
Towards a Theory of Software Protection

(Extended Abstract)

Oded Goldreich

Computer Science Department

Technion, Haifa 32000, Israel

ABSTRACT

Software protection is one of the most important issues concerning computer practice. The problem is

to sell programs that can be executed by the buyer, yet cannot be duplicated and/or distributed by him to other

users. There exist many heuristics and ad-hcc methods for protection, but the problem as a whole did not

receive the theoretical treatment it deserves.

In this paper, we make the first steps towards a theoretic treatment of software protection: Fht , we dis-

tiU and formulate the key problem of learning about a programfrom 2s execution. Second, we present an

efficient way of executing programs (i.e. a interpreter) such that it is infeasible to learn anything about the pro-

gram by monitoring its executions. A scheme that protects against duplication follows.

How can one efficiently execute programs without allowing an adversary, monitoring the execution, to

learn anything about the program ? Current cryptographic techniques can be applied to keep the contents of

the memory unknow throughout the execution, but are nor applicable to the problem of hiding the access pat-

tern. Hiding the access pattern ef i ienrfy is the essence of our solution. We show how to implement (on-line

and in an “oblivious manner”) r fetch instructions to a memory of size m by making less than t .mE actual

accesses. for every fixed E>O.

1. INTRODUCTION

Software protection is one of the most important issues concerning computer practice. The problem is

to sell programs that can be executed by the buyer, yet cannot be duplicated and/or distributed by him to other

users. A lot of engineering effort is put into trying to provide “software protection”, but this effort seems to

lack theoretical foundations. In particular, there is no crisp definition of what the problems are and what

should be considered as a satisfactory solution. In this paper, we make the first steps towards a theoretic

Work done while author was in the Labontory for Computer Science. MIT.
Panially suppoited by a Weizmann Postdoctoral Fellowship, an IBM Postdoctoral Fellowship, and NSF Grant DCR-8509905.

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 ’86, LNCS 263, pp. 426-439, 1987.
0 Springer-Verlag Berlin Heidelberg 1987

427

treatment of software protection, by distilling a key problem and solving it efficiently,

Before going any further, we distinguish between two intuitive notions: the problem of protection

against duplication and the problem of protection against distribution. Loosely speaking, the first problem

consists of ensuring that there is no efficient method for creating executable copies of the software; while the

second problem consists of ensuring that, in case duplication succeeds, the illegal duplicator should be unable

to prove in court that he has designed the program. In this paper we concentrate on the first problem, which

clearly implies a solution to the second one.

We claim that protection ogainst duplication must use some hardware measures: mere software (which

is not physically protected) can always be duplicated. On the other extreme, the trivial solution is to rely only

on hardware. That is, to sell physically-protected special-purpose computers for each task. This “solution”

has to be rejected as infeasible and too expensive. We conclude that a real solution to protecting software

from duplication should combine feasible software and hardware measures.

It has been suggested @3e, K] to protect software against duplication by selling a physically shielded

CPU together with an encrypred program The CPU will contain the corresponding decryption key, and will

be installed in a computer system. The CPU will execute the program using the memory, I/O devices and

other components of the computer. As customary, the CPU itself will contain only a small amount of storage

space. We stress that only the CPU will be physically shielded and that all other components of the com-

puter, including the memory in which the encrypted program and data are stored, will not be shielded.

The above setting is on the right track. It only uses a small amount of physical protection (shielding),

and its implementation is feasible in current technology. However, the above setting does not constitute a fuU

solution since it was not specified exactly how the CPU is to execute the program using the memory. A naive

specification states that the computer operates as an ordinary Random Access Machine, except for the extra

encryption and decryption performed by the CPU. This naive specscation is not good enough, since certain

properties of the program as its loop structure will not be kept secret from an observer. It is true that srrdght-

forward duplication of the program is not possible since one part of the program (i.e. the key) is in the

shielded (SPU which is unduplicatable. But protection against duplication should mean more than foiling

straightfonvard attempts. In particular it should mean that the user is unable to learn enough about the pro-

gram so that he can latter reconstruct it by himself. We thus view the above setting (i.e. a small shielded CPU

and an encrypted program) as the start point for the study of software protection, rather than as a satisfactory

solution. In fact, we will use this setting as the framework for OUT investigations, which are concerned with

the following key question:

What can a user learn about the program he bought ?

