| �
2
3 |M(S)|

(1− ε′)M(S)
2

� 4/3
1− ε′

� 4/3 + ε.

32 M. Andersson et al.

In the third inequality we used the fact that ε′ � ε
4/3+ε .

Next consider the complexity ofCA. In step 1M(S) is divided into a constant
number of components using VP. This takes O(n) time. Then, in step 2, these
components are combined in all possible ways. This takes O(1) time since there
are a constant number of components. For each tested combination there is a
constant number of MST’s to be computed in step 3. Further, since there are a
constant number of combinations and M(S) takes O(n log n) to compute, step
3 takes O(n log n) time. ��

Next consider k � 3. In this case the following steps are performed:

step 1: Compute M(S) and remove the k − 1 heaviest edges e1, . . . , ek−1 of
M(S), thus resulting in k separate trees M(U ′

1), . . . ,M(U ′
k).

step 2: Divide each of the trees M(U ′
1), . . .M(U ′

k) into
k·C
ε′ components, using

RVP. C is a positive constant and ε′ = ε
2+ε . The reason for the value of ε

′ will
become clear below. Denote the resulting components M(U1), . . . ,M(Ur),
where r = k·C

ε′ · k. Further set w = max{|M(U1)|, . . . , |M(Ur)|}.
step 3: Combine U1, . . . , Ur in all possible ways into 1, . . . , k groups.
step 4: For each such combination do:

– Compute the MST for each of its corresponding groups.
– Divide each such MST in all possible ways, using RVP. That is, each
MST is divided into 1, . . . , i(i ≤ k) components, such that the total
number of components resulting from all the divided MST’s equals k.
Each such division defines a partition of S into k subsets.

step 5: Of all the tested partitions in step 4, output the best.

S’

S

S

2
S

S’

S S

3

4 5

3

S’

2

1

1

Fig. 3. S1, . . . ,Sk is an optimal partition of S . All subsets that can be connected by
edges of length at most w are merged, thus creating the new set S ′

1, . . . ,S ′
k′

Theorem 2. For k � 3 the approximation algorithm CA produces a partition
which is within a factor of 2 + ε of the optimal in time O(n log n)

33Balanced Partition of Minimum Spanning Trees

Proof. The time complexity CA is the same as for the case k = 2. This follows
as a constant number of components are created and a constant number of
combinations and partitions are tested, hence the time complexity is O(n log n).

To prove the approximation factor we first give an upper bound on the weight
of the solution produced byCA and then we provide a lower bound for an optimal
solution. Combining the two results will conclude the theorem.

Consider an optimal partition of S into k subsets S1, . . . ,Sk. Merge all subsets
that can be connected by edges of length at most w. From this we obtain the sets
S′

1, . . . ,S′
k′ , where k′ � k (see Figure 3). Let m′

i denote the number of elements
from S1, . . . ,Sk included in S′

i. The purpose of studying these new sets is that
every component created in step 2 of CA belongs to exactly one element in
S′

1, . . . ,S′
k′ . A direct consequence of this is that a combination into k′ groups

equal to S′
1, . . . ,S′

k′ must have been tested in step 3.
Step 4 guarantees that M(S′

1), . . . ,M(S′
k′) will be calculated, and that these

MST’s will be divided in all possible ways. Thus, a partition will be made such
that each M(S′

i) will be divided into exactly m′
i components. This partitions

S into k subsets V1, . . . ,Vk. Let V be a set in V1, . . . ,Vk such that |M(V)| =
max1�i�k(|M(Vi)|). We wish to restrict our attention to exactly one element
of the set S′

