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Abstmct: Techniques are presented that allow A to convince B that she knows a solution to the 
Discrete Log Problem-i.e. that she knows an x such that d = B (mod N ) holds-without 
revealing anything about x to B. Protocols are given both for N prime and for N composite. We 
prove these protocols secure under a formal model which is of interest in its own right. We also 
show how A can convince B that two elements a and B generate the same subgroup in Zk, 
without revealing how to express either as a power of the other. 

1. Introduction 

Consider the following problem: 

0 Alice knows a solution to the Discrete Log Problem (i.e. for a particular a, /? and N ,  she 
knows the exponent x such that d( G ,8 (mod N ) holds). 

Alice wants to convince Bob that she knows x. 

Alice is not *g to reveal any information (in the sense defined in the next section) 

'Partially supported by the Xetherlands Organisation for the Advancement of Pure Research (ZWO). 
Currently at Facultad de Matematicas, Universidad Catblica de Chile, Casilla 6177 Stgo., Santiago, .. 

Chile; partially supported by DIUC Grant #211/86. 

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 '86, LNCS 263, pp. 200-212, 1987. 
0 Springer-Verlag Berlin Heidelberg 1987 



20 1 

about the value of x. 

Bob accepts an exponentially small chance that Alice is cheating, i.e. that she pretends to 
know an x but doesn’t. More precisely, the chance that Alice succeeds in cheating without 
being detected by Bob, will be 2 - T ,  where T is proportional to the time and space required. 

In this paper we present a number of protocols which solves this problem, both for the case 
N a prime, and for the case N = P1P2, where P I  and P2 are prime and of roughly the same 
size. Notice that there is no probabilistic polynomial time algorithm known for finding x given 
a, fi and N .  But even when Alice is restricted to polynomial computational power (as we will 
assume), this protocol is of interest, since given a and N she can choose x E [ 1,N - 11 with 
gcd(x, H N ) )  = 1 at random and then compute /3 simply by exponentiation. 

In this paper we define the notion (almost) no information whch is very similar to “zero 
knowledge”, introduced by Goldwasser, Micali and Rackoff [GMR85] (and which has nothing to 
do with Shannon-information). The difference is that in the GMR model the prover has unlim- 
ited computational power, whereas in our model her power is only polynomial with coin flipping. 
In section 7 we illustrate the need for such a model by giving an example in which both parties 
have a symmetrical position, and where it is reasonable to assume that neither has unlimited 
computational power. 

As far as we know, no other protocol with the same functionality has been presented. Very 
recent results by Goldrekh, Micali and Wigderson [GMW86], Brassard and Crepeau [BrCr86], 
and Chaum [Ch86], however, all imply the following: if Alice has a certificate (or witness) of a 
particular statement which can be verified in polynomial time, then there exists a polynomial time 
protocol in which she can convince Bob that she has a certificate, without releasing any 
knowledge (or information in [Ch86]) about the value of this certificate; consequently, there exists 
a polynomial time protocol for showing possession of the Discrete Log. Nevertheless, these pro- 
tocols are not very practical. An important merit of the protocols presented here is their practi- 
cal feasibility. 

The structure of this paper is as follows: The next section describes the model and the 
notion of information under which we prove our protocols secure. In section 3 and 4 we present 
the protocols together with their proofs of security in the prime and composite cases, respectively. 
Section 5 is devoted to a specific variation which surprisingly turns out to be insecure. Section 6 
gives a protocol to convince another party that two elements generate the same subgroup in 2;. 

The paper ends with an example and two open problems. 

2. The model. 

In this paper we wiU use the model developed in [BKP85], but with some modifications. Below 
we briefly sketch this model using a modified notation. It should be pointed out that this sketch 
assumes familiarity with [BKp85] or [GMR85]. 

