VLSI implementation of public-key encryption algorithms

G.A. Orton ${ }^{*}$, M.P. Roy ${ }^{* *}$, P.A. Scott*, L.E. Peppard** and S.E. Tavares ${ }^{*}$
* Department of Electrical Engineering Queen's University Kingston, Ontario, Canada K7L 3N6
** Bell Northern Research Ltd.
P.0. Box 3511 , Station C
Ottawa, Ontario, Canada KiY 4H7

Abstract

This paper describes some recently successful results in the CMOS VLSI implementation of public-key data encryption algorithms. Architectural details, circuits, and prototype test results are presented for RSA encryption and multiplication in the finite field $G F\left(2^{m}\right)$. These designs emphasize high throughput and modularity. An asynchronous modulo multiplier is described which permits a significant improvement in RSA encryption throughput relative to previously described synchronous implementations.

[^0]
1. Introduction

The RSA algorithm provides a well known, secure implementation of a public-key cryptosystem $[1,2,3]$. The arithmetic operations required are exponentiation and modulo reduction involving numbers represented by seversl hundreds of bits. A VLSI approach is justified but presents challenging problems in terms of control generation and distribution circuitry, minimization of storage register size and achieving an adequate throughput rate. Rivest hes given a recent review of other attempts to design an RSA chip [4]. Kochanski [5] has described a cascadable chip which implements 32-bit operations on each chip at a rate of $5 \mathrm{kbits} / \mathrm{sec}$ for 512 -bit encryption; however, it appears that considerable redesign is required to compress the implementation to one or a few chips. CYLINK has recently introduced a chip which can perform 512-bit encryption at $6.4 \mathrm{kbits} / \mathrm{sec}$ in $2 u m$ CMOS [6]. A faster design is currently under development at Sandia National Laboratories [7], which uses delayed carry adders to avoid carry propagation delay. This approach is said to be capable of $25 \mathrm{kbits} / \mathrm{sec}$ in 2 Zum CMOS but hes added complexity due to the difficulty of performing comparisons, storsge of two K-bit numbers for intermediate results, where K is the number of bits in the modulus, and conversion of the result from the delayed carry representation to binary. Also, the MSB of the modulus must be justified (the message is shifted equally) and the ciphertext returned to LSB justification at the end of the encryption and, as well, the modulo multiplication results need to be shifted 11 bits.

In this paper we describe a bit-slice architecture which incorporates the RSA control functions in the slice along with the arithmetic (modulo multiplication) functions. Registers longer then the modulus are avoided using concurrent modulo reduction. A 32-bit prototype has been fabricated in 3 um CMOS and successfully tested. Based on test results and simulations, a throughput rate of $1 \mathrm{kbits} / \mathrm{sec}$ should be possible for 512 -bit encryption with a 2 um CMOS process.

In an effort to substantially improve the throughput rate of the bit-slice implementation, a new bit-slice design has been developed employing asynchronous (self-timed) ripple adders [8]. With a small penalty in extra control circuitry, an increese in throughput of up to 40 times can be obtained. A 22-bit prototype in 3 um CMOS has been successfully fabricated and tested and a 64-bit version is currently being fabricated.

Multiplication in the finite field $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ is employed in several date encryption algorithms as well as other areas of communications [7,9]. Recent work has shown that cryptographic algorithms based on arithmetic in $G F\left(2^{m}\right)$ require very large values of m for security $[10,11]$. In particular, vaiues of m in the range of 1500 bits are recommended. However, for large m, efficient VLSI implementation of the multiplication function requires careful algorithm design to provide modularity and concurrency as well as simplified control requirements. A new multiplication algorithm will be described along with a suitable bit-slice VLSI architecture [12]. Test results from an 8 -bit prototype will be presented.

2. Modulo multiplication elgorithms

The RSA encryption and decryption transformations involve exponentiation and modulo reduction of a text data block possibly of several hundred bits. The arithmetic process involved is modulo multiplication which requires addition, subtraction and shifting.

Brickell [7] and Blakely [13] have proposed modulo multiplication algorithms in which multiplication is performed concurrently with modulo reduction. This differs from the algorithms used by Rivest
[14] and Simmons and Tavares [15] where multiplication of two K-bit numbers is first performed and then the resulting $2 K$-bit number is modulo reduced. The maximum word length is ($K+1$) bits using concurrent modulo reduction. Concurrent algorithms save storsge space, reduce adder carry propagation time and require fewer clock periods. Only algorithms of this type will be considered in the remainder of this saction.

All of the concurrent algorithms which restrict number lengths to ($K+1$) bits perform multiplication in one of two ways. The most familier way of multiplying two numbers is to add shifted versions of the multiplicand or zero depending on the value of the multiplier bits. An example of this technique is shown below in Example I(a). The second wey involves adding the multiplicand or zero to the running total and shifting the running total, as shown in Example 1(b).

