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Abstract 

Many cryptographic systems assume the computational difficulty of the dis- 
crete logarithm (DL) problem. In order to accelerate such practical systems, 
it was proposed to use logarithms of special structure, such as small Hamming 
weight. How difficult is the underlying restricted DL problem? By rephrasing 
Shanks' method we provide a close to square-root algorithm for such problems. 

1 Introduction 

Many cryptographic systems assume thc computational difficulty of the discrete log- 
arithm (DL) problem which is defined for a prime modulo as follows. Let p be a 
prime number, let 2, be the additive group modulo p of all integers between 0 and 
p - 1, let Z i  be the inultiplicative group of order p - 1 of the integers between 1 and 
p - 1 modulo p ,  and let g be a generator of 2;. The discrete logarithm (DL) problem 
(modulo p )  is to compute z E Zp-l for a given y E Z;, such that gz = y 

In practical cryptographic systems that are based on the difficulty of DL, log- 
arithms of special structure are sometimes used. The idea is to choose a subset 
x Zp-l of some special structure, which makes the use of the system (namely, 
thc exponentiation) more efficient. Examples include the suggestion of Agnew et. al- 
[AMOVSl] in which the special structure is small Hamming weight, and the suges- 
tion of Yacobi [YaBO], in which the special structure is Lcrnpcl-Ziv comprcssibilitY- 
This however defines a restricted DL problem: it  is guaranteed that the solution z of 
sx = Y (mod p )  satisfies 3: E X. While for the general DL problem sub-exponential 
algorithms are known (see [LLgO]), it is not clear whether one can compute restricted 
discrete logarithms faster than exhaustive search in the special structured set, x. 

In this note we show a close to square-root algorithm for several such restricted DL 
problems, including that of [AMOVSl]. This algorithm was independently noticed 
by Odlyzko [Odl]. We do not know of a similar result regarding the special structure 
suggested in [YacSO]. 

(mod p ) .  
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2 Rephrasing Shanks’ Method 

Shanks’ metliod for computing DL (see [Knu73], pp. 9, 575576) can be rephrased in 
the following slightly more general form. Assume, as above, that a subset X C ZP-l 
is known such that the required solution of gr = y (mod p )  satisfies x E X .  Choose 
‘small’ sets A,  B c such that X C A +  B where the sum of the sets is defined by 
A S B  = { a + b  (mod p )  asg*+b = y 
(mod p )  or as g5 = yg-b (mod p ) .  Create the lists {$ (mod P ) } , , ~ A  and {ygeb 
(mod p)}bE~,  sort (or hash) them, and find a common member, g* = yg-b (mod p ) -  
The corresponding a and b define the required solution, z = a + b 

The method has time complexity O(s log(s)) (or O(s) if hashing is used) and space 

for any choice of A and 

(mod p - 1 )  : a E A,  b E B) .  Rewritef = y  

(mod p - 1). 

complexity O(s )  where s = m a {  / A ( ,  (Bl). Clearly, s 2 
B that satisfies X A + B. 

3 Applications 

Many sets X of special structured logarithms can be decomposed as above into sets 
A and B of sizes not much greater than m. Some examples follow. In these 
examples n = [logpl denotes the number of bits in p, f is some number between 
0 and n,  [n] denotes the set { O , l ,  ..., R - l}, and 11z11 denotes the Hamming weight 
of a number I, that is, the number of 1’s in the binary representation of X. Also, 
X=t = {z E : 1[z11 = t }  denotes the set of logarithms with Hamming weight 
exactly t ,  and X<t = {x E : 1 1 ~ 1 1  5 t )  denotes the set of logarithms with 
Hamming weight at most t .  

Examples: 

1. For A‘ = X=, with t < 

2. For X < ,  - with i < f guess the Hamming weight of z and solve as above. Alter- 

choose A = B = X=;. 

natively, choose A = B = X<L. 
- 2  

3. For X = X=, with t > a cosmetic change in the method is convenient: choose 
A = X - e  - and B = X = q ,  note that X C A \ B, and solve ga-b = y, that is 
ga = ygb (mod p ) .  

4. An interesting structure is when some subset I E [n] is known to project every 
z E A’ in the same way. Namely, there are some fixed values c; E { O , l }  for 
i E I ,  such that every z = Cyzi x,2’ E X satisfies z; = c; for all i E I .  For this 
case, pick 1, s [n] and IB  C [n] of (roughly) the same size which are disjoint 
and satisfy IA  U I, = In] \ I. Then choose A = X n {z : Vi E IA ,  x i  = 0) and 

We would like to mention that this example is a generalization of the set-up for 
Pollard’s A-method for catching kangaroos [Polis], in which A’ is wine segment 

B = {z : Vi  E I u IB, ZI = 0). 
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within Zp-- l ,  or a n  arithmetic sequence in &-I. A segment that starts at some 
multiple of 2'O and is of length 2'" corresponds to this example with I consisting 
of all but the io least significant bits, I = {i : io 5 i < n}. An .arithmetic 
sequence with jumps of size 2'0, that starts at some multiple of 2'1, and that 
is of length 2 i 1 - i o ,  corresponds to this example with I consisting of both the 
io least significant bits and the n - il most significant bits, I = {i : 0 5 z < 
io} u {i : il 5 i < 7z} .  

5. If X has restricted Hamming weight and in addition is restricted by some subset 
I c [n] with fixed values ci for i E I as above, the decomposition is easily 
obtained by 'merging' the two corresponding decompositions above. 

Complexity: 
Note that the complexity of example 4 is exactly the squarerowL of Lhe s i x  of the: 
structured set, X .  The complexity of small Hamming weight DL is worse than this, 
say lXlp for some @ > 1/2. We compute the value /I for example 1. In this example 
P satisfies (:)@ = (th), where as above, n is the number of bits in the logarithms 
and t is their Hamming weight. As an example, for the concrete values n = 512 and 
t = 50 we have /j = .60. Asymptotically, we look at a fixed ratio Q = t / n .  By Stirling 
formula, n! = O( -& . (n /e )" )  we have 

Thus. 

where H is the entropy function, H ( z )  = -zlog(zc) - (1 - z)log(l - z), and o ( )  is 
the 'little-oh' notation. For a = 1/4, 1/10 and 1/50, p approaches -67, .61 and .57, 
respectively. Same asymptotical values of p are valid for examples 2, 3 and 5, where 
for the latter example, n should be replaced by n - 111 and t should be replaced by 
the number of 1's that are allowed among the indices not belonging to 1. 

4 Concluding Remarks 

This method can be clearly used over any finite group, e.g., Zi  for composite n, 
GF(2") with the multiplication of polynomials as the group operator, or elliptic 
curve groups. The Agnew et. al. system [AMOVSl] uses small Hamming weight of 
the secret exponent in GF(2"). This note suggests that not only ( 7 )  should be large 
enough to prevent exhaustive search, but already ( 1;2 1 should be 'large'. We would 
like to emphasize that the actual parameters chosen for the implementation of that 
system [Ros89], do seem to be so. 
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An interesting structured logarithm-set for accelerating exponentiations for which 
we do not know a better than exhaustive search algorithm is that of Lempel-Ziv 
compressibility, suggested by Yacobi [YacSO]. 

It would also be very interesting to obtain a faster than square-root attack for any 
of the structured DL problems mentioned above. 
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