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1. Introductioii 
Highly nonlinear permutations play an important role in the design of crypto- 

graphic transforinations such as block ciphers, hash functions and stream ciphers. 
The substitution boxcs of DES are relatively small in dimension a i d  they can be 
generated by testing randomly diosen functions for required design criteria. Secu- 
rity may be increased by the use of substitution transformations of higher dimen- 
sions. But when the di~nensions grow larger, analytic construction methods become 
necessary. 

In this paper a general methodology is developed to construct permutations of a 
vector space over a finite field such that the nonlinearity of both the permutation 
itself and its inverse can  be kept in control. The nonlinearity measure used is based 
on the Hanming distance from the set of affine functions. For quadratic functions 
there is a close relatiuiiship with this nonlincarity xneasurc and tlic number of thc 
SO called Iiiicar structures uf the function. This approach leads to a iiecessary and 
sufficient coiiditiori uridcr which a transformation of F; (n  odd, q = 2*, d odd), 
with quadratic coordiuate functions, is a highly iionlineiu- permutation with equally 
highly nonlinear inyerse. 

Finally, we shall apply our general methodology to give a general constructiori of 
which the cubing permutation is a special case. 

It was observed by Pieprzyk [F] that the coordinate functions of the cubing per- 
mutation in GF(2”),  n odd,’are of high nonlinearity, when considered with respect 
to a self-dual normal basis in GF(2”)  over GF(2) .  His measure of nonlinearity is 
weaker than the one given ill the present work, since it only takes into account 
the coordinate functions of the permiitation. Our nunlinearity measure involv- 
all nontrivial liricar combinations of the coordinate functions of the permutation 
and allows a rigorous proof of the fact that the inverse pcrmutation is of the same 
iionlinexi ty. 

The pcrmutatioris of GF(2”)  constructed in $4 have the property that their CO- 
ordinate functions m wcll a the coordinate functions of their inverses are dl of the 
s a n e  large distance from the sct of f i n e  functions independently of the choices 
for the bases in the input and and output spaces. This degree of nonlinearity only 
depends 011 ovcr which subficld GF(2”) is corisjdered as a linear space. 
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2. The nonlinearity ineasure 
Let F = F, be a finite field with (I elements and consider a function f : F" + F. 

DEFINITION 1. The nonnegative integer 

N ( j )  = min #{x E F" I f ( x )  # U'X + v }  
uEF".uEF 

is the Hamming distance off from d n e  functions. 

It is easily seen that n/(f) is independent of the choice of the basis in the linear 
space F" over F. 

LEMMA 1. For all u E F", u # 0 

N ( f )  5 ( q  - I)q"-' = #{x E F" I U'X # 0). 

By the help of this lerrirna the third equality in the following definition be 
established. 

DEFINITION 2. T h e  nonlinean'ty of a vector function f : F" --$ F" is 

n'(f) = min N ( w ' f )  
wEFm ,w#O 

- - min # { x  E F" I w'f(x) # U'X + v }  
uEF" ,wEFm , u € F , w # O  

- - min #{x E F" 1 w'f(x)  # u'X + v )  
uEF",wEFm,uEF,u#O or w#O 

PROPOSITION 1. The nonlinearity n/(f) of f : F" -+ F" is invarhint under h e a r  
permutations of the input space F" and also underlinearpermutations of the output 
space Fm . 

This measure of nonlinearity has the following property of symmetry. 

TllEOREM 1. Let f : F" -+ F" be a permutation. Then N(f-') = N(f). 
PROOF: 

N(f-1) = min #{Y E F" I wLf-'(y) # u'y + u] 
~ . w € F " , v € F , u f O  or W # O  

- - min #{x f F" I W'X # u'f(x) + u )  
u.wEF" .uEF,u#O or w#O 

= N(f). 

The following result will be used later. 
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n/(g) = min #{x E F"+* I g(x) # u t x  + u }  
uEFn+',vEF 

0-1 

i=O 

and this lower bound is obtained by the choice un+l = 1. 
The linear behaviour of a function can also be measured by the number of its 

linear structures. 

