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Abstract 

GDL is the discrete logarithm prahlem for a general finitc group G. This 
paper gives a characterization for the intractability of GDL from the viewpoint 
of computational complexity theory. It is shown that GDL E NP fl co-AM, 
assuming that G is in NP n c e N P ,  and that the group law operation of G 
can be cxccuted in a polyrivrriial time of the element size. Furthermore, as a 
natural probabilistic extension, the complexity of GDL is investigated under the 
assumption that the group law operation is executed in an expected polynomial 
time of the element size. In this case, it is shown that GDL E MA n co-AM 
if G E NP n co-NP. Finally, we show that GDL is less intractable than NP- 
complete problems unless the polynomial time hierarchy collapses tn the second 
level. 
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1 Introduction 

The discrete logarithm problem has played an important role in the construc- 
tion of some cryptographic protocols. The problem is iisiially defined over t h e  
multiplicative group of a finite field, but it has some varieties with respect t o  its 
underlying finitse group such as the multiplicative group over a finite ring modulo 
a composite, the elliptic curve group over a finite field [Mi, Kol],  the jacobian 
of the hyperelliptic curve over a finite field [Ko2], arid so on. Since the compu- 
tational complexity of each version of the discrete logarithm problem has some 
cryptographic or str uc tur a1 complexity- t heoretic implications, it is import ant to 
Characterize their complexity as well as t o  find efficient algorithms for solving 
them. 

Our interest in this paper is to  characterize the intractability of the general 
discrete logarithm problem that does not depend on a specific underlying finite 
group, from a viewpoint of structural complexity theory. The discrete logarithm 
problem €or a general finite group G can be stated as follows: Given a E G and 
b E G, find the smallest integer x such that b = ax, provided that such an integer 
exists, where a“ denotes a o uo 3 . o a (z times), and o denotes the group law of 
G. The integer t is callcd thc discrete logarithm of b t o  the base u .  

Since the general discrete logarithm problem is a computing problem, we 
introduce a language GDL such that the complexity of membership problem in 
GDL is equivalent to that of the general discrete logarithm problem. Our goal 
is to  show the class of the language GDL. 

As an instance of GDL, when G is a multiplicative group over a finite field, 
we call GDL “MDL”. When G is a hyperelliptic discrete logarithm [SIS], we call 
GDL “HEDL”. Brassard has pointed out that  MDL E NP n cwNP [Br]. Shizuya, 
Itoh and Sakurai showed that HEDL E NP n co-AM [SIS], after which Okamoto 
and Sakurai showed that HEDL E NP n co-NP, provided that  the jacobian 
of the hyperelliptic curve is non-half-degenerate [OS], where, for example, the 
jacobians with the most general (complicated) structure satisfy this condition 
(or non-half-degeneracy) , and any jacobian with genus one (elliptic curve) also 
satisfies this condition. However, it has not been shown which class GDL belongs 
to, if G is a general finite group. 

In this paper, we show that the result for HEDL by [SIS] can be generalized 
to GDL for a general finite group. That  is, we show that  GDL E NP n cwAM, 
assuming that G is in NP n co-NP, and that the group law operation of G can 
be executed in a polynomial time of the element size. If the group law operation 
is executed in an expected polynomial time and G E NP n co-NP, we show that 
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GDL E MA n ccAM.  

2 Preliminaries 

Throughout this paper, all strings will be over the finite alphabet C = (0, l}. 
We use 1x1 to  represent the length of string x. We let C' designate the set of all 
possible strings including zero-length string A .  A language is a set of strings. A 
class is a set of languages. For a language L ,  we use co-L to denote C' \ L .  For 
a class C, we use co-C to denote its complement,, i e .  the set of any L such that 
co-L is in C. 

We define the following language GDL to investigate the complexity of the 
general discrete logarithm problem for a general finite group G. It is clear that 
the complexity of the general discrete logarithm problem is equivalent to that of 
the membership problem in GDL. 