1.1 What Can Be Learnt by Executing a Program

We recall that the program consists of an encrypted code and a shielded CPU capable of “executing”

the code (on an external memory device which may be monitored by the user). The user can run the program

on inputs of its choice and watch the sequence of memory accesses during such executions. Furthermore, he

428

can even interfere in the execution by changing the contents of the memory locations. In any case, the pattern

of memory accesses certainly carries knowledge about the program. In many cases, one can easily infer from

the access pattern essential properties of the program such as its loop structure. In some cases, this may

suffice in order to reconstruct the program.

Our goal is to make it infeasible for the adversary to improve his ability of reconstracting the program

by experimenting with it. If it is initially "easy" to reconstract the program then we require nothing, but in
case this task is initially "hard" then experimenting with the program should not help. We meet our goal by

requiring that the adversary can not learn anything about the encrypted program, except for its input/ouQut

relation and its running time. Certainly, if an adversary can learn nothing (except I/O relation and running-

time) from his experiments then he can not improve his ability of reconstructing the program. Thus, the

notion of a CPU which defeats experiments (i.e. prevents learning about a program from its executions) is the

key to preventing software duplication. Intuitively, a CPU defeats experiments if it is infeasible to distinguish

the sequence; of memory accesses of any two programs run by i t The technical difficulty in the definition is

the need to &couples the specified behaviour of the programs (i.e. inpuUoutput relation and running time)

from the sequences of memory accesses ma& during their executions.

Definition (sketch): We say that a CPU defeats experiments if no probabilistic polynomial-time adversary

can, on input an encrypted program, distinguish the two cases:

1) The adversary is experimnting with the genuine CPU, which is trying to execute the encrypted pro-

gram through the external memory.

The adversary is experimenting wizh afuke CPCJ. The interactions of the fake CPU with the memory

are almost identical to those that the genuine CPU would have had with the memory when executing a
dummy program (e.g. while TRm do skip;). The execution of the dummy program is timed-out by the

number of steps of the real program. when timed-out, the fake CFV writes to the memory the same
output that the genuine CPU would have written on the "real" program (and the same input).

2)

Constructing an efficient CPU which defeats experiments

The problem of constructing a CPU which defeats experiments is not an easy one. Essentially there are

two issues: The first issue is to hi& from the adversary the values stored and remived from memory, and to

prevent the adversary's attempts to change these values and/or to launch an attack on the encryption function.

This is done using traditional cryptographic techniques (e.g. probabilistic encryption [GMJ and message

authentication [GGM]) in an inovative manner. The second issue is to hide (from the adversary) the sequence

of instructions and variables accessed during the execution (hereafter referred as hiding the uccess pattern).

Hiding the memory access pattern is a completely new problem and traditional cryptographic tech-

niques are not applicable to i t A trivial but unacceptably wasteful solution consists of scanning through the

entire memory each time a variable needs to be accessed. In this paper, we provide an efficient solution to the

problem of hiding the access pattern. This solution is the basis of our consmction of an efficient CPU which

defeats experiments.

429

Main Theorem: Let m denote the size of the external memory, and assume that one-way permutations

exist. Then there exist a way to execute progrzms (through the memory) without leaking any

knowledge about them, such that t instructions of the original program quire only t.mE memory

accesses, E>O.

m e actual expression is t ~2\i21*.’0%0~ .)

1.2 The Hidden Access Game

The Main Theorem is proved by reducing the problem of executing programs without leaking

knowledge about them, to a “hidden access game”. The reduction uncouples the traditional cryptographic

issues of encryption and authentication from the new issue of hiding an access sequence. The access game

consists of a main player (called the magician), m marked balls, and 2m boxes each capable of storing a sin-

gle ball. Initially the rn balls are placed in the first m boxes, such that ball i is in the ith box. The magician

can hold only a single ball in his hands at any time. There are two additional players called the instructor and

the adversary. The game proceeds in rounds as follows. In each round, the instructor secretly specifies to the

magician a ball (say ball i) , and the magician “answers” by conducting a sequence of actions such that at the

sequence’s end the magician holds ball i in his hands. The magician’s actions consists of inserting his hand

into a box for a moment, during which he either drops a ball or takes a ball or does nothing. The adversary

can only sees into which box the magician has inserted his hand, but cannot see whether the magician dropped

a ball, took a ball or did nothing. (It goes without saying that the adversary cannot see through the box.) The

instructor is not collaborating with either magician or adversary. Can the magician follow the game without

allowing the adversary to learn anything about the instruction sequence? More precisely, we require that the

sequence of visible actions yields no information about the sequence of instructions.