Example 1:	B inary multiplication
(a)	(b)
1010.	1010.
$\times 1101$	$\times 1101$
1010.	1010.
00000.	1010.
101000.	0000.
$+\quad 1010000$	+ 1010
10000010.	10000010

Most techniques of modula reduction rely on adding some positive or negative multiple of the modulus. With the following concurrent modulo reduction algorithms, the number being reduced is smaller in magnitude then twice the modulus. The modulus is either added or subtracted to reduce the absolute value of the number below the magnitude of the modulus. Modulo reduction can also occur indirectly. An example of indirect modulo reduction of the running total is to first add or subtract the modulus from another number such as the intermediate product (IP) and then add the adjusted IP to the running total. With the two methods of performing multiplication illustrated in Example 1, a variety of methods for concurrent modulo reduction can be employed all of which must prevent overflow by finishing with a number less in magnitude than the modulus. The aigorithms operate correctly with starting values less in magnitude than the modulus, so if overflow occurs, the megnitude would continue to increase in subsequent periods. The conditions for concurrent modulo reduction, without overflow, are summarized below.

If a number, A, which is less in magnitude then the modulus, n, is multiplied by 2 or added to another number, B, which is also less in magnitude than the modulus, the intermediate result can be modulo reduced in the time for one addition. In the case of a positive intermediate result the modulus is subtracted and in the case of a negative intermediate result the modulus is soded.
i.e.

if $0 \leq A<n$	if $0 \leq A<n$ and $0 \leq B<n$
then $2 A-n<n$	then $A+B-n<n$
and $2(-A)+n>(-n)$	and $(-A)+(-B)+n>(-n)$

A number of useful modulo multiplication olgorithms will now be discussed.

AlorithmA

A flow graph of the algorithm is shown in Fig. 1 which is a modification of Blakely's algorithm [13]. Multiplication is done by shifting the intermediate product (IP) and modulo reducing if the IP is greater than the modulus [16]. Then, if the multiplier bit is a 1 , the IP is added to the running total. After this, the running total is modulo reduced if necessary. Both the IP and the running total are always positive. A disadvantage of this algorithm is that the running total may require two consecutive additions per multiplier bit.

Fig. 1. Modulo multiplication algorithm A. Three adders are used with an averege of 1.5 addition phases per multiplier bit.

Aloorithm B

A concurrent modulo multiplication algor ithm was suggested by Simmons and Tavares [15] which uses multiplication with the running total multiplied by two each period as shown in Fig. 2. A normal cycle starts with the running total being multiplied by 2 , followed by adding the IP. Then the running total is modulo reduced using an add/subtract scheme. However, overflow occurs because the combination of multiplication by 2 followed by addition of the multiplicand cannot always be modulo reduced with one addition or subtraction. A necessary modification is to add a negative IP if the running total is positive. This negative IP is generated during the 1st period by adding the positive multiplicand to the running total and then subtracting the modulus to produce a negative result. The negative IP is then stored in a separate register for future use. With this method the final result must be adjusted positive by adding the modulus if necessary. A maximum of one period is required for this
step. Algorithm B requires only 2 adders but, as with algorithm A, two consecutive additions may be required per multiplier bit.

Fig. 2. Algorithm B for modulo multiplication. Two adters are used with an average of 1.5 eddition phases per multiplier bit.

Aloncithme

It was thought desirable to consider a modulo multiplication algorithm which would perform all additions during one addition phase per multiplier bit and with a reduced number of adders. An algorithm which uses only 2 adders, which operate concurrently, is algorithm C shown in Fig 3 . In this algorithm, the running total is multiplied by 2 each periad. Then if the multiplier least significant bit (MLTlsb) is 0 , the running total is modulo reduced. If the MLTIst is 1 , two additions are performed and one of the results is selected as the new modulo reduced running total. This algorithm requires more area because four intermediate products, $\mathrm{P}, \mathrm{P}+\mathrm{n}, \mathrm{P}-\mathrm{n}$, and $\mathrm{P}-2 \mathrm{n}$, need to be first generated then stored. Due to the increese in arem required for algorithm C , it was not considered further.

Fig. 3. Algor ithm C for modulo multiplication. Two adders are used with one clock phase per multiplier bit.

Aloprithm D

Algorithm D performs three additions in a single phase per multiplier bit as shown in Fig. 4. Asymmetr ical clock phases are generated with a shortened phase used to set up the sdder inputs. As with algorithm A, the previous IP is multiplied by 2 each per iod. Algorithm D differs in running total generation. If the running total is positive, a negative IP is added to the running total. On the other hand, if the running total is negative, a positive IP is adted. This keeps the running total from overflowing and allows it to be generated in one step. The positive IP is generated exactly the same as the IP in algorithm A. At the same time as the positive IP is modulo reduced, twice the modulus is subtrected from twice the previous positive IP. This results in an IP between 0 and $-2 n$. After K periods, where K is the number of bits in the modulus, the multiplication is finished but the running total may need to be adjusted positive by adding the modulus. This takes a maximum of two periods. Algorithm D uses three adders with 1 concurrent addition per multiplier bit and provides a useful compromise between speed and area.

Fig. 4. Modulo multiplication algorithm D. Three adders are used with one phase per multiplier bit

Alorithme

An efficient concurrent modulo multiplication algorithm mey be devised using the modified Booth's Algorithm (MBA), where the multiplier is shifted two bits at a time. Two consecutive additions per clock period would be required, but the number of clock periods would be reduced by half. This algorithm will be faster if the constant circuit deloys in a period are larger than the averoge adition time which would be the case with a fast adder. In the case of the adder to be described later, approximately al08 to 158 increase in aree would result elong with 508 improvement in speed compared to algorithm D.