Definition 2.1 Let N' be a countably infinite set, and let N E ,V specify a 
finite group G N .  Define G = { G N  1 N E Af} .  Given N and a E G N ,  ax is 
calculated by the group law of G N .  

GDL = { ( a ,  b,  N , k )  I a,  b E GN A k E 2 A 3z[b = uz A 0 5 z 5 k] }.  

Here, we assume that, given N ,  for any a ,  b E G N ,  Jal = J b ] .  ' 
Furthermore, we take into account the wrnplexity of the decision problem 

that,  given N and t, asks whether z is in GN or not Such a decision is often 
required to check the validity of input strings, or the correctness of output strings 
in some computation process. For this purpose, we alternatively regard the 
general group G as a language over C' , and will sometimes say that , for example, 
G is in P. 

We will assume in subsequent sections that G is in P or in NP n co-NP 
because it is reasonable to consider only finite groups such that there is a witness 
for t E G or z @ G .  (Another research topics would be to extend the discussion 
to cover groups out of this assumption, for example, G in a class beyund N P  or 
in some probabilistic class.) We will also assume that there exists a program 
which calculat,Ps the group law , runs in a (determillibtic or expected) polynomial 
time, and outputs only a correct answer. 
Example 1: Let 2, be a finite prime field of characteristic p ,  and let Zp" be 
its multiplicative group. Suppose G = (2;) (or G, = Z,"), which is true in the 

'From this assumption, when ( a ,  b ,N,  k) is an input of GDL, I ord(a)l can be bounded by 
1.1 or the input size, I(a, b ,  N, k ) J .  
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case of MDL. Then, it is known that MDL is in NP n co-NP [Br]. Here, the 
multiplication over 2, can be executed in deterministic polynomial time in Ipl. 
G is clearly in P because given I, we can immediately check that 2: is a positive 
integer less than  p .  

Example 2: Let E(C,F,)  be an elliptic curve group over a finite field of 
characteristic p ,  where C is the equation that gives the curve, and q = p “ .  
Suppose G = { E ( C ,  F g ) )  (or G(c,q) = E(C,  F q ) ) ,  which is the special case of 
HEDL called EDL. Then, it is known that EDL is in NP n co-NP [SIS, OS]. 
Here, the addition of two (possibly distinct) points on the elliptic curve can be 
executed in deterministic polynomial time. G is in P because given a point &, 
we can check in deterministic polynomial time in Ipl that Q satisfies C over Fq.  
Example 3: Let 2, be a finite residue class ring modulo n ,  and let QR,, be 
the group of quadratic residii~s over 2, Suppose G = {QR,} (or G, = QR,). 
The group law is then simply the multiplication over Z,, and it can be executed 
in deterministic polynomial time in In/. However, unlike other examples, G is in 
NP n co-NP, known as  quadratic residuosity modulo n. In this case, we must 
take into account the complexity of G in order to characterize the complexity of 
the discrete logarithm problem over QR,, because checking the validity of input 
strings contains an NP-statement rather than an easily decidable P-statement. 
This is a typical example that indicates why we consider the complexity of G in 
our characterization for GDL. 

3 Main Result 

Theorem 3.1 GDL E N P  n c e A M ,  assriming that G is in P, and that the 
group law operation of G can be executed in a deterministic polynomial time of 
the element size. 

Proof: It is trivial that GDL E NP, since the witness of GDL is I such that 
b = ax A 3: 5 k. To show that GDL E co-AM, it is sufficient to show that 
co-GDL E AM. There are two cases when (a, b ,  N ,  k) GDL. One is the case 
that there exists 2 such that 6 = a” and t.hat k < 3: < ord(a). The other is the 
case that there does not exist 3: such that  b = a”.  In the former case, co-GDL 
E NP E AM,  since 2, ord(a) and all prime factors of ord(a) a.re the witness of 
(a ,  6, N ,  k) $! GDL. 

