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Abstract. We develop general techniques that can be used to prove the 
zero knowledge property of most of the known zero knowledge proto- 
cols. Those techniques consist in reducing the circuit indistinguishability 
of the output distributions of two probabilistic Turing machines to the 
indistinguishability of the output distributions of certain subroutines. 

1 Introduction 

It is an important result in the theory of zero knowledge proofs that assuming the 
existence of a circuit secure encryption mxhine every language in NP has a zero 
knowledge proof. This result can be obtained by constructing a zero knowledge 
proof system for the NP-complete language 3C of three colourable graphs (see 
[l, 21). In this protocol the prover and the verifier repeat a certain subprotocol a 
number of times which is polynomial in the length of the input. The encryption 
machine is called in a subroutine used in that subprotocol. The protocol can 
therefore be written in the form 

s = (MNO)"= (1) 

where M N O  is the subprotocol which is repeated n, times, where x is the input 
and N is the subroutine which calls the encryption machine, and where M and 
0 are the machines that carry out the computations before and after N is used. 
In order to show that S has the zero knowledge property one must show that the 
communication carried out in S can be simulated by a probabilistic polynomial 
time Turing machine even if the verifier is replaced by a cheating verifier. After 
replacing the verifier the protocol is still of the form (1). The simulator S' is 
constructed by replacing N with a machine N' which has no knowledge of a three 
colouring of the input graph. By virtue of the circuit security of the encryption 
machine, the output distributions of N and N' are circuit indistinguishable. 
It remains to be shown that the output distributions of S and S' are circuit 
indistinguishable. 

Protocols and simulators for other zero knowledge protocols are constructed 
in the same way. 

The god of this paper is to unify the proofs for the zero knowledge property. 
We show that replacing the subroutine N with N' in a probabilistic Turing 
machine S of the form (1) yields (under certain conditions) a machine S' whose 
output distribution is circuit indistinguishable from the output distribution of 
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S if the output distribution of N is circuit indistinguishable from the output 
distribution of N ' .  Another goal of this paper is to precisely define the notions 
used in this context. 

2 Probabilistic Turing Machines 

Throughout this paper we use the alphabets E = (0, 1, #} and 270 = (0, 1). 

Definition 1. A probabilistic Turing machine is a pair 2 = ( M , p )  where 

1. M = ( K ,  C, A, s )  is a k-tape nondeterministic Turing machine (see [3], 

2. p :  A --f [0,1] is a function which determines the probability of each transition 
pp. 204-211) 

in A,  i.e. for every q E K and a E Ck we have 

where A(q, a) = A n ( ( 4 )  x {a} x ( K  U { h } )  x (C u { L ,  R ) ) k ) .  

A probabilistic Turing machine with p ( A )  c (0, f .  1) is called coin tossing ma- 
chine. 

We adopt che input and output conventions of [3]. For 2, y E .Ez we denote 
by n ~ ( z , y )  the probability for 2 to output y on input of 2. It is easy to see 
that 

YfC,' 

For z E .C,. we denote by Z(z) the set of all elements in E; that can with pos- 
itive probability occur as an output of 2 on input of 2, and Z ( L )  = UzEL Z(z). 
If the length of each computation of 2 on input of I is bounded by c E IN, we 
denote the maximal length of a computation of 2 on input of z by time(Z(2)). 
We say that the running time of 2 is bounded by a function T : IN + IN if for 
all z E Z; we have time(Z(z)) 5 t(lz1). 

If there is a function t : IN -, IN such that, on input of strings of length u,  
the machine only outputs strings of length l(u) with positive probability, then 
we call 2 a homogeneous probabilistic Turing machine. 

If there is a polynomial f E IN[X] such that, on input of strings of length U, 

the output length of the machine 2 is bounded by f(u), we call 2 a probabilistic 
Turing machine with polynomially bounded output length. 

Let 21 and 2 2  be probabilistic Turing machines. Then the concatenation 
2 1 2 2  of 21 and 2 2  is defined as the probabilistic Turing machine that first 
operates as 21. Whenever 21 terminates, 2 2  is called where the input of 2 2  is 
the output of 21. We also use the notation 2: for 2121 ..-.TI. - 

n timea 
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3 Probabilistic Circuits 

A probabilistic circuit is a deterministic circuit (see [4], pp. 73) with a partition 
In = Ino U Inp, InD n Inp = 0, of the input nodes. The input nodes in Ino 
(the deterministic input nodes) receive the input of the computation, The nodes 
in Inp (the probabilistic input nodes) are assigned uniformly at random 0 or 1. 
The number of all nodes but the input nodes of a circuit C is called size(C). 