The modified Booth's Algorithm (MBA) is frequently used to improve the speed of multipliers [17]. Through encoding of the multiplier bits, the number of intermediate products to be added is reduced by half. Booth's Algorithm works by skipping over any contiguous string of all I's or all 0's. A string of all 0 's does not require any $I P$'s to be aded, but a string of 1 's requires an addition and a subtraction. For example, if the multiplier is 11100 , ($100000 \times$ multiplicand) is added and ($10 \times$ multiplicand) is subtrected. The MBA looks at
the three least or most significant multiplier bits at a time depending on the direction that the multiplier is being shifted and shifts the multiplier by 2 bits each clock period. The intermediate products are multiplied by $0, \pm 1$, and ± 2 before sccumulation es shown in Table 1 .

Table 1. Encoding of multiplier for the modified Booth's Algorithm. The centre bit of the three bits being encoded is referred to as the $\mathrm{i}_{\text {th }}$ bit.

Multiplier bits $i+1$ i			$i-1$	Factor of $I P$ accumulated
0	0	0	0	Operation
0	0	1	+1	no string
0	1	0	+1	end of string
0	1	1	+2	a string
1	0	0	-2	end of string
1	0	1	-1	beginning of string
1	1	0	-1	$-2+1=-1$
1	1	i	0	centre of string
				midecle of a string

Algorithm E is diagrammed in Fig. 5 and uses a total of four adders with two adders operating in each phase of a two phase clock. The intermediate products are generated as in algorithm A , but multiplied by 0 , ± 1, or ± 2 before accumulation. Two positive IP's are generated each period consecutively, corresponding to 2 and 4 times the previous IP. Eech IP is calculated by shifting the previous IP by 1 bit and subtracting the modulus if necessary. Each period, the eppropr iate IP is selected, inverted if a negative IP is required and added to the running total. The running total is then modulo reduced by either adding or subtracting the modulus. Two additions are performed each period to generate the IP's and two additions are used to generate the running total. An algorithm which uses fewer additions could be devised at the expense of more memory.

Comparissn of modulo multiplication algorithms

The algorithms presented in this section employ concurrency of multiplication and modulo reduction to improve the bit throughput rate. A comparison of six modulo multiplication algorithms is given in Table 2. The selection of the "best" algorithm depends on system parameters such as the delay required for additions relative to constant circuit delays, the availability of non-symmetric clock pheses, asynchronous timing and memory. Algorithm D wes chosen for implementation because it is aimost as fast as aigorithm C and occupies about the same area as algor ithm A. Algorithm E has only been considered recently. Algorithms A and B are ciosely matched in speed and ares. Long adition times relative to constant delays result in algor ithms D and E operating at the same speed, while short addition times make algorithm E twice as fast. With the pulse-timed adder to be described in section 4 , the constant circuit delays are at least twice as large as the aversge edodition time, which would make algor ithm E at leest 50% fester than algorithm D .

Fig. 5. Modulo multiplication algor ithm E. Four adders are used with an aversge of 1.75 clock pheses and the modified Booth's Algorithm.

3. RSA implementation

Architectural espects

Modulo multiplier architecture. A bit slice architecture for algorithm D is shown in Fig. 6. With a fast adder, communication delays become more significant. Signal flow within the bit slice is less time consuming then the propagation of signals, such as clock signals, MLTISD, START, ADDERI carryout, and BEGIN which must be sent to all slices. A completion signal generator subsystem (CSG) is added if pulse-timed adders are used (described in section 4).

A sum term generator controller (STOC) is required to select the input to the running total adder. This subsystem is a 4 to 1 multiplexer, which selects from $C n$, $\operatorname{Bnd}, \mathbb{I P}$, and ($2 I P(i-1)-2 n)$ as shown in Fig. 6. The STOC is controlled by logic outside the bit slice which has inputs: MLIlsb, SSRsign, start, phis, and K or K+1. The signais K or $K+1$ are from the shift register counter which flags the multiplier to adjust the result positive.

Algoritha	Number of K bit adders	Number of addition phases /multiplier bit	No. of periods per MIM	No. of extra registers	Maximum bit rate	Comment 9
Simmons et.al.	1, (2K bits)	1	2 K	0	-20kb/s	Slow, large, and complex.
A	3	Fuerage 1.5	K	0	~35kb/s	Simplest control logic.
B	1 or 2	Average 1.5	K+1	1	~35kb/s	Simplest signal flow in blt-slice.
C	2	1	K+3	3	-42kb/s	Large with extra storage registers.
D	3	1	$k+2$	0	* $40 \mathrm{~kb} / \mathrm{s}$	Some control logic required outside bit-slice array.
E	4	2	K/2	0	* $60 \mathrm{~kb} / \mathrm{s}$	15x larger than algorithm 0 .

Table 2. Comparison of modulo multiplication (MI) algorithms.

Fig. 6. A bit-slice architecture for algorithm D.

BSA architecture. Three slices of a new bit-slice RSA architecture which includes the implementation of modulo multiplication algorithm D described above is shown in block diagram form in Fig. 7. Modulo exponentiation is performed as a series of modulo multiplications. The messege is repeatedly squared and modulo reduced and a running-product modulo multiplication is performed if the corresponding exponent bit is a one. Modulo multiplications are carried out by the subsystems in the upper half of the bit slice while the RSA control functions are implemented in the lower half. The seme architecture can be used with other modulo multiplication algorithms. input and output of data is synchronous and concurrent.