Hence, in the remaining part of this proof, we will show that co-GDL E AM 
in the latter case. To show that  there does not exist 2: such that b = a’, it is 

sufficient to  show that b $< a >, where < n > denotes the subgroup generated 
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by a. 
The following protocol is the constant round interactive proof system that 

shows b e< a >. Combining this and the result by [GS], we can conclude that 
ceGDL E AM in the latter case. Thus, GDL E N P  ci co-AM. 

Protocol: 
Step 1 Prover P computes t (the order of a) ,  ( ~ 1 , .  . . , s k )  (all prime factors of 

t ) ,  and (uI,. . . , uk) (the witnesses of the primility of 5-1,. . . , sk [Pr]). 
P sends them to  verifier V .  

Step 2 V checks the correctness of 2 ,  by checking a' = e and atls'  # e for 
any z = 1,. . . , I c .  V also checks the correctness of the primality of 
(SI, . . . , s k )  using (211 , . . . , uk)  through Pratt's algorit,hm [Pr]. If it is 
not correct, V halts. Otherwise, V selects a random bit c E {0, l} and 
a random integer r E 2,. Then, V computes d = a' o b'. V sends d 
t o  P.  

Step 3 P sets c' = 0 if d E <  a >, and sets c' = 1 if d $< a >. P sends c' to 
V .  

Step 4 V checks whethcr c = c'. If c # c', V rejects and halts. Otherwise, V 
continues the protocol. 

Step 5 After the protocol above is repeated in a constant round, V accepts 
the proof if c = c' for all rounds2. 

Finally, we show that the above protocol is an interactive proof system for 

(Completeness:) When b @< a >, assume that a'ob E< a >. Then, there exists 
I such that a' o b = a'. Hence, b = a'-'. This is a contradiction. Therefore, if 
b e< a >, then a' o b e< a >. Thus, when b $< a >, d E< u > if c = 0, and 
d @< a > if c = 1. That  is, c = c' for all rounds. Thus, when b #< a >, k' 
accepts the proof with probability 1. 
(Soundness:) If b E< a > or b = a' , then ar ob distributes uniformly over < a >, 
since a' o b = and r + 'u mod t distributes uniformly over 2,. Clearly, a' 
distributes uniformly over < a >. Therefore, when b E< a >, no P' can guess 
the value uf c with a probability of more than 1/2. Thus, the probability that  P' 
convinces V with a constant ( K  > 1) round repetition is at most 1/2K < 1/3. 

b @ < U > .  

0 

2This procedure can be paraIIeli~fvl 
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Since we assume in the above that G is in P, we do not explicitly consider the 
validity check of strings. Whereas, if G is not known to  be in P, it is necessary 
to  take into account the complexity of G as shown in Example 3. However, the 
following theorem shows that the compbxit,y of GDT, is not  affected if G is in 
NP n C ~ - N P .  

Corollary 3.2 GDL E NP n CGAM, assuming that G is in NP n ceNP, and 
that the group law operation of G can h~ pxecrited in a deterministic polynomial 
time of the element size. 

Proof: The strategy of our proof is the same as for the previous theorem 
except that we use G as an oracle set to check the  validity of input strings or 
the correctness of output strings in some computation process. 

It is clear that  GDL is recognized by a polynomial t,imc bounded nondeter- 
ministic oracle Turing machine with G oracle. Since G is in NP n co-NP, GDL 
is at most in NPNPnco-NP. However, by the result on low and high hierarchies 
within NP [Sch], NPNPnco-NP = NP. Thus ,  GDL E NP. 

To prove GDL E ceAM,  we can show almost the same constant round in- 
teractive protocol for b $< a >. The only one difference is that the verifier 
V is allowed to make queries to  the oracle set G. Thus, co-GDL is at most 

classes [Kl], AMAMnco-AM = AM. Thus, co-GDL E AM, and we conclude that  
GDL E N P  n C-AM 0 

in AMNPnco-NP . H owever, by the result on lowness in probabilistic complexity 

The following corollaries are the consequences of natural probabilistic e?tt,en- 
sion for the group law operation. 

