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Abstract .  We call a distribution on n-bit strings ( E ,  e)-locally random, 
if for every choice of e 5 n positions the induced distribution on e-bit 
strings is in the Ll-norm at most e away from the uniform distribution 
on e-bit strings. We establish local randomness in polynomial random 
number generators ( R N C )  t h d  &re candidate one-way functions. Let N 
be a squarefree integer and let f1,. . . , fi be polynomials with coeffi- 
cients in ZN = Z j N Z .  We study the RNG that stretches a random 
2 E ZN into the sequence of least significant bits of fl(z), . . . , fr(z).  
We show that this RNG provides local randomness if for every prime di- 
visor p of N Ihe polynomials fi , . . . , fe are linearly independent modulo 
the subspace of polynomials of degree 5 1 in Zp[z]. We also establish 
local randomness in polynomial random function generators. This yields 
candidates for cryptographic hash functions. The concept of local ran- 
domness in families of functions extends the concept of universal families 
of hash functions by CARTER and WEGMAN (1979). The proofs of our 
results rely on upper bounds for exponential sums. 

1 Introduction and Summary 

A major open problem in cryptography is to establish one-way functions. While 
we cannot prove one-wayness it makes sense to analyse candidate one-way func- 
tions and to  prove properties of these functions that are useful in cryptographic 
applications. We call a distribution on n-bit strings ( E ,  e)-locally random if for 
every choice of e 5 n positions the induced distribution on e-bit strings is in 
the L1-norm a t  most E away from the urliform distribution on e-bit strings. We 
prove ( E ,  e)-local randomness for large classes of candidate one-way functions 
and candidate cryptographic hash functions. 

We show that l-tuples of polynomials (fi, . . . , fi) E Z l r ~ [ z ] ~  with fixed coeffi- 
cients in Zjv and for arbitrary odd squarefree N provide local randomness if for 
every prime divisor p of N the polynomials fi, . . ., fi are linearly independent 
modulo the subspace of polynomials of degree 5 1 in Zp[z). To give a n  example 
k t  N be prime N > 2" , let f i ,  . . . , ft E ZN[Z] be any polynomials that 
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are linearly independent modulo the subspace of polynomials of degree 5 1 in 
ZN[Z]. We prove in Corollary 2 that for random z E Z3p, the bit string 

( f 1 ( 4 [ 1 1 ~ ~  - Y f t ( W  
consisting of the parity bits f,(z)[1 of the residues I,(.) mod N in [0, N - 13 
is ( E ,  e)-locally random provided that E ,  n, e and c satisfy the inequality 

(1) 2-"12(2n log 2)"+'2t? 5 & , 
where log denotes the natural logarithm. E.g. we can choose n 2 64, 1 = 
[2n/7J,  E = 2-"17, e = ln/(7logn)J. Our main result comprises the case that 
N is an arbitrary odd squarefree integer, that the output contains several bits 
from each of the residues fi(.) mod N ,  i = 1,. . . ,P, and that z is chosen to  
be random in a subinterval [0, M - 1) of [0, N - 11. 

Note that the above function 

(2) [O, N - 11 3 2 - (fd.", . * -,ff(.)[1) 
is a candidate o n e w a y  function. N o  inversion algorithm is known that is poly- 
nomial time in min(t,log, N ) .  So far the one-wayness of the function (2) has 
only be proved for random RSA-moduli N and RSA-polynomials fi = ze' (see 
below) provided that the RSAscheme is secure. It  is however possible that this 
one-way function is more secure than the RSAscheme. We are not aware of 
any inversion algorithm which for RSA-moduli N runs in time min(2', N ) " ( ' ) .  
On the other hand the RSAscheme can be broken by factoring N using only 
exp(JlogN ioglog N )  many steps. Is there any inversion algorithm that uses 
knowledge of the factorization of RSA-numbers N ? Is there any inversion al- 
gorithm that uses the structure of particular odd moduli N and of particular 
non-constant polynomials fi ? Of course the function (2) can easily be inverted 
for N = 2 since fi(z)[l only depends on z[l = z mod 2. Also the problem 
of inverting is trivial for constant functions as f,(z) = zN-l(modN) with N 
prime. Are there more exceptions? Almost nothing is known about the problem 
to invert (2). However if we cannot even find inverting algorithms for particular 
cases given the factorization of the modulus then this may be a sign that the 
function (2) is a truly one-way function. 