A general purpose register (STRSR) acts as a shifting or storage register with its function determined by control logic outside the bit slice as shown in Fig. 8. The use of this dual purpose subsystem considerably reduces the number of custom subsystems required. The circuitry is compact because control logic for the gates is outside the bit slice. This saves area because one set of control logic is used for all slices. Control logic deley is not a fector since the storege operations are not speed limiting. Standard calls would be suitable for the control logic autside the bit slice. For RSA operation, the message is shifted into both the square term storage

Fig. 7. Bit-slice architecture biock diagram (3 slices).
register (SQTSTR) and the multiplication running total storage register (MULSTR). A single modulo multiplication con be performed by loeding the multiplicand into SQTSTR and the multiplier into MULSTR.

Fig. 8. A multiple function data register (STRSR).

Modulo multiplications are timed with a shift register counter in the bottom row of Fig. 7. The completion of an RSA encryption transformation is set by the END-SIONAL which allows for exponents of different lengths. The end and exponent registers (ENDSCR and EXPSCR) shift after 1 or 2 modulo multiplications, depending on the exponent bit. Several external control signals are needed: BEOIN starts the encryption; MODMULT sets the chip for a single modula multiplication; EXT sets the chip to external synchronous timing for data 1/0 or synchronous testing. The total number of pins required is about 12 depending on the actual application.

Asynchronous operation of the adders can be accommodated using a completion signal generator subsystem (CSO). Fig. 7 shows a pair of CSO subsystems, CSOleft and CSOright which detect all three carry outputs every second slice. For synchronous operation, the CSO subsystems are not required.

Asynchronous aspects

A self-timed adder. Several synchronous adders were considered such as carry lookehead, carry select, and the binary lockahead carry adder [18]. These adders had disadvantages such as high area, irregular layout, slower speed, or the difficulty of providing non-symmetric synchronous clock phases. Past approaches to self-timed adders have been speed independent or Muller circuits which use double rail logic. The disadvantages of this method are slower carry propagation and several times greater implementation area. Pulses have been used successfully to time asynchronous operations, such as asynchronous access of stored state registers [19]. When access is
requested, an edge detector / pulse generator circuit forms a pulse to time the operation.
A new pulse-timed sdder which borrows idens from Hayes [19], is shown in Fig. 9 in which carry propagations are detected in a precharged ripple adder. Carry outputs are reset to 0 during the precharge phase, so only propagations of I have to be detected. An edge detector / pulse generstor circuit provides enough delay for the carry signal to propagate to the next pulse subsystem. A pulse subsystem is only half as large as a low area precharge adder slice. Pulses are combined to create the completion signal with a single active load pullup NOR gate.

Fig. 9. Self-timed adder circuit details.

Several features of the adders make this scheme feasible. Overlap of the pulses prevents premature generation of the completion signal. The pulses are made several times wider than necessary since the resulting deley at the end of the additions is absorbed by subsequent RSA operations. The mean of the maximum number of consecutive carries in a 512 stage ader is only 8.2 with o variance of 3.3 (almost 60 times faster than
a ripple adder alone, on average!). The probability of less than 5 carries is negligible so a starting delay equivalent to 4 carries can be provided to over lap the first pulses. A pulse subsystem is not required every slice and ail three adders calculating dur ing the same phase can signal with the same NOR gate pulldown.

Optimization of the adder speed must be balanced sgainst area considerations. A pulse subsystem every slice is the fastest on average. However too many pulidowns slow down the lerge NOR gate. The number of pulldowns can be reduced by grouping pulses with smaller NOR and NAND gates first. These variables were adjusted to achieve low area and a regular layout.

Clocking. In combining the modulo multiplication algorithm of Fig. 4 with the self-timed adder of Fig. 9 in the bit-slice architecture of Fig. 7 , several control and timing considerations must be addressed.

The clock has to be capable of switching between asynchronous and synchronous timing to allow synchronous I/ 0 and testing. Also, when the RSA encryption is finished, the clock should stop with the ciphertext safely in a storage register. These functions are implemented with random logic as shown in Fig. 10. A Muller C element is used to prevent the PHI2 clock signal from going low until the PHI I clock phase has risen to prevent a race condition. This allows the PHI2 falltime to be set to the minimum value and only the risetime of the variable delay elements have to be adjustable.

Driver delays form a significant part of the clock period. Delays for generating some control signals cannot be avoided but the delay of the clock drivers can be largely prevented from adding to the clock per iod. Most of the falltime of clock phases does not contribute to the clock period because the clock phese widths can be externally adjusted. Also the non-over lap time can be externally minimized as shown in Fig. 10 . In the 8 and 24 slice implementations, the inverted driver outputs, CPHII and CPHI 2 , were fee beck to the clock controller rather than delayed versions of CPHI I sig and $\mathrm{CPH} \mid 2$ sig. This guarantees that there is sufficient non-over lap time but it is not adjustable and results in an approximately 30% larger clock period.

For some perts of the circuit, considerable area would be required to generate completion signals logically. Delay elements were used instead with active load resistors to time these circuits. Active loads can provide sufficient deley in a small area and can be controlled by on externel DC voltsge (RTct in Fig. 9). The new data rate control scheme employs a single pin to control all delay elements. An intermediate DC voltage is first selected, sey, 2.5 Volts. Then the gate aspect ratio of each active loed is chosen to provide the expected circuit delay. During testing, the DC voltage is reduced to find the maximum operating rate (similar to finding the maximum clock rate of a synchronous chip). The accuracy and stability of the active loads can be improved by increasing the gate length and width while keeping the gate aspect ratio constant. This asynchronous timing method has the advantages of rate controllability, low area, elimination of giobel clock distribution, and allows different processes to be timed at their own rate. Lastly, it uses only I pin. Correct chip timing is ensured since the delay of each variable deley element cen be increesed arbitrarily.