For a probabilistic circuit C with m input nodes and n output nodes and for 
y E {0, l}m, t E (0, l}" we denote by Dc(y, z )  the probability for C to output 
z on input of y. 

Let (71 he a probabilistic circuit with n output nodes and Cz be a probabilistic 
circuit with n input nodes. Then the composition of C1 and C2 is the circuit 
which results by connecting the output nodes of C1 with the input nodes of CZ. 

Let L 5 E,i. A family {C3}IE~ of probabilistic circuits is called polynomial 
if size(C,) is bounded by 1zIk for some k E JN. 

In order to be able to prove our main theorems we need the following results. 

Lemma2. There is  a ronstand c E IN such that for all Tw-ing-decddablc lan- 
guages L 5 (0 , l ) '  the following holds: i f  L is decided by  a deterministic Turing 
machine M = (K,E,S,s) in t ime T:IN ---+ IN, then there is a family {Cn}nEW 
of deterministic circuits which decides L and satisfies 

size(Cfl) = ([KI (E()PT(n)logT(n) . 

PToof. See [4], pp. 84-91. 

Lemma3. There are c , d  E IN such that for all homogenous polynomial coin 
tossing machines M = ( ( K ,  E, 6 ,  s), p) with output length L : IN -+ IN and run- 
ning time bounded by  T E IN[X] there is a polynomial family {Cf l }nE~ ofprob- 
abilwtic C ~ T C ~ S  such that {nc,,,(t, - ) } z E ~  a7id { I l ~ ( z ,  are equal and 
which satisfies 

size(C,) = dl(n)(lKI lzll)"T(n)logT(n) . 
Proof. Without loss of generality we assume that there is q E IN[X] such that on 
input of length n the machine M tosses the coin exactly g(n) times. Moreover, 
we can construct a homogeneous polynomial time deterministic Turing machine 
M' = (K',  E, 6', s') with the following property: suppose that on input of 2 
the marhine M carries out the sequence of coin tosses CY = (al,. . . , aq(lrl)) and 
outputs y, then, one input of ( z ,a) ,  the machine M' outputs y. There is a 
constant r E IN (independent of M )  such that IK'I 5 T ~ K I .  There is an other 
constant s E IN (independent of M') such that, T'(\(x,a)I) 2 sT(IzI) for the 
running time T' of M'. 

If we define for x, y E .E: 

then we have IIM, = DM. 
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In order to be able to apply Lemnia 2 we consider the deterrrkistic Turing 
machine M,!,, ( m  E IN) which on input of (2, a )  outputs the mth bit of the output 
y which is defined to be 0 if m > !( 1.1). 

For 2: E (0, I}*, y = ( y l , .  . ., yq1.l)) E {0,1}* we have 

The machine M& works exactly as M' and deletes at the end of its compu- 
tation all but the n t h  bit of the output. Therefore there is a constant t E IN 
(independent of M')  such that TA(l(x,o)l) 5 tT'(I(t.cr)j) for the running time 
T ,  of MA.  The number of states of &I,!,, is polynomial in the number of states 
of M .  

We apply L e m m a  2 to M& and thus obtain a polynomial family {Cim)}nEm of 
deterministic circuits which simulates M k .  The circuit CLm) has n deterministic 
and ~ ( n )  probabilistic input vertices. 

We construct the circuit C, by connecting the C~'"', 1 5 m 5 P( lzl), in the 
natural order in p x d e l ,  that  means all circuits have the same deterministic and 
probabilistic input. 

Since C,, is constructed from ! (n)  circuits whose size is polynomially bounded 
in n, the size of C, itself is bounded by a polynomial in n, which means that 
{Cn},,E~ is a polynomial family of circuits. Moreover. we have by construction 
that for every z E {0,1}' 

4 Indistinguishability 

Let U and V be two probability distributions on E;. The series 

6 S P ,  V )  = c IU(Y) - V(Y)I 
Y€C; 

is called the statistical diflerence between U and T-. In general it is impossi- 
ble to determine in polynomial time that two probability distributions have a 
non zero statistical difference. Therefore one uses tools like probabilistic circuits 
and probahilistic algorithms (i-e. probabilistic Turing machines) to distinguish 
between probability distributions. 

For a probabilistic circuit with n input nodes and one output node we call 

6 C W  v> = I c W Y ,  W ( Y )  - V(Y))l 
v€Z,m 

the circuit difierence between U and V with respect to C. 
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Finally, for a probabilistic Turing machine 2 we call the series 

the algorithmical digerence between U and V with respect to 2. 