It is important that  the source of randomness in ( fI(z)[ l , .  . ~, ff(z)[l) is the 
random argument z while the coefficients of f i ,  -. . , fl are all fixed. Such 
functions are cryptographically interesting. A well known example is the ran- 
dom number generator (RNG) related to  the RSAscheme by ALEXI, CHOR,  
GOLDREICH and SCHNORR (1988) and MICALI, SCHNORR (1991). E.g. let N be 
the product of two large random primes and let the integer e 2 3 be relatively 
prime to 'p( N ) .  Then the mapping 

[O, N - 11 3 2 &--+ ( q l ,  Z q l , . .  . , z"1) 

where z'' is taken modulo N, is a perfect (in the sense of YAO (1982) and BLUM, 
MICALI (1982)) RNG provided that the RSA-scheme is secure. 
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T h e  functions z H ( f ~ ( z > [ l , .  . ., ft(z)[l) extend the class of polynomial ran- 
dom number generators (RNG) proposed by MICALI and SCHNORR (1991) 
which stretch a random seed into a polynomial residue 
P(z)(modN). Micah and Schnorr prove that the m least significant bits of 
P(r)(modN) are in the L1-norm at most O(N-1/22k+m(logN)2 degN(P)) 
away from the uniform distribution provided that N is prime and degN(P) 2 2 
whcrc degN(p) is tlie degree of P when P is considered modulo N .  

3: E [1,N2-k] 

So far local randomness has mainly been studied in functions that are easy to 
invert, see ALON, BABAI, ITAI (1986), LUFJY (1986), SCHNORR (1988), MAURER, 
MASSEY (1989), NAOR, NAOR (1990), NISAN (1990) and ALON, COLDREICH, 
HASTAD, PERALTA (1990). Most of these constructions are methodically simple 
a n d  are not directed towards cryptographic applications. They aim at minimiz- 
ing the number of random bits that are used in randomised algorithms. Merely 
the quadratic character construction by ALON et alii (1990) is similar to our 
generator, i t  relies on Weil's theorem. Our proof of local randomness relies on 
upper bounds for exponential sums and an inequality on quantitative Fourier 
inversion. FVc use upper bvurirls for the discrepancy of polynomial residues from 
NIEDERREITER (1977) and we extend these bounds from prime moduli to arbi- 
trary squarefree moduli. 

We also establish random function genprators, associated with fixed polynomi- 
als, that provide local randomness. These generators are candidates for crypto- 
graphic hash functions. We associate with a polynomial P E ZN[Z] of degree 
d a polynomial function family Pz(y) = P ( z  + y) where z is the function name 
and y is the input. For fixed I c ,  m 5 log, N we associate with a random z E Z N  
a randurn function 

P," : [O, 2k - 11 - {O, , y - P(x  + y) [m 

where P ( z  + y)[m denotes the bit string consisting of the rn least significant 
bits of the residue P ( t  + y) mod N in [0, N - 11. 

We call il function family 
for any e distinct points 
Pz(yl). . . P,(y,) 
bution on em-bit strings. 

{ P z }  (~,e)-locally random if for random z and 
the distribution of the em-bit string 

is in the L1-norm at most E away from the uniform distri- 
y1,. . . , ye 

We prove in Theorem 6 that the above family of functions {P,"} is ( ~ , e ) -  
locally random, if N is prime, d = degP satisfies e + 1 5 d 4 N and 
if 

A family of functions is an e-universal family of hash functions as introduced 
by CARTER and WEGMAN (1979) if and only if it is (0, e)-locally random. Our 
hash functions require fewer random bits than those of Carter and Wegman since 
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we only randomize the input of the polynomial whereas Carter and Wegman 
randomize all its coefficients. The main point however is that our hash-functions 
are - if deg P is sufficiently large - candidates for cryptographically secure 
hashing whereas the Carter-Wegman hash functions are easy to invert. Thus for 
the first time we establish local randomness in families of cryptographic hash 
functions. 

2 
Statistical Local Randomness 

Random Number Generators that Provide 

We present in Theorem 1 our main result and we derive from it RNG's that are 
locally random. In order to prove Theorem 1 we establish in Theorem 3 an upper 
bound on the discrepancy for multidimensional polynomial number sequences. 
This upper bound relies on an upper bound for exponential sums given in Lemma 
4 and on an inequality of Niederreiter (1977) on quantitative Fourier inversion. 