1, . . . ,S′
k′ . Thus, we note that V is a subset of exactly one element

S′ in S′
1, . . . ,S′

k′ . Assume that M(V) was created in step 4 when M(S′) was
divided into m′ components using RVP. Thus, M(V) � 2

m′ |M(S′)|, according
to Lemma 3. Since the partition V1, . . . ,Vk will always be tested we have that
|CA| � |M(V)| � 2

m′ |M(S′)|.
Next a lower bound of an optimal solution is examined. Let |opt′| be the

value of an optimal solution for S′ partitioned into m′ subsets. Note that S′

consists of m′ elements from S1, . . . ,Sk. Assume w.l.o.g that S′ = S1+ . . .+Sm′ .
This means that S1, . . . ,Sm′ is a possible partition of S′ into m′ subsets. Thus,
|opt| � max1�i�m′(|M(Si)|) = |opt′|. Assume w.l.o.g. that e′1, . . . , e′m′−1 are the
edges in M(S) connecting the components in S′. We have:

|opt| � |opt′| � 1
m
(|M(S′)| −

m′−1∑
i=1

|e′i|) � 1
m
(|M(S′)| − (m′ − 1)w) (1)

To obtain a useful bound we need an upper bound on w. Consider the situa-
tion after step 1 has been performed. We have max1�i�k(|M(U ′

i)|) � |M(S)| −∑k−1
i=1 |ei|. Since each U ′

i is divided into
k·C
ε′ components we have that the result-

ing components, and therefore also w, have weight at most 2/(k·C
ε′) · (|M(S)| −∑k−1

i=1 |ei|), according to Lemma 3. Using the above bound gives us:

w

|opt| �
2/(k·C

ε′) · (|M(S)| − ∑k−1
i=1 |ei|)

1
k (|M(S)| − ∑k−1

i=1 |ei|)
� 2 · ε′

C
⇒ w � 2 · ε′

C
|opt| (2)

Setting C � 2 and combining 1 and 2 gives us:

|opt| � 1
m

(
|M(S′)| − (m′ − 1)2 · ε

′

C
|opt|

)
� (1− ε′)

|M(S′)|
m′ .

34 M. Andersson et al.

Combining the two bounds together with the fact that ε′ � ε/(2 + ε) con-
cludes the theorem.

|CA|/|opt| �
2

m′ |M(S′)|
(1− ε′) |M(S′)|

m′
� 2
1− ε′

� 2 + ε.

��

4 Conclusion

In this paper it was first showed that the k-BPMST problem is NP-hard. After
this had been determined the continued approach was to find an approximation
algorithm for the problem. The algorithm is based on partitioning the point
set into a constant number of smaller components and then trying all possible
combinations of these small components. This approach revealed a 4/3 + ε ap-
proximation in the case k = 2, and an 2 + ε approximation in the case k � 3.
The time complexity of the algorithm is O(n log n).

References

1. M. Andersson. Balanced Partition of Minimum Spanning Trees, LUNDFD6/NFCS-
5215/1–30/2001, Master thesis, Department of Computer Science, Lund University,
2001.

2. B. Shaleooi. Algoritmer för pl̊atskärning (Eng. transl. Algorithms for cutting sheets
of metal), LUNDFD6/NFCS-5189/1–44/2001, Master thesis, Department of Com-
puter Science, Lund University, 2001.

3. M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the
theory of NP-completeness, W. H. Freeman and Company, San Francisco, 1979.

4. E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
salesman problem. Discrete Applied Mathematics, 55:197–218, 1994.

5. A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for TSP with
neighborhoods in the plane. In Proc. 12th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2001.

6. M. R. Garey, R. L. Graham and D. S. Johnson. Some NP-complete geometric
problems. In Proc. 8th Annual ACM Symposium on Theory of Computing, 1976.

7. J. Gudmundsson and C. Levcopoulos. A fast approximation algorithm for TSP
with neighborhoods. Nordic Journal of Computing, 6:469-488, 1999.

8. J. Gudmundsson and C. Levcopoulos. Hardness Result for TSP with Neighbor-
hoods, Technical report, LU-CS-TR:2000-216, Department of Computer Science,
Lund University, Sweden, 2000.

9. C. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour and
network design problems. In Proc. 11th Annual ACM Symposium on Computa-
tional Geometry, pages 360–369, 1995.

10. J. S. B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A
Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

35Balanced Partition of Minimum Spanning Trees

	Introduction
	NP hardness
	A2+ε approximation algorithm
	Repeated ValidPartition
	The approximation algorithm

	Conclusion
	References