Definition4. Let L 
of probability distributions on .Et. 

E;, let U = {U2}sE~ and V = { V 2 } z E ~  be two families 

1. The families U and V are called perfectly indistinguishable (pindistinguish- 

2. The families U and V are called statistically indistinguishable (s-indistin- 
able) if U = V .  

guishable) if for every k E IN 

3. The families U and V are called circuit indistinguishable (c-indistinguish- 
able) if for every polynomial family {C2}zE~ of probabilistic circuits C, and 
for every k E IN we have 

4. The families U and V are called algorithmically indistinguishable (a-indistin- 
guishable) if for every polynomial time probabilistic Turing machine 2 and 
for every k E IN we have 

Lemma5. Let L C E;. Let 2 and 2’ be homogeneous probabilistic Turing 
machines. Assume that Z has polynomial output length. If {Dz( z ,  . ) } z c ~  and 
{ n z l ( x ,  *)},EL are circuit indistinguishable then for all x E L but a finite set the 
elements of Z( z) and Z‘(z) are of the same length. 

Proof. The case ILI < 00 is trivial. So assume ILI = 00. Assume that there is an 
infinite subset L’ C L such that for every E E L’ the elements of Z(z) and Z’(z)  
are of different length. For 2 E L, let C, be the circuit with m, input nodes, m, 
being the length of the elements in Z(z), which always outputs 1. Then we have 

for all x E L’, hence 

a 
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5 The Main Theorems 

Let L E;. A family { Z ,  = ( ( K , , L S Z , S , , S , ) ~ ~ ~ ) } , ~ ~  of probabilistic Turing 
machines is called polynomial if there are p ,  q ,  T E K;X] such that for all I E L 
and y E Cc time(Z,(y)) I p(Iz1)g(lYl) and l K z l  I ~ z ~  I r(I.1). 

Theorem 6. L d  L Ez. Let {Mz}zE~ be a family of probabilistic Turing ma- 

chines. Let N and N' be homogeneous probabilistic Turing machines, N' having 
polynomial output length. W e  define l' = UrEL M , ( x ) .  Let {O,},E~ be a poly- 
nomial family of homogenous coin tossing machines. Assume that the following 
conditions hold: 

I .  IzI 2 1x1 for  aI1 I E L and z E M,(e). 
2. For x E L all elements of M,(x) are of the same length. 
3. { ~ N ( u ,  - ) } u E r  and {D.w(u, -)}ucj- are c-indistinguishable. 

Then ( 1 7 ~ ~ ~ 0 ,  (2, - ) } , E L  and { ~ M ~ N ' ~ , ( I ,  , ) } 2 E ~  are c-indistinguishable. 

Proof. For 2: E L we set A, = M,NO, and B, = MrAV'O,. Let x E L and let 
{Uz,n}ncm be a polynomial family of circuits sirnularing the probabilistic Turing 
machine 0, (see Lemma 3). Let x(u) = N ( u )  U J-'(u). 

Let I E INi such that for every u E r, IuI > I the elements of N ( u )  and N'(u)  
are of the same length. According to Lemma 5 such an I exists. Let x E L. 
111 > I ,  the elements of A,(x) and & ( I )  are of rhe same length, say n,. To 
measure a non zero circuit difference between as4r(z. .) and D ~ , ( I ,  a )  a circuit 
C must have m, input nodes. Let {CZ}2EL be a polynomial family of circuits. 
We assume that C, has exactly rn, input nodes. 

For u E M , ( r )  all elements in V ( u )  have the Same length t ( u ) ,  i! E IN[X]. 
Let O;,% = O,,qu)C, be the composition of Oz,L(tr)  and C,. Now we have: 
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Let u E 22: and let 2’ E such that u E M,I(I ’ )  then 12’) 5 JuJ. Hence 
there are only finitely many 2’ E L with ti E M,I(z‘). Among the finitely 
many circuits OLl,u, u E Mzl(z’), we denote by 0; the circuit which maxi- 
mizes 601 (B,v(u, .), lIpp(ti ,  ->). Then we have 

Z‘ ,U 

Now we consider size( 0;): 

Since {O,},, ,  is a polynomial family of coin tossing machines and 1x1 5 (u) 
there is (according to Lemma 3) a p E lN[X] such that for all u E M,(z) 
size(0;) 5 p(lu1). This implies with (2) that 

lim r E  L l”lk6C, (UA, ( X I  *) 9 ITBZ (2, *)) 
I=(-- 

- < lim max (u1’hq ( n N ( u l  .), nNI(u, . ) )  (ZTym u E w s 1  

= o .  