We think of a protocol as occurring between two Probabilistic Turing Machines (PTM‘s) A 



202 

and B which operate synchronously. Each PTM has, besides a computation tape and a random 
tape, a one-way infinite tape for incoming messages. We call this tape the “mailbox” of the 
machine. The FTMs communicate by writing into each others mailbox. We call each of the 
machines in such a system a CPTM, for Communicating Probabilistic Turing Machine. 

Now consider a system of two CFTMs A and B. The system [A ;B] halts whenever A or B 
halts; the system accepts only when B halts and accepts. Throughout this paper A wiU interac- 
tively demonstrate possession of a secret to B, so (using the terminology of [GMRW]) we call A 
the prover and B the verifier. In [BKFM] this secret is the factorisation of a large composite 
number. But in general, the solution to an instance of any problem assumed not solvable in ran- 
dom polynomial time may serve as a secret. We define IA as the pair constisting of the problem 
instance and the secret; IA is usually created by A ,  and is considered the input for the system 
[A ;B].  Given IA ,  we define 1; as the single problem instance, thus wirhout the secret; we assume 
that A sends I; to B before the actual protocol starts. For example, in our Discrete Log proto- 
cols IA = (a, 8, N ,  x ) ,  and 1; = (a, B, N ) .  

For simplicity, we explicitly force the time ordering in the messages by requiring that A and 
B alternately write one symbol in the other’s mailbox. If a party has nothing to communicate it 
writes the special null symbol, V, not used for any other purpose in the communication. We also 
assume that both parties do  not write superfluous null symbols, so the places where null symbols 

are written is a function of I;. We define f2 : = U (0, 1, v} n, and the contents of a mailbox as 

an element of Q .  

m 

n = O  

The conversation between A and B, defined as the ordered pair containing their respective 
mailboxes, is considered as the output of the system [A ;B].  It depends only on the instance IA 
and the bits on the random tapes of A and B. This conversation is denoted as conv([A ;B](IA)).  
Then Pr(conv([A ; B ] ( ~ A ) ) = C )  is defined as the probability that c €az occurs as the conversation 
between A and B resulting from the initialising instance IA , under the assumption that the bits on 
the random tapes of A and B are chosen independently and uniformly. 

The following definitions (which are modifications of part (iii) of the definition of an A- 
simulator preceding theorem 1 in [BKP85]), will serve to make precise the kind of security 
achieved by our protocols. Informally speaking, they state that the prover A releases no informa- 
tion if there exists a probabilistic polynomial-time simulating machine which, when in i t ia l id  
with Z i  and for all possible verifiers B’, produces simulated conversations between A and B that 
have (almost) the same probability distribution as the true conversations between A and B. This 
simulating machine, denoted S A * ,  is a PTM S that contains another machine A*. This A* is 
called as a subroutine and outputs a simulation of A’s part of the conversation. Input for SA- is 
the problem instance without the secret, I ; ;  the output is denoted as output(S~*(I;)). 

Definition 1 . The prover A releases no information if there exists a polynomial-time (simulating) 
machine S A * ,  such that for all CPTMs B‘, all initialising instances I,, and all possible conversa- 
tions c E 02, 
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The next definition covers the case when the two probability distributions may differ 
slightly. 

Definition 2 . The prover A releases almost no information if there exist an c, 0 & c < 1, and a 
polynomial-time (simulating) machine SA* such that for all ( 3 “ s  B’, all initialising instances 
I,., of length I 

For describing a cryptogaphic protocol in the model presented, we will use the same proto- 
col notation throughout the paper. The meaning of this notation is straightforward; only the 
next few things might need explanation: 
- Expressions shown on the left or right are known to that party only, and are secret from 

the other party. 
T is the security parameter, agreed upon before the protocol starts. Increasing T reduces 
A’s chance of successfully cheating exponentially, but increases the amount of communica- 
tion and computation only linearly. 
e E, S means that an element e is chosen at random from the set S, where all elements of S 
have an equal probability of being chosen, independent of all previous events. 
In some steps of the protocol a party checks if a particular equality holds; this is denoted 
as: check a 4 b. If the check fails, cheating is detected and the protocol halts. 