There is a wasteful solution corresponding to the simple solution of the software protection problem: on
every instruction the magician inserts his hand to all boxes in a predetermined order. Our proof of the above

Theorem offers a better solution: in order to follow t instructions the magician needs to make only

t . ~ ~ ~ O P . W O W actions (hand insertions).

Remark: The access game studied in this paper can be viewed as the Random Access Machine analogue of

the oblivious Turing Machine problem studied by Pippenger and Fischer [PF]. The difference is that their

solution heavily relies on the fact in their setting the instruction pattern is local (i.e. after asking for ball i, the

instructor can only ask for either ball i-1 or ball i+l).

ORGANIZATION

In Section 2 we establish a formal framework and present a definition of the phrase “a CPU executes

programs without leaking knowledge about them”. In Section 3 we sketch a reduction of the the problem of

implementing such executions to the problem of implementing a magician in the above access game. The

reader who is merely interested in the access game is encourage to skip these sections and proceed directly to

Sections 4 and 5. Section 4 consists of the first non-trivial solution to the access game: a solution involving an

430

overhead factor of G. In Section 5 , a recursive solution involving an overhead of 2’210gm~‘0gJogrm - is

presented. In Section 6, we present a R(log m) lower bound on the overhead in a solution to the access game.

We conclude with some remarks and open problems.

2. OUR DEFINITION OF SOFTWARE PROTECTION

Loosely speaking, our definition of protected software is that the adversary having the B U and the
encrypted program can “learn” nothing “substantial” about the program except for its input/output relation

and running time. In order to present a formal definition we need first to & h e the interaction between the

CPU, memory, adversary and to parameterize the encryption. We next turn to define transformations on pro-

grams (compilers) and define “learning substantially” as the ability to distinguish the original programs by

monitoring the executions of their compiled mappings. Compilers which map programs in a manner that

defeats any attempt to learn something substantial are then defined as protecting software. The reader may

note that in this section we present the transformations on programs as compilers while in the introduction

they were presented as interpreters. This difference is clearly not essential.

2.1. Interactive Machines, CPU, Memory, Programs, and Encryption

We start by defining the memory and the CPU as two interacting machines. The definition matches the

standard notion of a RAM (e.g. [AHUI) in case the memory and CPU are interacting with each other. The

only detail worth emphasis is that the CPU can only use space linear in its input parameter.

Definition 1 (Probabilistic Interactive Machines - sketch): A probabilistic interactive machine (PZM) consists

of a read-only input tape, a write-only output tape, a work rape and a finite control. In addition to the above

the PIM may receive and send messages through a special communication channel.

Definition 2 (Linear PIM): A linear PIM is a PIN that on input .x accesses only the first 0 (Ix I) cells of its

work tape.

Definition 3 (Memory): The memory is a (linear) PIM operating as hereby specified. On input a string y par-

titioned (by special marks) into rn blocks, the memory copies the input to its work tape, and from this point on

considers the ith block of y as its i-th cell. Subsequently, the memory is message driven. When reading a

new message of the form (a,i ,L) the memory acts as follows. If o=S and 1 I i 5 m then the memory sends a

message consisting of the current contents of its i -th cell. If o=P and 1 i 5 rn then the memory p u s z as
the new contents of its i -th cell (if z is too long -- it is truncated). If o=T the the memory outputs the contents

of its work tape, and stops. In case none of the above holds, the memory remains idle.

Remark: For the sake of simplicity, we have assumes at this point that the programs conduct all theu compu-

tation in the space occupied initially by the input. In practice, the actual input will be padded by blanks to

allocate sufficient work space for the execution. The padded input will then serve as input to the program.

An alternative approach, in which the memory size grows during the execution to meet workspace needs, will

43 1

be explored in the full version of this paper.

Definition 4 (CPU - sketch): The CPU is a linear PIM which operates as hereafter specified. The input to the

CPU is ignored, and its only purpose is to crigger the execution of the CPU, and to spec* the permitted

“length” of the CPU’s work tape. The CPU starts its execution by sending a (fetch) message of the form

(S,l;). Subsequently it operates in “rounds”. In each round it reads a new arriving message (into its work

tape), applies a polynomial-time computation to its work tape (an “elementary operation in the terminology

of the RAM model [AHUI), and concludes by sending a message (consisting of the contents of a pomon of its

work tape). (After sending a message of the form (T; ;) -- the CPU halts.)