Nolalion. Let P I , .  . . ,pr be r distinct primes, N = p l  . . .pr (i.e. N is 
squarefree) and EN = E / N Z .  Let F = (ti,. . . , fc) be an 1-tuple of polyno- 
mials f j  E Z[z], i = 1, .  . .,!. We denote by di(f,) the degree of f j  when 
f j  is considered mod pi and we put  B i ( F )  = maxl<j<cdi(fj). We define 
ci(F) = min(di(E') - l,a) for i = I , .  . . , r  and c(Fj = fl:=l(ci(F) + I) . 
We call F N-admiss ib l e  if for every prime divisor pi  of N the polynomi- 
als fi , . . . , / r  are liriearly independent modulo the subspace of polynomials of 
degree 5 1 in iZ,,[z]. In this case we also call the set of polynomials ji, . . . , fe 
N-admissible. Thus f l , .  . ., j e  are N-admissible if for i = 1, .. . , r  and for 
all a l ,  . . . , ac E 22 either the polynomial cf=l ajfj(modpi) is non-linear or 
a1 = - 9 .  = ar = O(modp;). 

We let log N denote the natural logarithm of N .  We identify ZN with the 
integer interval [0, N -  11. We abbreviate the set (0 , l )"  as I,, and we identify 
the integer interval [O,  2" - 11 with I, . If y E [0, N - 11 = ZN and n 5 log, N 
we let y[n E I,, denote the bit string consisting of the n least significant bits of 
y. Let IN denote the set of positive integers. 

A collection of m least significant outpui bits. We associate with F = 
( f i>.  . . , fe) E (Z[Z])', N E IN and m = (ml, . . . , me) E IN' the mapping 

L where m = rn, and n is the concatenation of strings. The mapping 
F" outputs a collection of m least significant bits of F(z), where F(z) is 
taken modulo N .  
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Our main theorem provides explicit estimates for the ma-norm difference be- 
tween the distribution induced by Fm(z) for random 2 € [0, M -  11 C [O, N -  
N-admissible F and the uniform distribution on (0,l)'". 

Theorem 1. Let N be odd and squarefree, let F, m, m, F" be as above and let 
F be N-admissible. Then for  N > 148, 1 _< M _< N and random z E [0 ,  M - 11 
we have  that  

max Iprob[Fm(z) = 21 - 2-"1 5 z f i ( l o g N ) ' + ' c ( F )  4 . 
2 E {O,l) 

The condition that F is N-admissible cannot be completely removed from The- 
orem 1. Theorem 1 does not hold for linear polynomials fl, . . . , fL with 1 > 2. 
This is because the least significant bits in two linear polynomials are highly 
correlated. On the other hand our proof shows that Theorem 1 holds for a single 
polynomial of degree 1 in the case that N = M .  

For example let N > 'i5l2 Le prime and let d = P2. 'I'hen the polynomials 
z2, . . . , zd  are N-admissible. Consider €or random 2 E [0, N - 11 the bit string 
(~~[I,,..,z~[l) F I d - 1 .  For any choice of 24 bit positioris 2 5 i l  < i2... < 
i 2 4  5 rL3' and every z E (0, 1}24 we have that 

Iprob(zi1[l-..zfa4[l = Z) - 2-241 < 2-44 .  

This follows from Theorem 1 with f = 24, f j  = xi' for j = 1,.  . . , 24, N = 
and c(F) 5 232. 

Defini t ion.  A random variable y ranging over a finite set S is called stalls- 
l ical ly  random within F (in S) if CsES Jprob(y = 5 )  - 1/#SJ 5 E i.e. the 
L1-norm statistical difference of y from the uniform distribution on S is a t  most 
E .  

Definition. A probability distribution D on I,, is called (E, e)-locally random 

if for any sequence of positions 1 5 j, < j, < . < j, 5 n the substring 
(!/jl1.. . , Y j , )  E 1, is statistically 
random within E .  

of a D-random string y = (y,, . . . , y,,) 

Using Theorem 1 we can stretch a short random seed into a long bit string that 
is "locally random". 