Synchronization failure can occur when gating an asynchronous signal to a synchronous system. Only latching the END signal is prone to this type of failure In an encryption environment, a host processor would periodically sample the END signal and there is a small probability that a metastable state wouid be detected. increasing the settling time repidly decreases the failure rate to an acceptable level [20]. The reauired settling time is negligible compered to the encryption time.

Fig. 10. Clock controller for the RSA chip with algor ithm D and esynchronous adders.
The non-over lap time is afjustable.

Imolementation

Output speed limits. Output driver current will often limit a synchronous clock rate while an asynchronous clock is not $1 / 0$ limited since there is no $1 / 0$ during the RSA transformation. The estimated average asynchronous clock rate in $2 u m$ CMOS is as high as 30 Mhz . This advantage of asynchronous timing will become more pronounced as processes scale down further. Circuit speed scales down as A^{2} [21], where A is the scaling ratio, if the power supply voltage is held constant. However, the driver speed scales down as $A / \ln (A)$ [22]. Asynchronous techniques could also be applied to any synchronous algor ithm to allow the RSA encryption to proceed faster than the $1 / 0$ speed.

The data rate of algorithm L Algor ithm D requires one clock phase for addition plus a shorter phase to set up the soder inputs. The throughput rate is affected by the on-chip communication delays which are hard to estimate accurately since they depend on the particular manufacturing process. Estimates besed on SPICE simulations of signal propsgation delays can be mode. A calculation of the bit rate for algorithm D with the pulse-timed adder yields a rate of $40 \mathrm{kbits} / \mathrm{sec}$. Details of this calculation are provided in Appendix A. This corresponds to an average acynohronous olook rate of 30 Mhz A elower eynohronous olock rato would be ued for $1 / 0$, but a negligible number
of clock periods are required for $1 / 0$. At the expected clock rates, small variations in the circuit speed have a large effect on the throughput rate, but a conservative estimate of $30 \mathrm{kbits} / \mathrm{sec}$ appears reasonable.
A.synchronous bit-slice implementation. Fig. 11 is a photomicrograph of a 32-bit prototype chip executed in 3um CMOS. Algorithm A has been used for modulo multiplication. A different architecture then that shown in Fig .7 is employed in the synchronous implementation, which simplifies the control logic external to the slice at the expense of more custom registers. The bit slices run horizontally and are comprised of 14 subsystems which implement modulo multiplication, exponentiation and storage functions. Input and output deta flow is serial which minimize the total pin count. This chip has been tested and shown to correctly perform RSA encryption (or decryption) at a synchronous clock speed of 200 kHz , which carresponds to a rate of $4 \mathrm{kbits} / \mathrm{sec}$. The synchronous, pre-charged adder deley per bit has been measured to be 8 ns in Sum CMOS from which a throughput rate of $1 \mathrm{kbits} / \mathrm{sec}$ for 512-bit encryption is predicted for a 2 micron CMOS process. For 3 um CMOS and 32-bit encryption, a rate of 5 MHz and $100 \mathrm{kbits} / \mathrm{sec}$ encryption is predicted. The low measured speed is difficult to explain since a 7 -bit prototype in 5 um CMOS was found to operate at 2 MHz . More samples are being bonded for testing which may indicate if process parameter variations are involved. -

Fig. 11. Photomicrograph of synchronous 32-bit RSA prototype implemented in 3um CMOS.

Asynchronous implementation. Fig. 12 is a photomicrograph of a 24 slice impiementation of an asynchronous RSA design based on algorithm D, the architecture described in Fig. 7 and the pulse-timed adder. The data analyser display for a 22 bit encryption is shown in Fig. 13. Input and output of data are over lapped, so both input and the previous output can be seen at the same time. Both inputs and outputs start least significant bit first.

Fig. 12. Photomicrograph of asynchronous 22-bit RSA prototype implemented in 3um CMOS.

Fig. 13. Data analyzer display for a 22 -bit computation: $584,932^{283,948} \bmod (1,283,476)=19,876$. Due to the slow sampling rate PHI2ext appears to stey at 0 sometimes. A single input set was cycled, so this ciphertext corresponds to this input set.

The average asynchronous clock rates of these designs provide a good indication of the sccuracy of the speed extrapolations made in Appendix A. In 2um cmOS for 512-bit encryption, the estimated optimized throughput wes $40 \mathrm{kbits} / \mathrm{sec}$ with an average clock rate of 30 MHz . In 5 um CMOS for an 8 slice prototype, the overage clock rate was found to be 3 Mhz and the encryption rate wes $300 \mathrm{kbits} / \mathrm{sec}$, while in 3 um CMOS for 24 slices the average clock rate was found to be 5 MHz and the encryption rate $150 \mathrm{kbits} / \mathrm{sec}$. The estimated optimized average clock frequencies for these processes were 6 MHz for 5 um CMOS (8 slices) and 13 MHz for 3 um CMOS (24 slices). Additional samples are being bonded to determine if the slower than predicted clock rate is related to process variations. In any case, there are some further steps which can be taken to increese speed, including use of double metalization, so that :t zeame posaiole that the predictad performance can be attiained.