Corollary 3.3 GUL E M A  r l  co-AM, assuming that G is in P, and that the 
group law operation of G can be executed in an expected polynomial time of the 
element size. 

Proof: jFrom the assumption, the operation of a" can be executed in ex- 
pected polynomial time. Therefore, GDL E MA, since the prover (Merlin, M )  
sends the verifier (Arthur, A )  the witness of GDL, 3: ( b  = a" A 3: 5 k ) ,  and a 
polynomial-time machine, A ,  can check the correctness of 3: \yith a probablity 
of more than 2/3. 

Similarly, to show that GDL E c e A M ,  it is sufficient to  show that co-GDL 
E MA when there exists 1: such that b = a" and that x > k ,  and t.0 show that 
CCFGDL E AM when there does not exist r such that  b = ar In t8he former 
case, clearly co-GDL E MA E AM. In the latter case, co-GDL E A M ,  since a 
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modification of the protocol shown in the proof of Theorem 2.1 can become the 
constant round IP to show that b g <  a >, where in Step 5 V accepts the proof 

0 if c = c' far 2/3  of all rounds. 

Corollary 3.4 GDL E M A  fl cctAM, assuming that G is in NP n CGNP, and 
that the group law operation of G can be executed in an expected polynomial 
time of the element size. 

Proof: It suffices to show that GDL is in MA under these assumptions. In the 
MA protocol in the previous corollary, we allow Arthur (A) to  make queries to the 
oracle set G. Since G is in NP n co-NP, GDL is at most in  MANPnco-NP. Note 
in the proof that it is not known whether MANPnco-NP = MA. However, since 
Arthur's query is made only once in order to check the validity of input strings 
from the assumption, GDL still remains in MA. Because, by the robustness of 
NP, the response to  the query can be merged with Merlin's strings and sent to 
Arthur. 0 

The following result is obtained directly from the above results and the result 
by [BHZ]. This result implies that, for any complicated finite group C= (under the 
reasonable assumption), GDL cannot be so intractable as NP-complete problems 
unless the polynomial time hierarchy collapses to  t h e  second level. 

Corollary 3.5 Assume that G is in N P  n co-NP, and that the group l a w  oper- 
ation of G can be executed in an expected polynomial time of the element size. 
Then, if GDL E NP-complete, the polynomial time hierarchy collapses to the 
second level. 

4 Related Open Problems 
An open question is to find an instance of the finite group C such that (i) G is 
not known to be in P but is in NP n cc-NP, and (ii) a deterministic polynomial 
time algorithm to compute its group law operation is not known to exist, bu t  an 
expected polynomial time algorithm is available. We let GDL' designate GDL 
for such a group. The complexity of GDL* is characterized as MA n cu-AM, 
which contrasts to the fact that MDL, GDL for a multiplicative group over a 
finite field, and HEDL, GDL for the hyperclliptic discrete logarithm problem, 
are both in NP n cc-NP [Br, OS]. 

A related question arises as to whether GDL' is in SZK, the class of languages 
that have statistical zero-knowledge interactive proof systems. It is known that 
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both MDL and HEDL have perfect zero-knowledge interactive proof systems, 
respectively [TW, SIS]. By the results of [AH, Fo], SZK 2 AM n co-AM, but  it 
is not known whether the converse holds. 

5 Conclusion 

In this paper, we have shown that GDL E NP n co-AM, assuming tha t  G is 
in NP n co-NP, and that  the group law operation of G‘ can be executed in a 
polynomial time of the element size. We extended the discussion to  the case 
where the group law operation is executed in an expected polynomial time of 
the element size, and have shown that  GDL is in MA n co-AM if G is in NP 
n co-NP. Finally we have shown that  GDL cannot be NP-complete unless the 
polynomial time hierarchy collapses to  the second level. 
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