The proofs of security for our protocols are considerably simplified by the fact that there is 

- 

- 

- 

essentially no two-way communication. The nature of the protocols presented here is such that 
the bits that B reads from his random tape, can also be generated by a mutually trusted random 

source. The correctness of the protocols lies in the randomness of the bits generated, however, 
there is no reason for B to bide these bits. If a protocol has this property, we say it is venfier- 
passive. 

Several coin flipping protocols are widely known which allow A and B to generate mutually 
trusted random bits, see e.g. [B182]. Below we briefly describe the general nature of these proto- 
cols. Let b E {O, 1) be a bit, r be some random padding, and assume that A and B agree on a 
function F with the folloaing two properties: 
1) given the function F and the value F(r,b) ,  the bit b cannot be computed by B; 
2) given the function F and the value F(r ,b ) ,  a pair (r’, b’) for which F(r,b) = F(r’,b’) and 

b # 6’ cannot be found by A .  
Then A and B can use the following protocol, called r, for generating mutually trusted random 
bits: 
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Protoool r coin flipping 

A B 

Step 1: 

step 2: 

Step 3: 

Step 4: 

bA E~ (0, I} ,r random 
f := F(r,bA) 

f 

Note that in this protocol the role of A and B can be interchanged, but this might depend 
on the model of computation. 

For generating bit strings of length T, this protocol can be extended to a protocol Tr in 
two Merent ways: a sequential version, where r is repeated T times, and a parallel version, 
where both parties send message tuples of length T. We will use this coin-flipping as a sub- 
protocol. 

Because of the time ordering in the conversation, the meaning of each cell in the mailboxes 
of A and B is completely determined by 11, the kind of protocol used, the security parameter T 
and the initidsing instance IA . So in the mailboxes we can &tin@ between sequences of 
cells dedicated to the coin-flipping protocol rT, and sequences of cells dedicated to the top-level 
protocol II. More formally, if2 = (b  . . . , bT) are the bits generated through r T ,  we define 
* A ( I A , ~ )  as those cells written by A (in B’s mailbox) for protocol II only, with null symbols at d 
other places; similarly, yA(IA ,x) is the output of A with regard to rT only, with null symbols at 
all other places. B’s part of the conversation is split similarly in TB and yB. For the simulating 
machines A’ and S we define nA*, yA* , nS and ys on input I: andTin the corresponding way. 

Theorem 1 . Suppose that the protocol II is verifier-passive, that a coin-flipping protocol r T  is 
used, and that a CPTM A .  exists such that 

Then A releases no information through protocol II. 

Proof: We have to show that a polynomial-time simulating machine SA* can be constructed 
which simulates the conversation between A and B. This conversation, i.e. the contents of A’s 
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and B's mailboxes,  an be split UP in TA, TB, y~ and yB. By as s~mpt i~q  TA  an be simulated 
by TA*. And TQ consists of null symbols only, since IT is verifier-passive; therefore VB also 
simulatable. In general, it is easy for SA* to simulate rT. However, while simulating lT, machine 
A* has to guess in advance the bitsxresulting from Tr,  otherwise the simulation fails. In the 
parallel version of Tr the probability of A' guessing correctly all bits is only 2-=. In the sequen- 
tial version of l?T this probability is 44 in each round. But as soon SA* realizes that the wrong 
coin is being simulated, the machine is reset to the state it had when that round was entered and 
tries that round again. Because of this fact, the error probability can be made arbitrary small. 

Though SA*'S expected running time is increased by a factor 2T when compared to A ,  the Simu- 
lation still runs in probabilistic polynomial time. 

Theorem 2 establishes the analogous result regarding protocols which transfer almost no 
information. 