Definition 5 (programs, data, and computations): The input to the memory ly) is partitioned (by a special

symbol) into two parts called the program (denoted here as R) and the dato (denoted x) . The output of the

memory (on input y = (X J)), after interacting with the CPU, is denoted x (x) and called the result of X ’ S com-

putation on input x .

Definition 6 (Probabilistic Encryption and its Security [GM] - sketch): Aprobubilistic encryption scheme is a

mplet of probabilistic polynomial-time algorithms denoted G ,E ,D . On input n (in unary) algorithm G out-

puts a (legal) key K of length n . On input a key K and a message M , algorithm E randomly selects an

encryption denotedEK(M), such that D K (E K (M)) = M . Loosely speaking, we say that the encryption scheme

is secure if on input n (in unary), and the messages M I and M 2 , their probabilistic encryptions E K (M I) and

Ex(A4-J (where K=G (n)) are polynomiaily-indistinguishable (even when given access to a black box imple-

menting E K) .

Remark: We do not assume here that the encryption scheme is public-key.

2.2. Cryptographic CPU, Specification Oracle, and Compilers

Definition 7 (Cryptographic CPU - sketch): The Cryprograpic CPU (CCPU) operates essentially as a CPU

except for the following details:

1)

2)

Remark: The time and space complexities of effecting EK and E f l are ignored in the above definition. In

considering an implementation of a CCPU, the time complexity of effecting EK enters as a multiplicative fac-

tor, while the space complexity enters as an additive term. Both complexities depend only on the length of K,
and thus are independent of the length of the data (to the program run by the CCPU). In the factoring-based

implementation, the time complexity is 0 (n3) while the space complexity is 0 (n) .

The input is considered as a cryptographic key K of length n (and is not ignored).

The CCPU can effect (as an “elemetary operation”) EK and E i ’ on any string of length n .

Definition 8 (A specification oracle): A specifccation oracle for a program x , is an oracle that on query x

returns (~ (x) , t ~ (x) , s ~ (x)) , where Z (X) is the output of n on input x , t&) is the running-time of x on input x ,

and sx(x) is the storage-requirement of n on input x .

Remark: For the sake of simplicity, we assume in the rest of this extended abstract that both t , (x) and s&)

depend only on the length of x . Furthermore, we will assume that these functions are easily computable.

432

Thus, the only interesting thing in the oracle’s answer is x(x).

Our objective is to claim that no adversary can learn anything about n, when given input E,&) and

interacting with the CCPU. This is false when x is executed in the straightforward manner. What we do is

map n: into a “functionally equivalent” program x’ and execute x‘. We will require that no adversary given

the encryption of x’ (and interacting with the CCPU) can leam anything about x.

Definition 9 (Compiler): A compiler C is a probabilistic polynomial time algorithm that on input an integer n

(in unary) and a program x outputs an n -bit cryptograpic key K = G (n) and an encrypted program E&‘),

such that for every x , x(x) = d x) . We denote d by C (x) .

23. Software Protection and its Cost

Now we are ready to state our definition of software protection. Loosely speaking, a compiler is said to

protect software if whatever can be efficiently computed on input an (encrypted) compiled program (when

interacting with a CCPU (having the corresponding key)) -- can be efficiently computed given access only to

the specification oracle for the program

Notation (sketch): By 1” we mean the unary representation of n . When writing D l (x) sp D z (f (x)) , we

mean that the probability distributions generated by the algorithms D and D, on “random” x ’ s are polyno-

mially indistinghishable [GM, yl. Let A and B be interacting machines, then A B o l (x) denote the probability

dismbution output by A on input x , when A is interacting with B which gets y as a private input (i.e. A does

not get y). Let M be an oracle-machine, and x be a program, then M*(x) denotes the output dismbution of

M on input x and access to a specification oracle for x.

Definition I (Software Protection -- sketch): Let P denote the CCPU. ‘Ihe compiler C prorecrs software if for

every probabilistic polynomial-time interacting machine A , there exisa a probabilistic polynomial-time

oracle-machine M , such that for all programs x the following holds

A P (R) @ d C (x))) ‘P ’%
where K is choosen randomly among a l l cryptographic keys of length I K I.