Let L zl,: be a language and let { n , } , E ~  be a sequence in IN. That sequence 
is called polynomially bounded if there is d > 0 such that for every x E L we 
have n, 5 lzJd. 

Theorem?. Let L E L‘:. Let { n x ) x E L  be a polynomially bounded sequence in 
lN. Let S and T be homogeneous probabilistic TuTing machines. Assume that the 
following conditions hold: 

1. ]yI 2 1.1 for all 2 E L and y E S(z). 

3. T is a coin tossing machine such that for q E N [ X ]  and for all a E IN we 

4. {ITS(. ,  * ) ) x ~ ~  and (II*(z, . ) } 5 E ~  w e  c-indistinguishable. 

Then (l7s-, (2, -)}=EL and { I I T - ~  (2, -)},EL are c-indadanguishable. 

8. S(L) E L. 

have time(T’(z)) 5 iq(1.1). 
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i.e. for 2: E L there is 0 5 i, 5 n, - 1 with 

hc, (Dsn= (x,.), DTn= ( G o ) )  

< - nzbC, (nSn,-*,-lS'T%, (27 *) 9 nS=t-*=-lTTIz (z, *)) * (3) 

Let M ,  = S " Z - ~ = - ~ ,  N = S, N' = T and 0, = p=. We know: 

1. M, being a concatenation of homogeneous Turing machines is also homo- 
geneous. Since we have IyI > JzI for y € s ( ~ ) .  we find Iyl > 121 for all 
y E L M 2 ( 5 ) -  

2. N' has polynomial output 1cngt)h. 
3. The families {D,(Z, .)},EL and { D N r ( 2 ,  are c-indistinguishable. The 

set r = UrEL M,(z) is a subset of L and therefore { ~ N ( z ,  * ) } * ~ r  and 
{lI~l(z, -))=Er are c-indistinguishable, too. 

4. 0, has the same alphabet as T. The set of states of 0, is at most n,-times the 
size of the set of states of 2'. Being a concatenation of homogeneous Turing 
machines, 0, itself is a homogeneous Turing machine. Therefore {O,},EL is 
a polynomial family of homogeneous coin tossing machines. 

Therefore we can apply Theorem 6. Using (3) we have for every k E IN 

lim /21kkx (nSn= (2, .) 9 nTn= (2, *)) 
Id-ca 
= € L  

I 1h-n nz14k6c, (1Tnr,NO, (2 ,  .) 7 DM,N'O,  (2, 4) 

5 lim 14d+"k, ( n M , N O ,  (2, -1 7 ~ M z N I O =  ('3 -1) 

k1-m 
S € L  

({nz}ze~ is polynomially bounded. Therefore there is d E N with n, 5 1.1") 

I = I4 -  
,EL 

= o .  
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Thus {LTs»x (x, -JJiet a n ( i {HT** (X, -)}xeL are c-indistinguishable. D

Theorem 8. Let L C EQ. Let {TIX}X^L &e a sequence in IN. Let S andT be coin
tossing machines. Assume thai S(L) C L. If {LTs(x, •)}*££ and {HT(X, •)}*€£
are p-indistinguishable, then also {HS"I(X1-)}I^L and {LTxnI(x,-)}x^L.

Proof.

•=o
n . - l

•=o t.€£ ' ^ '

= 0 .

Theorem9. Xet L C I J . ie< {nx}xei be a polynomially bounded sequence in
IN. Let S and T be coin tossing machines. Assume that the following conditions
hold:

1- \v\ > \x\ for all x E L and all y £ S(x).
2. S(L) C L.

3. {LTs(x,-)}X£L and {LIT(X,-)}XEL are s-indistinguishable.

Then {iZ's'»x(a:)
i)}i6i and_{IlT»x{x,')}xeL are s-indistinguishable.

Proof. As in the proof of Theorem 7 we obtain

where Mx = S"1"1'*-1, N - S, N' ~T and O* = T1'1. According to the condi-
tions the families {LJ^(x, -)}x£L arid {LI^i(x, -)}x£L &*e s-indistinguishable.

I 0)

N'OAXIy)\
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({n.}.e~ is polynomially bounded. Therefore there is d E lN with nr 5 
5 limsup /ulkfd6s(njv(u, .), 1 7 N ! ( U ,  .)) 

*EL 
l4-- 

= o .  
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