Corollary 2. Let N = pl . . . pr be a producl of r distinct odd primes, 1 5 
M F N be polynonziab of degree 
at most d t h a t  are N-admiss ib le .  Then f o r  random x E [0, M - 11 the bit 
siring (fi(z)[l, I f ~ ( z ) [ l )  E 4 with fj(x) E ZN i s  (E,e)-locally random 
with E = 2 g ( 2 1 0 g ~ ) e + l d '  for e = 1,. . . ) t .  

and N > 148 . Lei f i ,  . . . , f! E Z[x ]  
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Proof, Let 1 5 jl < j, < ... < j, 5 .t? be any sequence of e output bit 
positions. We apply Theorem 1 with F = ('jl,. . . , f,,), m = (1,. . . , l )  E We 
and m = e = e. The L1-norm difference between the distribution induced by 
Fm(z)  E {0,1}' and the uniform distribution is at most 2e-times the max-norm 
difference. We have c(F) 5 d', and thus by Theorem 1 F(z) is stahtically 
random within 2g(210gN)e+ 'dr .  0 

The a'iscrepancy D, ( l )  = D,  I 4  (y l , ,  . . , y ~ )  of M points y1,. . . , y ~  E [0,1)' 
is defined to be 

@$(Yi,. . , Y M )  = S U P  IFiw(Z) - v(1)I 
z 

where Z ranges over all half open subintervals Z of [ O , l ) l  , i .e 

Z - { ( z l , .  . . , z ~ )  E [O,I)'!a; 5 z; < bi for i = 1,. . . , t }  

with 0 < a; < b; 5 1 for i = 1, . . . , e .  V(Z) is the volume of Z and 
F M ( x )  = M - ' # { k  1 yk E z} . 

The proof of Theorem 1 relies on the following upper bound for the discrepancy 
of multidimensional polynomial sequences. For a real number a we let { a }  
denote the residue of a mod 23 irr llie real interval [O, 1). 

Theoreiii3. Let N be squarefree and let Dg) be f A e  discrepancy of the M 
points ({ y} , . . ,, { ."ly.'}) E [O, 1)' for E = 1,.  . . , M .  If F = (fl,. . . , fi) 
is N-admissible then D c )  5 # f l ( l o g  N)'+'c(F) for 1 5 M 5 N and 
N > 148. Here B = f i  i f  N as even and B = 1 i f  N is odd. 

The  proof is based on a bound for exponential sums. For f E Z[z] and n E 
define 

The proofs for Lemmata 4 and 5 are omitted due to lack of space. They are 
contained in the complete paper that is to appear in Siam J .  Computing. 

Lemma4. If N = p l  . . .pr is squarefree, B i s  as in Theorem 9, and f E Z[X]  
is addrury ,  l b e n  IS(f, N)l  5 B f i n i = = ,  d(f), where c ; ( f )  = fi if d;(f) < 1 
and c : ( f )  = min(d;(f) - I,&) i f  d ; ( f )  2 1. 

Lemmas. Let Dg) be the discrepancy of the M points Yk E [O, 1)' for  
k - 1,.  . . , M and Id DC+l) be the discrepancy nf the  N points (yk, 9) 
for k = 1 ,  ..., N .  Then D$)L&D$+') for 1 s M S N .  
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Proof of Theorem 3. Let N have r distinct prime factors. Put C t ( N )  = 
( - N / 2 ,  N/2]‘  17 Z‘, C,’(N) = Ct(N)\{O} (here we use, as in NIEDERREITER 
(1977), the interval ( -N /2 ,  N / 2 ]  rather than [0, N ) )  . For h = (h l ,  . . . , ht)  E 
Ce(r\r) we put 

if hi = 0 
 sin if hj # O. 

e 
r ( h ,  N )  = n r(hj ,  N )  with r (h j ,  N )  = 

j=1 

By Lemma 2 .2  of Niederreiter (1977), we get 

where h = ( h i  . . . , he+i) and I1 , . . . , ft E Z[z]. By Lemma 4 

r 

(4)  IS(hlf1 + . . . + heft + he+12, N)I 5 BN‘” JJ c:(hl f i  + . . . + hi f. + hc+lz). 
i=l 

If h €  C;+,(N) with ( h l , .  . . , h i ) = O ,  then c : ( h l f i +  . . .+ h e f i + h ~ + l ~ ) =  
c:(ht+iz) = 0 for some i, namely when h~+1 # 0 mod p i ,  and so 

r I-J c:(hlfl + . + hrfe 3. h i + l Z )  = 0. 
i = l  

T h u s  we only have to consider those h E CZ-tl(N) with (h l ,  . . . , h i )  # 0 .  
We split up the set of ( h l ,  . . . , he) E C i ( N )  according to the set of i’s for 
which d i (h l f1  + , . . + h.5) 5 1. For I C A, := {1 ,2 , .  . . , T }  we put H ( I )  = 
{ ( / L i l  ’ .  if and only if i E I}. If 
( h i , .  . . ,he)  E H ( I )  and i E Ar\I,  then for any hi+1 E C1(N) we have 

h) t C,“(N) : di(hlf1 + . . . + hifi) 5 1 

di(hlf1 + . . + hi f i  + h e + l z )  = d i (h l f1  + . . . + hl f i )  2 2. 