Theorem 2 . Suppose the protocol IT is verifier-passive, that a coin-fipping protocol Tr is used, 
and that an e, 0 Q e < 1, and a CPTM A* exists such that for all CPTMs B', 

where 1 : = 1 IA I. Then A releases almost no information through the protocol IT. 

Proof: The proof is analogous to the proof of Theorem 1. 

Machine A' in the statements of Theorems 1 and 2 is called a prover-simulator machine or 
just an A-simulator machine. 

From now on we denote the bits produced by a coin flipping sub-protocol r by the word 
COIN FLIPPING, and a twwsided arrow. Furthermore, 2, is the additive group (mod N ); and 
Zk is the multiplicative group (mod N ) .  

3. Protocols for proving possession of the discrete logarithm modulo a prime number. 

The problem is the following : A knows a solution to the equation di G /3 (mod P ), where we 
assume that x is randomly chosen from [1 ,P - 11. P,a,B are public and B wants to be convinced 
that A knows x. A wants to convince B, but does not want to release any information about x.  

We will give two protocols for this problem. Our first example is an easier protocol; how- 
ever, it works only if a and B both generate the same sub-group in Z> and A is willing to a&- 
nowledge this. If a and /3 do not generate the same sub-group, protocol 1 releases information 
about the index of (8) in (a). An intuitive way to think about this protocol is to consider the 
expression h, : = aer made public as lying somewhere between a and 8; upon getting the value of 
the bits, A shows either how to express h, as a power of a, or how to express #I as a power of hi. 
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Fhtocol 1: d = /3 (mod P); P, a,B public; x with gcd(x,P - 1) = 1 a secret of A ;  a$ generate 
the same sub-group. 

A B 

e l , .  . . , er ER 2;-1 

hi := ael (mod P) 

step I: h l , - . . , h T  
> 

step 2: COIN FLIPPING: bl, . . . , bT ER {O,1}  
.e > 
if b, =O then s, := e, 
i f b i = l  thens; := xe,' (modP-1)  

Step 3: $1.. . f , s7- 
1 

if b; = 0 then check a'' 3 h ;  
if b; = 1 then check h? 3 8  

Theorem 3. 
(0) A can cheat in protocol 1 with probability at most 2-= if she does not know x, and 
(b) there exists a polynomial-time prover simulator A'. 

Proof: 
(a) Correctness: If A does not know x,  then she is not able to compute both possible exponents to 
be released in step 3. Hence she will get caught with probability at least Yz with each h,.  Thus A 
will get caught cheating with probability at least 1 - 2 - T .  
(b) Senuity: We exhibit a simulator A* which, for random bits b l ,  . , . ,bT, produces random 
h l ,  . . . ,  h ~ ~ Z ; , a l o n g w i t h r , s u c h t h a t ~ ~ ' - h , i f b ,  =Oands,suchthath: = B ( m o d P ) i f  
6, = 1. We construct A* as follows: 

A-Simulator for protocol 1: 

1: b i , .  . . , ~ T E R  (0,1> 

2: 

3: I fb ,  = l t h e n s , E , Z ~ - l a n d h , : = ~ , w h e r e o , = s , ' ( m o d P - l ) .  

4: 

If b, = 0 then s, E~ 2; - and h, : = as' (mod P ). 

Output h,, 6, and s, for I E (1, . . . , T } . 

The reader can verify that the b,'s, hi's, rj's and si's produced by simulator A' have the same 
joint probability distribution as the corresponding numbers produced by A in an execution of 
protocol 1. Note that the computations in step 3 can be done in polynomial time using Euclid's 
algorithm. By Theorem 1 ,  protocol 1 reveals no information. 
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Protocol 1 has the advantage that it can be performed sequentially by using T = 1 and 
repeating step 1 to step 3 many times. Protocol 2 below can be proved to be secure only when it 
is performed in parallel; however, it can also be used if u and f3 do not generate the same group. 