Work in orogress. Expansion of the asynchronous design to perform transforms involving many hundred bits is necessary to verify the speed advantoges of the architecture and algorithms described here. The 64-bit chip presently being fabricated in 3 um CMOS will help to verify the extrapolations which were made to predict the speed of a 512 bit design in 2 Um CMOS. A 128-bit version has also been dosigned and will be fabricated in the neer future.

Significant further improvements in the throughput rate of RSA encryption are not likely to come from faster adders. With the asynchronous pulse adder, constant circuit delays take about twice as long es the three concurrent additions. The constant delays which result from signal propagation delays (excluding additions) are difficult to reduce in this style of architecture. Thus, a faster adder could only achieve about a 30 A speed improvement at the most. Future improvements may be possible with new orchitectures.

Higher bit rates can be achieved by interconnecting chips in several patterns. One suggested architecture is a systolic arrangement of modulo multipliers [23]. This design cascades at least K modulo multipliers with a systolic deta flow, where K is the number of bits. New systolic arrangements of asynchronous encryption units are faster and can be built with any number of encryption units. Binary tree input distribution, with token ring chip seiection is the most efficient and achieves the same performance as a single encryption chip.

4. A multiplier for the finite field $\operatorname{GF}\left(2^{\mathrm{m}}\right)$

Arithmetic operations in the finite field $O F\left(2^{m}\right)$ are quite different from ordinary integer arithmetic operations. Addition does not involve carries and is thus easier to perform then integer addition, but multiplication is still a fairly complex and difficult tesk. Most circuits proposed $[9,24]$ are not suited for use in YLSI systems. They require excessive silicon area, complicated control schemes, complex wire routing, heve nonmodular structures, or lack concurrency [12].

The systolic multiplier developed by Yeh, Reed and Truong [25] is suitable for VLSI implementation although it is only moderately compact and hes a latency of 2 m time units which mey be undesirably long for some applications. The implementation of the Massey-Omura multiplier [26] is simpler than the systolic version and operates with a smaller latency, but is less modular and has a circuit structure and operating speed which is dependent on the size of the fieid.

The architecture to be described here uses an approach similar to the one outlined by Laws and Rushforth [27]. It is modular and therefore easily expanded, compect, and requires few control signais. The multiplication time and latency are m time units.

Ihe aloorithm

It is assumed that the reader has a basic knowledge of finite fields. If $A(x)=a_{m-1} x^{m-1}+\ldots+a_{1} x$ $+g_{0}$ and $B(x)=b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}$ are two elements of $G F\left(2^{m}\right)$, then their product, $A(x) B(x)$ modF (x), is $P(x)=p_{m-1} x^{m-1}+\ldots+p_{1} x+p_{0}$, where $F(x)=f_{m-1} x^{m-1}+\ldots+f_{1} x+1$ is an irreducible polynomial.

The multiplication, $A(x) B(x) \operatorname{modF}(x)$, can be expanded by multiplying esch term of $B(x)$ by $A(x):$

$$
\begin{aligned}
P(x)= & A(x) B(x) \bmod F(x) \\
= & \left\{A(x) b_{m-1} x^{m-1} \bmod F(x)+\ldots+A(x) 0_{1} x \operatorname{modF}(x)\right. \\
& \left.+A(x) b_{0} \bmod F(x)\right\} \bmod F(x)
\end{aligned}
$$

The first term $A(x) b_{m-1} x^{m-1} \bmod F(x)$ is computed, followed by each successive term which is added to it and the sum reduced $\bmod F(x)$ until all the terms have been used.

If $A=\left[a_{m-1}, \ldots, a_{1}, a_{0}\right]$ is the vector of coefficients of $A(x)$ and similarly for $B(x), P(x)$ and $F(x)$, then this algor ithm can be represented by the flowchart in Fig. 14. Element A is added to the intermediate product, P, whenever the current bit of B, b_{1}, is a $1 . F$ is added whenever the most significant bit (MSB) of P is 1 , which indicates that modulo reduction is necessary. These two deecisions are carried out simultaneously. If the field is of degree m, then m steps are needed to complete a multiplication.

Fig. 14. Flowehart of $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ multiplication algorithm.

Architecture

The multiplier architecture is shown in Fig. 15 for the field $G F\left(2^{4}\right)$. Registers s_{j}, f_{j} ond p_{j} hold A, F and the intermediate product P. respectively. The MSB of F, which is always 1 , is actually not used in the
calculation. The state of b_{j}, latched with a flip-flap, and the MS8 of P constitute the two primary control signals. The left shift is performed by logding the output of stage L_{i} into the product register p_{i+1} of the next stage L_{i+1}. The final product is transferred to the output shift register (OSR) and shifted out serially once the multiplication is complete. Note that the worst case delay path from the f_{j} register to the OSR is independent of the multiplier size. The number of L_{j} and register stages is equal to the degree of the fieid, in this case four.

Fig. 15. The multiplier for $\operatorname{GF}\left(2^{4}\right)$

Each stage L_{i} contains one 3 -input modulo, two transmission gates and two NMOS transistors, as detailed in Fig. 16. The transmission getes and transistors are configured to perform the AND function (MSB(P) AND f_{i}, and b_{i} AND a_{j}). For example, if $b_{j}=1$ then a_{i} is passed to the adder; otherwise that adder input line is grounded (set to 0).

