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Abstract

In this paper we will solve two open problems concerning pseudorandom permu-
tations generators.

1. We will see that it is possible to obtain a pseudorandom permutation generator with
only threc rounds of DES - like permutation and a single pseudorandom function.
This will solve an open problem of [6].

2. We will see that it is possible to obtain a super pseudorandom permutation generator
with a single pseudorandom function. This will solve an open problem of [5]. For
this we will use only four rounds of DES - like permutation.

For example, we will sce that if ¢ denotes the rotation of one bit, ¥(f,f,fo o f) is
a pseudorandom function generator. And ¥(f, f, f,f o (o f) is a super pseudorandom
function generator.

Here the number of rounds used is optimal. It should be noted that here we introduce an
important new idea in that we do not use a composition of f, i times, but fo (o f for
the last round, where ¢ is a fixed and public function.

1 Introduction

In their important paper {1}, M. Luby and C. Rackoff showed how to construct a pseudo-
random permutation generator from a pscudorandom function generator and the applica-
tion of three rounds of DES - like permutations. (This structure is notated as ¢{f, g, »))-
Later, Zheng, Matsumoto and Imai [6] showed that it is impossible to make a pseudoran-
dom permutation with some composition of a single pseudorandom function f and three
rounds of DES - like permutations, i.e. ¥(f*, f, f*) is not pseudorandom for any ¢, j, k.
At the end of their article, they raised two open problems :
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a) Whether it is possible to use one single function f to construct a pseudorandom
permutation, by more than three applications of DES - like transformation.

b) Whether it is possible that ¢(f, [, f) be a pscudorandom permutation, where f: is
conslrucled from f with f # f™ [or any m € N.

The problem a) was solve by J. Pieprzyk in [4] where he explains that O(f, f, £ f?)is
a pseudorandom permutation (but not a super pseudorandom permutation as we will see).

But problem b) remained open. Recently, we have solved this problem b) and will explain
our results in this paper.

Another open problem was :

c) How to construct super pseudorandom permutations from one single pseudorandom
function.
This notion of super pseudorandomness was introduced by M. Luby and C. Rackoff.
It means that the block cryptosystem is secure against a chosen plaintext / ciphertext
attack. They said that ¥(f, g, h,e) is super pseudorandom, where f,g,h, and e are four
independent pseudorandom functions. {A proof of this property is given in [3]).
If only one pseudorandom function is used, we (in [3]), and J. Pieprzyk and S. Sadeghiyan
(in [5]), have independently found that y(f, f, f, f?) is not super pseudorandom. So
an open problem is how to construct a super pseudorandom permutation from a single
pseudorandom function. This problem c) is the second problem that we have solved.

2 Notations

The notalion we use, is similar to [2] and [4).
o [, ={0,1}" is the set of all 2" binary strings of length n.

e For a,b € I, [a,l] will be the string of lenglh 2n of I3, which is the concatenation
of a and b.

o Tor a, b€ I, a @ bstands for bit-by-bit exclusive- or of a and b.

e o is the composition of function.

e flis fof.

o The set of all functions from I, to I, is F,. It consists of |F,| = 2*?" elements.
o The set of all permutations from I, to I, is By, so B, C F,. And |B,| = (2")..

s Let f be a function of F,. Let L, R, S, and T be elements of [,. Then by definition
(1) is the permutation from I, to I,, such that :

S
T

R

Y(L,R) € I2,9(fi)[L,R] = [5,T) & { L& fi(R).

uu
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e Let fi, fay. .., f&, be k [unctions of F,.. ¥(f1,..., fi) is the permutation from I, to
I, defined by :

WU fi) = B 0o 0 0(f2) 0 B(1).

For example, we have :

WrnRlLR=s11 o {52 [oRLeSE
S = L& fi(R) fa(R fH(L® fi(R))
Y, fo, fa, fOIL, Bl = [S,T] « {T = REB,J;z((L)@fl(R))GBﬁ(S)

Remark :

¥(Ji,.-., fe) is in fact a & itcration DES Scheme where the S-boxes are replaced by the
functions f,..., fe.

We will assume that the definitions of permutation generator, distinguishing circuit, nor-
mal and inverse oracle gales, pseudorandom permutation generator and super pseudo-
random permutation generator are known. These definitions, may be found in {1] for
example.

In all this article the number of computations that can perform a distinguishing circuit is
not bounded. But the number of oracle gates of a distinguishing circuit is a fixed integer
m.

3 Definition of the “spreading” of a permutation {

To explain the results that we obtained, we will need to define the notion of the “spread-
ing” of a permutation. This notion will be useful to formulate our results in general.

Definition 1 Let { be a permutation of I,. (Then, { € B,.). By definition, the “spread-
ing” of  is the smallest integer X such that :

VL € I, the equation = & {(z) = L has at most A solutions in I,.

Examples

1. If € is the identity function, then A = 2%, This is because for L = 0 the equation
z @ z = L has 2" solutions.

2. Let { be the rotation of one bit, such that the first bit becomes the second bit, the
second bit the third, ..., and the last bit becomes the first bit.

Soif @ = z122...2,, where z € I,,, {(z) = zp,%173. . Tny-

Then we will sece that A = 2.
Let L =1¢,4,...¢,.
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T @ z.=1{

T ® =14

Then = @ {(z) = L il and only if : (N

T, & T, = fn
where Vi,1 <:<n,fi=00r 1, and z; = 0 or 1.