Since dj(hlf1 +.  . . -t h l f l )  5 d i ( F ) ,  it follows that 

c:(hlfl  + . . . + h t f i  + h ~ + 1 ~ )  5 ci(F). 

Using the trivial bound c:(f) 5 pfl’, we obtain 

for any ( h i , .  . . , h e )  E H ( I )  and he+i E C i ( N ) .  Together with (3) and (4) this 
yields 
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Using the inequality 

from Niederreiter [14, (2.7)] this yields 

of the theorem (fi, . , . I f ~ )  is N-admissible. Therefore if 
we get h k  = Omodpi for i E I and 1 5 k 5 1, thus 
for 1 5 k 5 P. Therefore with L = n i c I p ;  we obtain 

C 1 2  
L x  < (1 + - (- log 4 + a>> - 1 (by the inequality (5)) 

where we applied the mean-value theorem in the last step. It follows that 
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< 4BN-'/'(log N)'+'c(F) 

provided that logN >_ 5, i.e. that N > 148 . Together with Lemma5 we get 
the result of Theorem 3. 0 

Proof of Theorem 1 Let N be an odd squarefree integer and Tj E Z [ X ]  be 
polynomials such t h a t  T j ( z )  = 2-"jfj(z)(rr1odN) for j = 1, .  . . ,e .  Applica- 

tion of Theorem 3 to = (fl,  . . . , fL) shows that the discrepancy ~ $ )  of 
( { f l ( k ) / ~ } ,  . . ., { f i ( k ) / ~ } )  for k = I , .  . . , M  satisfies 

- 

where we use t,ha.t c(F) = @). We apply to this inequality the equivalence 

{fj(T)/N} E [Icj2-m3,(Icj + 1)2-mj) e 

[ f j ( x ) ] ~  = - k j N ( m 0 d 2 ~ j )  for j = 1 , .  . . , l  , 

where [ f j ( z ) ] ~  is the residue of f,(.) mod N in [ O , N -  11, and 0 5 kj < 2"". 
To see the equivalence we note that ( f j ( r ) / N )  E [kj2-*J, ( k ~ + l ) Z - " j >  implies 
that there is an integer y satisfying 

k j N  5 Y < (kj + 1 ) N ,  Y = fj (x) mod N ,  Y = 0 rrlod 2mJ , 

and thus [ f j ( x ) ] ~  = -kjN(mod2"'j). This proves one direction of the equiva- 
lence and the converse direction is an immediate consequence. 

We see from the above inequality and the equivalence that for every y E 
{0,1>" 

1 1 4 
&{ z C [I, M ]  : F"'(t) - y} - ;i;;;l _< zdT(logN)'+'c(F). 

0 

The above proof of Theorem 1 extends to the following larger class of functions 
F". Let the polynomials f l ,  . . . , fi E Z"2] be N-admissible and let 211, . . . , w 
be integers that are relatively prime to N, F = ( f ~ ,  . . . , f f )  and u = ( ~ 1 , .  . . , t i t ) .  
Define FU as 

FU : [0, N - 11 3 2: I-+ ( (fi(z) mod N )  mod ui I for i = 1,. . . , l ) .  

Corollary 6. For N > 148, 1 <: M I: N and random 2 E [0, M-11 the muz- 
norm di f ference Lcl,ween the  distribution induced by FU(x) and the uniform 
dislribuiion on [0, 211 - 11 x . . . x [0, U L  - 11 is at most &fl( log N)lS1c(F). 

Theorem 1 deals with the particular case that the integers ui are powers 
of 2.  It is necessary that u1, .  . . ,u(  are relatively prime to N .  The proof of 
the Corollary uses the polynomials fl. = u;lfj(modN) and thus requires a 
division by uj modulo N .  
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3 
Statistical Local Randomness 

Random Function Generators that Provide 

Let 
generator F is an efficient algorithm that generates from names 2 E I ,  
function fG = F ( x , * )  F Hk,!. 