Implementation and testing

A multiplier for $\operatorname{sf}\left(2^{8}\right)$ was implemented using a combination of static and dynamic logic and fabricated in 5 micron CMOS. It was found to be fully functional, capable of operating at speads up to $7 \mathrm{Mbits} / \mathrm{sec}$ [28]. AS SPICE simulations predicted, the data rate was limited by the speed of the output pad drivers, not the worst case delay path on the chip. Optimization of the pad drivers should improve the speed by about 30-40\%.

Each of the eight slices occupied an area of 185 microns by 1459 microns, of which 100 was allocated to test structures. Subsequent chips have been modified to incorporate a more structured design for testability approach, the Scan Path technique [29]. In addition, the pad drivers and adders were replaced with faster versions. The new slice occupies 25 君 less aree.

This enhanced 8-bit version was submitted for fabrication in 3 micron CMOS in September 1986, along with a 128 -bit multiplier. A 512 -bit chip, with a total area (multiplier and $1 / 0$ peds) of 6912 microns by 6980 microns, will be submitted at the end of 1986. From these two larger designs it is hoped that more information about the performance of the algorithm will be obtained.

Fig. 16. The circuit for each block Li shown in Fig. 15.

5. Conclusion

BSA architecture A 22-bit, $3 u m$ CMOS prototype of an asynchronous RSA chip has been fabricated and found to function correctly with a throughput rate of $150 \mathrm{kbits} / \mathrm{sec}$. A conservative estimate for the 512 bit encryption rate in 2 um CMOS is $30 \mathrm{kbits} / \mathrm{sec}$ with optimization of the present design and $40 \mathrm{kbits} / \mathrm{sec}$ with algorithm E. The asynchronous clock rate during encryption is not $1 / 0$ limited nor is it limited by the clock rate in other components.

Concurrent modulo multiplication algorithms provide the most efficient implementations known for RSA encryption. Multi-adder algorithms such as algorithms D and E are efficiently implemented with the asynchronous pulse-timed adder. Minimization of constant circuit deiays is important since they several times larger then the addition time in a clock period.

GE(2m Lmultiplier. To eveluate the performance of the finite field multiplication algorithm, an 8-bit prototype has been fabricated in 5 um CMOS and tested. It was found to operate correctly for data rates up to $7 \mathrm{Mbits} / \mathrm{sec}$. A new 8-bit version with faster adders and pad drivers, and a more structured spproech to testing is currently being fabricated in 3 um CMOS along with a 128 -bit multiplier. A 512 -bit chip will be implemented at the end of 1986
and should provide some useful information about large VLSI multipliers.
6. Appendix A: Calculation of the RSA throughput rate with algorithm D

Constant on-chip communication delays in Sum CMOS:
Non-overlap time $=2 \times 1$ Ons (if adjustable)
Signal flow after addition: drive carryout line plus signal flow within bit slice $=30 \mathrm{~ns}$
Clock transition time $=2 \times 1$ Ons (crossing threshold only)
phi2: control generation (15 ns) plus driving of control lines plus - signal flow within bit slice $=50 \mathrm{~ns}$

$$
\text { Total }=120 \mathrm{~ns}
$$

1 clock period in a 5um process $=T D 5=(\mathrm{Nc}+\mathrm{L}) \mathrm{Tp}+\mathrm{I} 20 \mathrm{~ns}=201.2 \mathrm{~ns}$
where $\mathrm{Nc}=$ aversge number of carries for an average of 2.5 sdders of 500 bits each $=9.6$
$L=$ No. of slices separating pulse subsystems of adders $=2$
and $\quad T p=$ carry propagation speed in a Sum process $=7 n \mathrm{~ns} /$ stice
1 clock period in a Zum process $=\operatorname{TD2}=\operatorname{TD5}(2 / 5)^{2}=32.2$ ns
RSA transform execution time $=$ Texe $=$ (the number of modulo multiplications)(the number of periods per multiplication)(the length of a period)
Texe $=(1.5 \mathrm{sk}) \mathrm{e}(\mathrm{K}+2) \mathrm{eTD} 2=.0127 \mathrm{sec}$
where $K=$ number of bits in exponent and modulus $=512$
Bit rate $=K /$ Texe $=40 \mathrm{kbits} / \mathrm{sec}$

7. Acknowledgements

The research reported here was supported in part by strategic grants 60893, 60894 and 61364 and Operating Grants from the Natural Sciences and Engineering Research Council of Canoda. VLSI design and testing equipment wes provided under the loan program of the Canadian Microelectronics Corp. (CMC). Chip fabrication was carried out by Nor thern Telecom Electronics Ltd. Under the fabrication program of the CMC.