Definition II (cost of software protection): Let x be a program, and r&) be as in Definition 8. Let C be a

compiler. Let fz be a function from integers to reds, such that f E (m) is the maximum, taken over all m-bit

strings x , of tcc,&)/t&). Let fc(m) be a function such that for every x and for sufficiently large rn,

fE(m) I fc(m). Then the overhead created by the compiler C is at most fc(m).

3. REDUCTION TO AN ACCESS GAME

The access game, described in the introduction, can be formulized as a randomized procedure that on
input a sequence a of elements out of {1,2, ..., mJ outputs two sequences, a visable sequence p and a secret

sequence y. The sequence p contains elements out of {1,2, ..., 2m), while the sequence yconsists of elements

out of {TP A’}. (The reader may think of Q as being the insmction sequence, of the procedure as being the

433

magician, of the vkable sequence as the sequence of cells into which the magician has inserted his hand, and

of the Secret sequence as of what he did when inserting his hand. T stands for “take a ball”, D for “drop”,

and N for “do nothing“.) The visable sequence f3 gives no information about the sequence a (i.e. the condi-

tional probability that the input is a given that the visable output is j3 equals the a-priori probability that the

input is a). The execution of j3 with y gives a sequence 6 which contains a ’ (6 is the sequence of balls held in

the magician’s hand, when he inserts his hands to cells f3 and acts in them according to ’y.) Furthermore, the

p d u r e should satisfy the above conditions when working on-line: every new element of a should cause

the procedure to output new portions of p and y such that they “contain” the element

In addition, we require that the randomized procedure is efficient in the following sense:

1)

2)

3)

The next output symbol is computed in time polynomial in m ;

The space used is logarithmic in m , provided that the procedure has access to a random oracle;

The procedure can compute at each moment, the number of times each ball was taken out of a cell.

Proposition (The Reduction): Suppose that there exist one-way permutations, and there is a procedure satis-

fying the above conditions such that for every input of length 1 it outputs sequences of length i .f (m) . Then

there exists a compiler that protects software with overhead at mostf (m).

T h e proof employes the folIowing “traditional“ cryptograpic techniques - probabilistic encryption [GMI,

pseudorandom function [GGW, and (provably secure) message authentication [GGM].

1) Probabilistic encryption is used in order to make it infeasible to tell anything about the contents of a

memory location. The existence of one-way permutations implies the existence of probabilistic encryp-

tion schemes [GM, Y]. More efficient schemes exist under the intractability of factoring [ACGS, BG].

The pseudorandom functions replace the random oracle used by the procedure. It is crucial that they

can be implemented using “small” space. Pseudorandom functions exist if one-way permutations exist

IBM, Y, WMI.

Message authentication is used in order to prevent the adversary loancing a chosen ciphertext attack on

the encryption scheme. Another use of authentication is to prevent the adversary from switching the

contents of memory location, or to replace the contents by a previous contents of the same location. (It

is thus crucial that the procedure satisfies the additional condition (3).) Message authentication is

implemented using pseudorandom functions [GGM].

2)

3)

4. THE “SQUARE ROOT” SOLUTION

We will describe the solution, using the intuitive “magician“ formalism of the introduction. Recall that

there are m balls marked 1 through m, which initially reside in the first m cells such that ball i is in the i -th

cell. Altogether there are 2m cells, and suppose that m 2 2 G .

434

The solution described below allows the magician to follow a sequence of r instructions, by COMting

at most t & actions. We desribe a solution in which the magician is allowed to hold up to 2 balls at any

point in time.

Following is an outline of the magician's procedure:

0)

while TRUE do;

1)

Initially, for I l i 4n, the i th cell contains ball number i . All other cells are empty.

Randomly permute the contents of the first m+'& cells. That is, select a permutation x over the

integers 1 through r n + 6 and relocate the contents of cell i in cell x (i) .

Execute a instructions as follows. During the execution of these instructions, maintain the balls

(accessed by these instructions) in cells number m+\l;;;+l through m + 2 G . The instruction "get ball

i " is executed as follows. First scan through the special G cells and check whether ball i is in one of

these cells. If the ith ball is not found there then we retreive it from cell ~ (i) ; else we access the next

empty cell (i.e. one of the cells m + l through m + G which was not accesssed before).

Return balls to their initial locations.

2)

3)

Before getting to the implementation details of the above steps, we provide some hints to as why no informa-

tion about the instruction sequence is revealed by the sequence of viable actions. Step (I) is syntactically

independent of the instruction sequence. The accesses executed in step (2) are of two types: scanning through

allcells From t h e m + G + l - t h to the m+2'&-th, and accessing anew randomcell between 1 a n d m + G . N o

information about the instruction sequence is leak by this! The access pattern of Step (3) is identical to a

combination of the second type of accesses made in Step (2), and the accesses of step (1).