Protocol 2: d = /3 (mod P ); P, a,/3 public; x a secret of A .  

Step I :  

Step 2: 

Step 3: 

Step 4: 

Theorem 4 .  

- 
if bi = 0 then si : = ei 
i fb i  = 1 thens, := e i - e j ( m o d P - l ) ,  
w i th j  := min{i:bi  = 1) 

S I P . .  . .ST - 
if b, = 0 then check as' *hi 
if b; = 1 then check us' * hi h i  ' 

.$ : = x - ej (mod P - 1 ) 

E 

(a) A can cheat in protocol 2 with probability at most 2-T if she does not know x, and 
(b) there exists a polynomial-time prover simulator A'. 

ProoE 

(a) Correctness: Suppose that A does not know x .  Then she will get caught with probability at 
least H for each h,, for i # j. This is because A can never answer both possible cases to be sent 
in step 2. Now, independent of what j is, A's chance of being caught with h, is also at least 'h, 
because she cannot know ej and pass the check after step 4. So the only way A can pass all the 
checks in step 3 and step 4 is by guessing correctly what the vectorzwill be. This happens with 
probability 1 - 2 - T .  

(b) Securig: Note that protocol 2 is verifier-passive. We exhibit a simulator machine A' which 
produces messages and random bits which have the same joint probability distribution as mes- 
sages from A and mutually trusted random bits in an execution of the protocol. By Theorem 1 it 
then follows that protocol 2 releases no information. 

In the remainder of the proof we have K : = { i : b, = 0) , L : = { i  : 6, = 1 } , k EK and I EL. For 
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random bits b 1 ,  . . . , br, A .  must produce random h 1, . . . , hr in Z;, along with ek such that 

sl E el-e, (mod P - 1) satdymg a'' 
must produce the difference 
struct machine A* as follows: 

A-Simulator for protocol 2: 

- = hk (mod P ) for each k E K. For each 1 EL, simulator A* must produce the ditference 

hlhy' (mod P), wherej = min{i : i  EL}. Finally, A* 
x - ej ( mod P - 1 ) satisfying C$ shy ' (mod P ). We con- 

1: 

2: 

3: 

4: 

5:  

b l ,  . . . , b r  E~ (0 , l ) .  Let K and L be defined as before. 

For k EK Choose Sk ER z p  - 1 ,  a d  k t  hk := ask (mod P). 

ChoosetER[1,P-11]. For 1~Lchooses l  E R [ l , P - I ] .  

For / E L -  0') let hl := a"'-'B. 

Let hi := a-cp. 

Output hi, biand si for i = 1, . . . , T, and <. 

Observe for step 4 that hl asf-'8 = a s ! - E + x  ~ , (e l -e , ) - (x-e , )+x  ~ ael and for step 5 &at 
- (x-e, )+x - h J -  = a-cj3 a 

the ,$ produced by A' have the same joint probability distribution as the ones produced by A in 
an execution of protocol 2. o 

= aeJ. Now it follows immediately that the bi, the e,, the h k ,  the sl and 

The crucial difference between A and A' is, that the simulator A* does not know the actual 
values of the el (because it does not know x),  but only their differences (mod P - 1 ). Since the 
protocol does not reveal the actual values of el and x, but only their difference with e, taken 
(mod P - 1 ), the protocoi is secure. 

4. A protocol for proving possession of a discrete logarithm modulo a composite public 
key. 

In this section we consider the analogues of protocols 1 and 2 modulo composite numbers, where 
we assume that the proving party A knows the factorization of N (henceforward called N A ) .  

So the problem is the following: A knows a solution to the equation d = B (mod NA ), 
where NA is a composite modulus whose factorisation is known to A only. Again a,B are public 
and B wants to be convinced that A knows x. And A wants to convince B, but does not want to 
release any information about either x or the factorization of N A  . Note that the operations on the 
numbers themselves are carried out modulo NA , but on the exponents modulo $(NA). 