8. References

[1] W. Diffie and M. Hellman, "New Directions in Cryptography", IEEE Trans. Info. Theory, Vol. IT-22 (6), pp. 644-659, Nov. 1976.
[2] R.L. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public Key Cryptosystems", Comm. of the ACM, Voi. 21, No. 2, pp 120-126, Feb. 1978.
[3] D. Denning, "Cryptography and Data Security", Reading, Mess.: Addison-Wesley Publ. Co., 1982.
[4] R.L. Rivest, "RSA Chips (Past/Present/Future)", Advances in Cryptology, Proc. of EUROCRYPT 84, pp. 159-165, Springer-Yerlag, Berlin, 1985.
[5] M. Kochanski, "Developing an RSA Chip", Proc. of CRYPT0 85, Santa Barbara, CA., Aug. 1985.
[6] CYLINK, "Advance Data Sheet: CY 1024 Key Management Processor", CYLINK, 920 West Fremont Ave., Sunnyvale, California 94087, 1986.
[7] E.F. Brickell, "A Fast Modular Multiplication Algorithm with Application to Two Key Cryptography", Proceedings of CRYPTO 82, Senta Barbara, Californie, pp. 51-60, August 1982.
[8] G.A. Orton, L.E. Peppard, and S.E. Tavares, "A Fast Asynchronous RSA Chip", IEEE Custom Integrated Circuits Conference, Rochester, N.Y., pp. 439-443, May 12-15, 1986.
[9] W.W. Peterson and E.J. Weldon, "Error-Correcting Codes", Cambridge, MA: MIT Press, 1972.
[10] A.M. Odlyzko, "Discrete Logarithms in Finite Fields and Their Cryptographic Significance", Advances in Cryptology, Proc. of EUROCRYPT 84, pp. 225-314, Springer-Yerlag, Berlin, 1985.
[11] I.F. Blake, R. Fuji-Hara, R. Mullin and S. Vanstone, "Computing Logarithms in Finite-Fields of Characteristic Two", SIAM J. Alg. Discr. Methods, Vol. 5, pp. 276-285, 1984.
[12] P.A. Scott, S.E. Teveres and L.E. Peppard, "A Fast YLSI Multiplier for $\operatorname{OF}\left(2^{m}\right)$ ", IEEE Journal on Selected Areas in Comm., Vol. SAC-4, pp. 62-66, January 1986.
[13] G.R. Blakely, "A Computer Algorithm for Calculating the Product AB Modulo M", IEEE Trans. Computers, Vol. C-32, pp. 497-500, May 1983.
[14] R.L. Rivest, "A Description of a Single-Chip Implementation of the RSA Cipher", Lambda (Fourth Quarter 1980) pp. 14-18.
[15] D. Simmons and S.E. Tavares, "An NMOS Implementation of a Large Number Multiplier for Data Encryption Systems", Proc. 1983 Custom Integrated Circuits Conf., Rochester, N.Y., pp. 262-266, May 1983.
[16] M.P. Roy, L.E. Peppard and S.E. Tavares, "A CMOS B it-Slice Implementation of the RSA Public-Key Encryption Algor ithm", 1985 Cansdian Conference on Very Large Scale Integration, Toronto, Caneda, pp. 52-56, November 1985.
[17] S. Wesar and A. Peterson, "Real-time Processing Gains Ground with Fast Digital Multiplier", Electronics, pp. 93-99, September 29,1977.
[18] N. Weste and K. Eshrsghian, "The Principles of CMOS VLSI Design: A Systems Perspective", Addison-Wesley, 1985.
[19] A.B. Hayes, "Self-Timed IC Design with PPL's", Third Caltech Conference on YLSI, Computer Science Press, Inc., Rockville, Maryland, 1983, pp. 257-274.
[20] T.J. Chaney and F.U. Rosesenberger, "Charscterization and Scaling Of MOS Flip Flop Performance in Synchronizer Applications", Proceedings of the First Caltech Conference on YLSI, 1979.
[21] C.L. Seitz, "Self-Timed VLSI Systems", Proceedings of the First Caltech Conference on VLSI, pp. 345-354, January 1979.
[22] D.R. Brown, "Optimization of On-Chip Input/Output Interfacing Circuitry for VLSI Systems", M.Sc. Thesis, Department of Electrical Engineering, Queen's University, July 1985.
[23] K. Culik II, Jürgensen, K. Mak, "Systolic Tree Architecture for some Standard Functions", Report 140, Dep. of Computer Science, University of Western Ontario.
[24] T.C. Bartee and D.I. Schneider, "Computation with Finite Fields", Inform. and Control 6, pp. 79-98, 1963.
[25] C.S. Yeh, I.S. Reed, and T.K. Truong, "Systolic Multipliers for Finite Fields OF (2^{m})", IEEE Trans. Comput., vol. C-33, pp. 357-360, April 1984.
[26] C.C. Wang, T.K. Truong, H.M. Sheo, L.J. Deutsch, J.K. Omura, and I.S. Reed, "YLSI Architectures for Computing Multiplications and Inverses in $6 F\left(2^{m}\right)^{\prime \prime}$, IEEE Trans. Comput., vol. C-34, pp. 709-717, Aug. 1985.
[27] B.A. Laws, Jr. and C.K. Rushforth, "A Cellular-Array Multiplier for GF ($\left.2^{\text {m }}\right)^{\prime}$ ", IEEE Trans. Comput., vol. C-20, pp. 1573-1578, Dec. 1971.
[28] G.A. Orton, M.P. Roy, P A. Scott, L.E. Peppard, and S.E. Tavares, "New Results in Mapping Data Encryption Algorithms into YLSI", presented at the Fourth Int. Workshop on VLSI in Comm., Ottawa, Ont., June 1986.
[29] T.W. Williams and K.P. Parker, "Design for Testability - a Surver", Proc. IEEE, vol. 71, pp. 98-112, Jen. 1983.

[^0]: A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPTO '86, LNCS 263, pp. 277-301, 1987.
 (c) Springer-Verlag Berlin Heidelberg 1987