4.1 How to randomly permute the contents of the memory

We &st show how to implement a random permutation by using a random oracle and somng, and next

show how to implement sorting using a random oracle.

Choosing and "storing" a random permutation

We show how to choose and store a random permutation over {1,2, .J}, using 0 (log t) storage and a

random oracle. The idea is to use the oracle in order to tag the elements with random distinct (with high pro-

bability) integers. The permutation is obtained by sorting the elements by their tags (*). (It suffice to have the

tags being drawn at random from the set {1,2 ,..., t " g ' } .) Letf:{1,2 ,..., r,+{l,2 ,..., flogr) be arandom function

mvially constructed by the random oracle. Then n(i)=k if and only i f f (i) is the k-th smallest element in

{f (j): I S j S t } .

1) Remark Luby and Rackoff m] showed that Lhm iterations of the DES can be used to consmct a pseudorandom permutation Out of
three random functions. However, thispudorandom permutation is not good enough for our purposes since it can be distinguished from a ran-
dom permutation with probability e(q / t) , where 4 is the number of permutation evaluations.

435

Arranging the balls by the choosen permutation

Now we face the problem of sorting the t elements (by their tags) in a manner which leaks no informa-
tion about the permutation. The crucial condition is that the magician which executes the sorting can store

only a fix number of balls (say 2) at a time. The idea is to “implement” Batcher’s Sorting Network [Bat],

which allows to sort t elements by tflog24 * comparisons. Each comparison is “implemented“ by accessing

both the corresponding cells, rewiving their contents, and then putring the contents back in the desired order.

The sequence of accesses generated for this purpose is fixed and independent of the permutation to be imple-

mented. Note that the magician can easily compute at each point which comparison he needs to implement

next. This is due to the simple structure of Batcher’s network, which is uniform with respect to logarithmic

space (2).

Computing the permutation in succeeding steps (2) and (3)

The way the permutation x is defined does not allow an immediate method of computing x (i) on input

i. This computation will be required in the subsequent executions of steps (2) and (3). We will “compute”

~ (i) by conducting a binary search on thef (.)’s, using the fact that (after step (1)) thef(.)’s are “stored“, in

sorted order, in the cells. Note. that x (i) is computed in order to access the x(i)-th cell, and therefore the

accesses done in the binary search do not add any information (since they are determined by x(i)).

4.2 How to simulate a single access

Now it is straightforward to give the details of Step (2). Throughout step (2), count maintains the

number of single accesses simulated in the current run. count is initialy 0 and is increamented until it reaches

&. On instruction “take ball i ” the magician proceeds as follows:

2a Scans through locations rn+&+l to rn+2‘1;;;. If the ball i is in either of these cells then fetch it, and

sets j such that ball i was taken from the rn +G+j -th cell. If neither of these cells contains ball i then

set j=count .

If j *count then the magician accesses the rt(m+count)-th cell (which is empty!); else the magician
accesses the K(i)-th cell, and retrieve its contents (i t . ball i).

Scans through locations rn +G+l to rn +2‘1;;; again, and put ball i in the rn +&+j -th cell. Incre-

ments count by 1.

4.3 How to rearrange the balls

2b

2c

Rearranging the balls is done in two substeps: h s t we undo the effect of the execution of Step (2) and

next the effect of Step (1). Following is a description of the first substep. The second substep can be incor-

porated in the next execution of step (1).

For j=1 to & the magician proceeds as follows:

Accesses the rn+&+j-th cell. If it contains a ball, say ball i , then the magician accesses the n(i)-th

cell and puts ball i there. If the rn+./;;;+j-th cell is empty then the magician accesses its x(rn+j)-th

cell (but puts nothing there).

2) The simplicity of Batcher soning network is the main reason we prefare it upon the asymptotically superior Ajtai-Komlos-Szemeredi
sorung network [AKSI.

436

4.4 Analysis

The reader may easily verify that the sequence of accesses of the magician indeed yields no information

about the sequence of instructions. It is left to calculate the overhead of the simulation (i.e. the ratio of

accesses over instructions). The permutation applied after every J;;; instructions causes an overhead of

0 (m.log%), which amounts to an amortized overhead of 0 (~ 4 o g % n) actions per instruction. In addi-

tion, each of the inStructions causes 0 (G) actions to be taken in step (2). Other actions taken in step (3) are

negligible in mumber. The total overhead thus amounts to 0 (G . 1 0 2 m) actions per instruction @). We get

Theorem 1: There exist a magician procedure with 0 (G. logzm) overhead

Furthermore, this procedure is efficient in the sense of Section 3.