First consider the analogue of protocol 1. As is easily v d e d ,  the protocol is feasible, but 
cannot be proven to be secure. The crucial point here is that when we look at the simulator for 
protocol 1, this simulator cannot execute step 3 since it does not know "A) (namely, this is 
essentially equivalent to knowing the factorisation of NA) .  The simulator must generate pairs 
(h,s) for which hS = /3 (mod NA ). But since we cannot prove that any simulator can do this in 
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polynomial time (in fact this does not seem very likely), this modification of protocol 1 cannot be 
proven secure. 

AS we will show now, protocol 2 can be used for composite numbers as well, be it at the 
cost of a very small probability of insecurity. 

Protocol 3 d( B (mod NA ); NA ,a,B are public; x and the factorization of N A  a secret of A .  

This protocol is exactly the same as protocol 2 except that exponents are chosen modulo 
~ N A ) .  The sums and differences of exponents are also revealed modulo HNA) .  

Theorem 5 . (a) A can cheat in protocol 3 with probability 2 - T  if she does not know x, and 
(b) there exists a polynomial-time prover simulator A' that produces a conversation with almost 
the same probability distribution. 

proof: 

(a) Correctness: the same as for protocol 2. 
(b) Security: The added complication is that A must not only know x, but, in order to perform 
the protocol, must also know the value of HNA).  Hence the possibility arises that A may release 
some information about the factorization of NA . However, we can use the same simulator 
machine A' as in the proof of security for protocol 2, except that A' chooses exponents uni- 
formly from the set { 1, ..., NA } . We can do this since the construction for A' involves no 
exponent arithmetic modulo H N A ) .  Thus the value of H N A )  is not used by A'. The resulting 
probability distribution is not identical to the one generated by A ,  who choses her exponents in 
[I, ..., H N ) ] .  However, a straightforward computation shows that the difference of these distribu- 
tions, as expressed by the s u m  of absolute differences in definition 2, is negledgibly small .  Use 

here that NA - is exponentially small in the size of N A  (assuming that NA is the product 

of two prime numbers of nearly the same size). Thus protocol 3 releases almost no information. 
N A  

5. An insecure protocol for proving possession of a discrete logarithm modulo a compo- 
site number when the factorization of the number is not known. 

The problem is the following: A knows a solution to the equation di 
composite modulus. a,B are public and B wants to be convinced that A knows x. A wants to 
convince B, but does not want to release any information about x. Here A does not know the 
factorization of N .  

P r O t ~ o l ~  di = J3 (mod N ) ;  N,a,J3 are public; x a secret of A ;  A does not know a factor of N .  

(mod N ), where N is a 

This protocol is the same as protocol 3 except that exponents are randomly chosen between 
1 and N .  Sums and differences of exponents are not reduced modulo H N )  (since A does 
not know g N ) )  and are instead released as integer sums. 
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Theorem 6 . Protocol 4 releases information with regard to definition 2. 

Prod Asbefore,K:= { i : b i  = O } , L : =  { i : b ;  = l ) , k ~ K a n d f ~ L .  Define 
s,, : = max (sl : I E L }  , and s- similarly. Because we treat the s/ and the el as integers, there 
is no wrap around modulo N N ) .  So s,, -s- = (smm +ej) -. (s- +e,) = 
e,, -e -  =: A ; note that X is the length of the smallest interval containing all el, for I E L. 
Because e- E[I,N] and e ,  = e-  + A E [ ~ , N ]  we find that e- E [ ~ , N  -A]. This implies 
thatx = e-+(x-e,)-(e--e,) = e,,,j,, + 5 - ~ - ~ [ 1 + 5 - s - , N - X + S - s - ] .  NOW 
it is immediately clear that A', who does not know x, cannot produce a conversation with the 
same probability distribution as A.  This proves that protocol 4 leaks information in the sense of 
definition 2 . 0  