DEFINITION 3. A vector w E F" is called a linear structure of a functionf : F" 4 F 
iff(. + w) - f(x) is constant (= f (w)  - f(0)) as x E F" varies. 

It was shown in [Z] that if F is a prime field, then the linear structures form a 
linear subspace on which the restriction of the function is linear. This does not hold 
in general for arbitrary finite fields. In the next section it shown however that the 
linear structures of a quadratic function of finitely many variables over any field 
form a linear space whose dimension determines the Hamming distance horn linear 
functions given in Definition 1. 

3. Quadratic functions 
Let 

'BJ 

be a quadratic form of R indeterminates over a finite field F with y elements. Then 
after fixing a basis in F" we can consider f as a function, a quadratic polynomial, 
from F" to F of the form 

f (x)  =f(x1,~~,-..rxn) =x'Ax, 
where A = (a , j ) .  Two quadratic forms f(x) = x 'Ax  and g(x) = x'Bx are called 
equivalent if they represent the same quadratic form, i.e., there is a linear per- 
mutation (a change of basis) C ,  such that A = C'BC, or what is the same, 
!7(CX) = f(x). 
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PROPOSITION 3. Let f (x)  = x'Ax be a quadratic form of n indeterminates over 
F. Then the linear structures off  form a 1ine'a.r subspace of dimension X ( f )  = 
n - rank(A $. A'). 

PROOF: We have 

Hence w is a linear structure of f if and only if (A + A')w = 0. 

proposition. 

PROPOSITION 4. Let n be odd and q = 2d and f(x) = x'Ax be a quadratic form 
in F" with rirnk(A -t A') = r .  Then r is even and f is equivalent to 

The following result is a consequence of Theorem 6.30 in [4] and the preceeding 

where L is a linear form of n indeterminates 

The quadratic form f(x1,x2, ... ,z,) =z1z2  +z3x4 + . . . + ~ , , - ~ x ,  (for au even 
n) is a perfect nonlinear function from F" to F, that is, for every fixed w E F" the 
difference f(x + W) - f(x) obtains each value in F equally many times. Hence it is 
also a bent function, if F is a prime field with Q elements, arid the distance of f to 
the set of f i n e  functions is the maximum 

N ( f )  = ((1 - l ) (q"- l  - $-I)  

(see [ 5 ] ,  Theorem 3.3). It is straightforward to check that if f is considered over 
F = GF(2d)  then the formula (1) also holds with q = 2 d .  

Let us remark that the quadratic functions of n variables over GF(2)  belong to 
the class of partially bent functions ([l], [7]). By definition due to C. Carlet a 
Boolean function is partially bent if the product of the numbers of the nonzeros of 
the autocorrelation functioii and the nonzeros of the Walsli transform obtain the 
absolute lower bound 2". So partially bent functions are optimal in this sense. But 
since linear functions are contained in the class of partially bent functions, also 
high linearity ha5 to be required of functions to be used in cryptography. For a 
quadratic function f this means that X ( f )  should be as small as possible. For 
odd the minimum of X ( f )  is 1. 

Suminarizing thc results of Propositions 2, 3 and 4 we obtain the following 
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TlIEOltEM 2. Let F = GF(2d)  and g = 2 d .  Then every quadratic form in F ", 

f(x) = X'AX 

with rank(A + A t )  = r has the distance 

fi-om the set of ilffinc functio~is. 

Observe that for n odd a nondcgenerate quadratic form ovcr GF(2d)  is balanced 
(obtains each value in F equally many times). Convcrscly, if x'Ax is balanced and 
rank(A + A*) = n - 1, then it is nondegenerate. 