5. THE RECURSIVE SOLUTION

The recursive solution presented in this section is based on a generalization of the solution presented in
Section 4. One can view the solution of Section 4 as consisting of two parts: the random shuffling and

reshufaing of the cells contents every original accesses (steps (1) and (3)), and the simulation of the

instructions through their randomized locations (step (2)). Substeps (2a) and (2c) actually simulates a

"powerfuf' magician which can hold up to & balls in its hands at any time: The magician looks whether he

holds already the required ball. If the answer is negative then the magician fetches the ball, else he reaches for

a "new" empty cell. Holding up to balls was simulated in the obvious manner by scanning through extra

G cells.

When trying to generalize the solution, we want to decrease the amortize cost of the random shuffling.

Thus we will consider a more powerful magician capable of holding up to f (m) > G balls (say

f (m)mY4). The amortized cost of steps (1) and (3) is thus m.(logF)'/f (m) . The key question is: how

are we going to simulate the magician with the f (m)-size hand ?

We will think of the magician's hand as a heap containing up to f (m) elements, We need to support

f (m) find operations and up to f (m) element insertions to this heap. This translates to f (m).logzf(m)

access operations to the data structure. We can view the situation as a new simulation, this time on 0 c f (m))

cells and for 0 cf (m).log f (m)) instructions. In other words, we need to issue logf (m) new instructions

into the f (m)-size hand per each instruction into the original cells. We thus get.

m .(log2m 1'
f (m)

overhead(m) = + 0 (log f (m)) . overheadv (m))

Solving the recurence, we get overhead (m) = 0 (2'210gyn'10B10g2m). Thus

3) Ac Ily, the above choice of panmeters is na optimal. Repermuting the balls after every 0 (G .log m) instructions, yields an over-
head of o (F .log rn) actions per instrudion.

437

Theorem 2 There exist a magician procedure with 0 (2’2 i0w~109J~) overhead.

Furthermore, this procedure is efficient in the sense of Section 3.

6. A LOWER BOUND

A simple combinatorial argument shows that any oblivious simulation of arbitrary RAMS should have

an average R(log m) overhead.

Theorem 3: Every successful magician procedure must make at least m i- (r-l).log3m actions in

order to implement t insmctions.

The proof uses very little of the structure of the problem, and therefore we do not believe that the lower bound

obtained is tight.

7. CONCLUSIONS AND OPEN PROBLEMS

We have reduced software protection to a “hidden access game’’. The reduction was curried out on

the instruction level. However, an identical reduction can be carried out on any level of programming mcdu-

larity; e.g. cash memory accesses, paging mechanisms etc.

The hidden access game has also other applications, as allowing many usen to run secretly private pro-

grams on a public computer, foiling flow analysis in distributed communicatio? networks etc.

Formulating the problem of preventing software duplication has lead us to consider the question of

what can be learnt about a program by watching its executions. It seems that formulating the problem of
preventing software distribution (i.e. fingerprinting software) will lead to diffant questions. It will be very

interesting to try and come up with a theoretical framework and definitions for “fingerprinted software”.

A more technical problem is to provide better solutions to the hidden access game, and in turn to
present compilers which protect software at lower cost. We believe that this should be possible. On the other

hand, proving better lower bounds on the overhead of good magicians will be also interesting. At this point

the gap betwen the known upper and lower bounds, on the overhead, is quite large: 0 (2‘2iwm“ogJ- 1
versus !2(log m) .

ACKNOWLEDGEMENTS

It is my pleasure to thank friends and colleagues for their contributions to this work and its presentation.

In particular I wish to thank Baruch Awerbuch, Benny Chor, Shimon Even, Sha6 Goldwasser, Silvio Micah

Ron Rivesf and Yacov Yacobi. Special thanks to Hugo Krawczyk for carefully reading an earlier version of

the manuscript, pointing out some errors, and suggesting several improvements.

438

REFERENCES
[AHUl Aho, A.V., JE. Hopcroft, and J.D. Ullman, The Design Md Analysis of Computer AIgor i th ,

Addison-Wesley Publ. Co., 1974.