Ht,L = I,'L = "the set of functions f : lk + It7'. A random func t ion  
a 

We call a probability distribution D on Hk, l  ( E ,  e)-localiy random if for random 
f , f ED H ~ J ,  for any set of e distinct inputs y1 . . . , ye E I k  the concatenated 
output f ( v ~ ) f ( y z ) .  . .f(y,) E Iel ia statistically random within E .  

The  concept of ( E ,  e)-locally random distribution D on H k , e  extends the con- 
cept of universal hash functions of Carter and Wegman (1979). If D is (Ole)- 
Iocally random then for any distinct inputs y1,. . . , ye E I k  the bit string 
f (y l ) f (yz)  . . . f (ye )  E I ,  is truly random, i.e. D is the probability distribution 
of an e-universal family of hash functions in the sense of Carter and Wegman. 

Carter and Wegman show how to generate an e-universal family of hash func- 
tions in H k , k  from ke random bits. Let K = GF(2k)  be the field with 2k ele- 
ments. If (uo,  . . . , ue-. l )  E K e  is random then the polynomial P = cfs,' aizi  E 
Ii['c] yields an e-uuiversal family of hash functions in H k , k  

Let N be a prime and i' E Z,[x] be a polynomial with coefficients in the 
field ZN. We associate with P and k, .!? E N, E ,  .t 5 log, N ,  the function 

PL : E N  x [ol Z k  - 11 -+ I t ,  ( Z l  y) b+ P ( y  + %)[e. 
Here we let P ( y  + %)I-! , for 8 5 log, N , denote the Lit string consisting of the 
l least significant bits of the residue of P ( y  + z )  mod N that is in ZN. We let 
P: : I k  4 Ii denote the furiction P f ( a , * ) .  

Theorerri7. Let N be prime, N > 148, P E Z , [ x ] ,  k,-! 5 log,N, let  
P," : Ik -+ I i  e + 1 5 deg P < N .  Then for  random 
z E ZN t he  family of  functions {P:} i s  (&,e)-locallg, random with E = 
N-1/2(log N)e+12eC+2 deg P .  

be as  above and let  

Proof. Let d = deg P ,  let yl,.. . ,ye  E E N  be pairwise distinct and let 
fi E Z,v[2] be the polynomial f ; ( z )  = P(yi + z) for i = 1, .  . . , e .  We 
next show that the polynomials f i ,  . . . , f, are linearly independent modulo the 
subspace of polynomials of degree 5 1 in zN[Z].  For suppose that there are 
bl . . be E li, such that 
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Then for j = d - e + 1,.  . . , d the j-th derivative of this linear combination 
vanishes at x = 0 , hence 

e 

c b i P ( j ) ( g i ) = O  for j = d - e t l ,  ..., d.  
i = l  

I t  is sufficieiit tu pruve Lhat the coefficient matrix 
singular since this implies that  bl = . . . = b, = 
hd-e+I,. . . , h d  E ZN such that  

d 

C hjP(J ' (y i )  = 0 for 1 _< i 5 e. 
j = d -  e + l  

[ ~ ( j ) ( y j ) ]  l<,<: is non- 
0. Suppose that  there exist 

d - = + t < j < d  

Put  g(Z) = ~ ~ , d - e + l h j P ( j ) ( ~ ) ,  then g(y;) = 0 for 
y1, . . . , ye are distinct and deg(g) 5 d - ( d  -. e $- 1) = e - 1 

d 

j = d - e + l  

Comparing coefficients of xe-' we get h d w e + 1  = 0 (the 
in P(d-e+') is nonzero since d < N ) .  Continuing in this 
h d - e + l  = . . . = h d  = 0 . 

t 5 i 5 e . Since 
we have g = 0, SO 

coefficient of t e - l  

manner, we obtain 

Since f i ,  . . . , f e  are linearly independent modulo ZN + Z E N  we can apply 
Theorem 1 to F = ( f l ,  . . . , fe ) .  Since nE=l fj(z)[L' E lei the rn in Theorem 
1 is et .  The 1 in Theorem 1 is e .  Hence nE=l P ( y j  + z ) [ [  E let is statistically 
random within E = N-'/Z(log N)e+1d2eC+2 .  Therefore {P!} is ( E ,  e)-locally 
random. 0 
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