The special quadratic form that we shall make use of in our construction is 

where R : Fn 3 F" is the lincu perniutation 

i.e., the cyclic shift of the coordinates. By using the general substitution dgo- 
rithm of Leinma 6.29 of [4] it is easy to verify that x'RX in an odd number n of 
indeterminates over Cf(2d) is equivalent to 51x2 + 2 3 5 4  + . . + xn-2zn-1 + zn. 

The main result of [GI, which has had a strong impact on the present work, is the 
observation that 

Tr(x3) = x'RX, x E GF(2") ,  

with respect to a self-dual normal basis in GF(2") ,  for n odd. Indeed, our con- 
struction contains thc cubing permutation as a specid case. By replacing R by 
R', Z = 1,2,  ..., n - 1, in the construction in $4, we obtain classes of equally highly 
nonlinear permutations where the permutations x -+ x*'+l, i = 1,2, ..., n - 1, are 
as special CSCS. Let us recall that these are exactly the permutations on which the 
public key cryptosystern C' proposed in [4) is based. 

4. The coiistructioii 

permutations w ~ t h  desircd distance from linear functions. 
We combine Theorems 1 a i d  2 to obtain the following method for constructing 

TlIEOnEhl 3. Let F = GF(2")  aid (I = 2 d .  Then the function f (fi, f i l s  - .  fn) : 
F" + F" with quadratic coordinate functions f k ,  k = 1,. . , , n, is a permutation of 
F" with 

N(f) =N(f-') 2 Qn-r(q - l ) ( p  - qf-1) 
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if and only if every nontrivial linear combinatiom of the coordinate functions 
f l ,  fz, . . . , f n  is a balanced quadratic form X'CX with rank(C' + C) 2 r .  

The condition of the thcorcm on the coordinate functions can be tested for in low 
dimensions. In what follows we shall give an analytic construction, which is feasible 
also in large dimensions. 

Let n and d be odd positive integers and n 2 3. Then G F ( P d )  is an n-dimensional 
linear space over F = GF(2d) .  Lct el I e x , .  . . , c,  bc a basis in F" = GF(2"d) over 
F. Then the matrix 

E(e1, e2,. . . , e n )  = 

is a nonsingdar matrix over F (see Corollary 2.38 [4J). Choose al,az,. . . , a n  E 
GF(2nd) such that thcir cubes a;,  a;, . . . ,a; are linearly independent over GF(2d) .  
This is possible sincc cubing is a pcrinritation in G F ( Y d )  if nd is odd. 

Set 
Ek = E ( a k e l , a k e Z , .  . . , a t e n )  and Bk = EiREc, 

k = 1,2 , .  . . , n. Then the zjtil entry of B k  equals 

TrF(cuie;e:) E G F ( 2 d ) .  
Let ck E G F ( 2 d ) ,  k = 1 , 2 , .  . . ,71 not d l  equal to 0. Then tlie zjth entry of x k  cl;Bk is equal to 

T~F(C cka;e,eJ2) = ~ r F ( y ~ e , e ? )  
k 

for some y E GF(Y"') ,  y # 0. Hence 

(2) C C ~ B ~  = C'RC, 
k 

where C = E(ye1 , y e z , .  . . ,yen) .  
Now rank(R+R') is equal to the odd number of the indeterminates minus 1 over 

any field over which the nondegencratc quadratic form xlRx is considered. Since 
Bk = ELREk, whcre Ek is a nonsingular matrix, it then follows that rank(Bk+B) = 
n - 1 and the quadratic form fk(x) = x'BLx is nondegenerate and hence balanced, 

= 1,2 , .  . . , n. Due to the identity (2)  the same holds for every linear combination 
(over G F ( 2 d ) )  of f1 , f . l  , .. . , fI,. Hence it follows from Theorem 3 that the function 
f = ( f l ,  f z , .  . . , f n )  is a permutation in GF(21td) = GF(2d)" with nonlinearity 

11 - I N ( f )  = N(f - - ' )  = N(  f i t )  = q(q  - l)(q"-Z - q T - l ) ,  
w h e r e q = 2  d . 
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