[AKS] A M , M., J. Komlos, and E. Szemeredi, “An O(n.log n) Sorting Network”, Proc. 15th STOC,

[ACGSI Alexi, W., B. Chor, 0. Goldreich, and CS. Schnorr, “RSA and Rabin Functions: Certain Parts Are
As Hard As The Whole”, to appear in SIAM Jour. on Compun’ng. Extended Abstract in Proc. 25th
FOCS, 1984.

Batcher, K., “Sorting Networks and their Applications”, MIPS Spring Joint Computer Conference,

Best, R., “Microprocessor for Executing Encrypted Programs”, US Patent 4,168,396. Issued Sep-
tember 1979.

Blum, M., unpublished manuscript, 1983.
Blum, M., and S. Goldwasser, “An Efficient Probabilistic Public-Key Encryption Scheme which
Hides All Partial Information”, Advances in Cryptology: Proceedings of CRYPT0 84, Springer Ver-
lag, Lecture Notes in Computer Science (196), 1985, pp. 289-299.

[BMI Blum, M., and M i c a S., “How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits’’, SIAM J o u . on Computing, Vol. 13, 1984, pp. 850-864.

[GGM] Goldreich, O., S. Goldwasser, and S. Micali, “How to Construct Random Functions”, Proc. of 25rh

1983, pp. 1-9.

Pat1

Be1

plu]
[BG]

32,1968, p ~ . 307-314.

Symp. on Foundation of Computer Science, 1984, pp. 464-479. TO appear in Jour. of ACM.
Goldwasser S., and S. Micali, “Probabilistic Encryption”, Jolow. of Computer and System Science,

Kent, S.T., “Protecting Externally Supplied Software in Small Computers”, PhD. Thesis,

Luby, M., and C. Rackoff, “Pseudo-random Permutation Generators and Cryptographic Composi-
tion”, Proc. of 18th STOC, 1986, pp. 356-363.
Pippenger, N., and MJ. Fischer, “Relation Among Complexity Measures”, Juw. of ACM, Vol. 26,

Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc. of the 23rd IEEE Symp. on

Foundation of Computer Science, 1982, pp. 80-91.

Vol. 28, NO. 2, 1984, p ~ . 270-299.

MJ.T/LCS/TR-255, 1980.

NO. 2, 1979, pp. 361-381.

APPENDIX

Definition (polynomial indistinguishability [GM, Y]): Let in?} and fl?] be two probability ensables; that is

for every integer n and i , Ill is a probability distribution on strings of length Spoly(n). The ensembles

in;} and m?} are polynomial indistinguishable if the following holds:

For every probabilistic polynomial-!he algorithm A , every constant c , and sufficiently large n , the
probability that A outputs 1 on n and a string selected according to Il,” equals up to n- the probabil-
ity that A outputs 1 on a string selected in TI,”.

Definition 5 (F’robabilistic Encryption and its Security [GM]): A probabilistic encryption scheme is a triplet

of probabilistic polynomial-time algorithms denoted G ,E ,D such that:

439

1)

2)

3)

On input n (in unary representation) algorithm G ourputs a key K of length n .

On input a key K and a message MI algorithm E outputs an encryption denoted EK (M).
On input a key K and an encrypted message EK(M), algorithm D always outputs M. In case D is
given an illegal key-encryption pair it may behave arbitrarily.

The following security definition implies that both G and E can map an input to many (more than polynomi-

ally many) possible outputs. Let M and Mz be two messages and A be a probabilistic polynomial-time

machine which operates as follows. Algorithm A receives as input two encryptions EK (MI) and EK(Mz) in

arbitrary order. In addition, algorithm A is given access to a black box implementing EK (i.e. when sending

q to the black box, A receives back as an answer a random encryption &(q)). Let rIi,l denote the proba-

bility that A outputs 1 when K is a key randomly chosen by G on input n , and the encryption of M1 was

placed to the left of the encryption of M z on the input tape. Similarly, n,”, denotes the probability of output

1 when M2’s encryption was placed to the left of M 1’s. An encryption scheme is secure if for every two

messages M I and M 2 and every probabilistic polynomial-time algorithm A , in,”,,] and are
polynomially-indistinguis hable.

Remark: The original definition of encryption security [GMJ is for Public-Key Encryptions and thus access

to a black box implementing EK is redundent. Above we gave a more general definition that suits both
Private-Key and Public-Key encryptions.