We consider the Shannon information released by protocol 4. When A is very close to N ,  
then the number of possible values for x drops from N to N -A. It is easy to see that when the 
number of equally likely possibilities reduces with a factor 2-m,  then m bits of Shannon informa- 
tion are revealed. This (or a similar computation using entropy) shows that the amount of infor- 
mation released by this protocol equals logz ( N / ( N  -A)) = log;! (1 -X/N)-'. Let A denote 
the stochastic variable for the length of the interval, and let Pr(A=A) be the probability that A iS 
the length of the i n t e n d  Then we define the average release of information as 
N 

Pr(A=X) logz . A straightforward computation of this sum shows that the aver- 
A =  1 (1--X/N) 

cardinality of L. 
age release of information for this protocol is approximately log2 I L I < log;! T, where I L 1 is the 

6. A protocol for proving that two elements generate the  same group in Z> or 2;. 

Let a EZ; or Zi,  and let (a) denote the multiplicative subgroup generated by a. Protocol 1, 2 
or 3 can all be used to show that (a) = (/3) provided that A knows a relation between a and 8. 
Note that proving that (a) = (8) is a problem not known to be solvable in polynomial time 
even modulo a prime number. 

Protocol 5: (a) = </3) in Zfi; a, /3 and N are public; x for which Lu' G f i  (mod N )  is a secret of 
A .  

Use protocol 1,2 or 3 in both directions: A shows to E that she knows how to express /3 as 
a power of a and how to express a as a power of 8. 

The correctness of this protocol is easy to understand: (a) = ( B )  if and only if there exists an x 

such that d = p (mod N )  and ay such that /Y 
can computey = x (mod N N  )> in polynomial time. SO A can perform protocol 1,2 or 3 in 
both directions, thus showing knowledge of both x and y. The security of sequential use for these 
protocols lies in the kind of security proved. In the terminology of Berger, Kannan, Peralta 
[BKPW], the proofs of security of protocols 1-3 show that these protocols are strongly secure and 

a (mod N ) .  A knows x and gN) ,  thusA 
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therefore can be executed one after the other without loss of security. 

7. Applications and open problems. 

We conclude with an application and two open problems: 

1. Difie-Hellman Key Exchange can be made more secure: 

In a fair execution of the so-called Difiie-Hellman Key Exchange protocol [DiHe76] both parties 
choose an exponent X A  and xg , they send /3A : = ax^ (mod P j and / . 3 ~  := ax' (mod P )  to each 
other, and they use /32 = fi? as their secret communication key. 

Now suppose B has two polynomial time algorithms F1 and F 2 .  On input a, P, BA algo- 
rithm F1 yields 6, which B uses as his f i ~ .  Using s"l as a key. A sends a message to B.  This 
message, together with a, P, P A ,  is fed to algorithm F2 which has xA as output. 

As f a r  as we know it has not been proven that such algorithms F1, Fz and such 6 do not 
exist. This would be undesirable, because when B knows xA he can pretend to be A to a third 
party. Using protocol 1 or 2 in this paper we can extend the me-Hellman Key Exchange pro- 
tocol by requiring both parties to show they know the discrete logarithm x .  Then for B's attack 
to work, he would have to know log, 6 besides 6. But as is easily verified, this implies that B has 
a polynomial algorithm for the Discrete Log Problem (he can himself simulate the message sent 

by A).  

2. Can the sameprotocok be used with two generators? 

Suppose that A wants to prove she knows x and x2  such that L Y Y ' L Y ; ~  = /.3 (mod N 1. Note that 
the status of this "Relaxed" Discrete Log Problem is not clear. 

3. 
zation is not known? 

This is the problem mentioned at the end of section 3: can one find in polynomial time a pair 
(h, s), s > 1, which i s  a solution for h' 
problem? 

HOW hard is it to find any root of a given number p modulo a composite N of which the factori- 

p (mod N j, or is ths  problem reducible to a hard 
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