First case : 2, =0

Then the (n— 1) first equations of (I) give us 73, 29,...,To_1. And thenif £, = 2, @ a1
the last equation is true. If not, z, = 0 is not possible.

Second case : z, =1

In the same way, the system (1) then has zero or one solution if z,, = 1.

Conclusion :

Let ¢ be the rotation of onc bit. Then we have seen that for all L € I,,, the equation
z @ {(r) = L has at most two solulions. (And for L = 0 it has exactly two solutions). So
the “spreading” of the function rotation of one bit is A = 2, as claimed.

Remark :

It is possible to find somne permutations with A = 1. As pointed out by Mr Lothrop Mit-
tenthal after my presentation of this paper, in this case a permutation ¢ is call “Complete
Mappings”. Complete Mappings have been studied {or differents raisons before, and more
details aboul them are given in [7].

In this paper, we will present two tlicorems that will use our notion of “spreading”.
These theorems are :

Theorem 3.1 Lel { = (Ca)nen be o sequence of permutations, (, € B,.
Let A, be the spreading of (..
If for all polynomial P(n) we have :

A P(n)
211

n —»—.+ook 0 then :

W(f, f, foCo f) is « pseuda-random funclion gencrator, where f is a single pseudo-random
Sfunction.

(When f € F,, the notation fo(o f means fo(, 0 f).

Theorem 3.2 Wilth the samc nolalions, and the same condition on (, we have :
Y(f, [, f, fo( o f)is a super pscudo-random function generalor.

These two theorems solve the two open problems b) and ¢) discussed in paragraph 1.
Theorem 3.1. solves problem b) and Theorem 3.2 solves problem c).
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For example, if ¢ is the function rotation of one bit, A, = 2 and by Theorem 3.2 we have
found a super pseudorandom permutation generator by using only one single pseudoran-
dom function f. Morcover we have found many of these super pseudorandom permutation
generalors :

each { such that
ator.

i,.___;(n_) n— +c0 0 (for all polynomial P(n)) will give us such a gener-

We will now see the ideas that we have used to prove these two new theorems. Para-
graphs 4 and 5 discuss about theorem 3.1, and paragraph 6 and 7 will deal with theorem
3.2. And in paragraph 8 we will compare our results with one single pseudorandom
function with what can be obtained with two pseudorandom functions.

4 A “basic property” of ¢(f,f,fo (o f)

To prove Theorem 3.1, we have first proved a “basic property” of %(f, f,fo{o f).
Theorem 4.1 Basic property of Y(f,f, fo{o f).

Let { be a permulation of I,. Let A be the spreading of (.

Let [Li, Rj},1 < i < m, be a sequence of m distinct elements of I,. (Distinct means that
And let [$;,Ti),1 < i < m, be a sequence of m distinct elements of I,, such that if i # j,
then S; # 5.

Then the number If of functions f of I, such that

Vi, 1 < i <m,¢(f, [, fo(o f)Li, Ri) = [S:,T]
, | £l 6m?  Am
151{252"—"‘ 1-— on —E'-l— -
The proof of this theorem 4.1 is not very difficult : it is just a combinatorial evaluation.
In [3] a complete proof of this Theorem is given.

5 (f,f,folof)is pseudorandom, if ¢ is well chosen

Let ¢ be a distinguishing circuit.

o We will denote by ¢(f) its output (1 or 0) when its oracle gates are given the values
of a function F.
Let ¢ be a fixed permutalion.

e We will denote by P, the probability that ¢(F") = 1 when f is a function randomly
chosen in £y, and F = ¢(f, f,fo (o f).

Number of f € £, such that ¢(¥(f, f,fo(of)) =1

So P, =
on Fo]
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o We will denote by P, the probability that ¢(F) = 1 when F is randomly chosen in
..

Number of function F' € F,, such that ¢(F) =1
|2 '
From Theorem 4.1, it is possible to prove this theorem :

So P! =

Theorem 5.1 For every dislinguishing circuil ¢ with m oracle gates, we have :

6m? Am  m{m-1)
PPl —4— ———=
A= Pls o+ 5t =55
where A is the spreading of (.

2
And then : |P, - P7| < Gg:" %’ﬂﬁ

(See [3} for the complete proof).In the APPENDIX we will give a general result (Theorem
A1) which shows that Theorem 5.1 is just a consequence of Theorem 4.1.
And theorem 3.1 is an easy conscquence of this theorem 5.1.

Remarks

1. Let @, be the probability that ¢(I") = 1 when f, g, h are three independant {functions
randomly chosen in Fy, and # = (f, g,k). Then, in [1] M. Luby et C. Rackoff have
proved that : for every distinguishing circuit ¢ whith m oracle gates, we have :

m?

G — A < o
1t is useful to compare this property with our property of theorem 5.1 :
6.5m2  Am

|P1—P1'|S—2;—+*T-

In theorem 5.1 the inequality is a little worse, but the important thing is that we
use only one function f randomly chosen in F,. When these theorems are used
in order Lo obtain a cryptosystem, the functions f,g,h will generally be generated
by a pseudorandom funclions generator. So by using ¢(f, f, fo (o f) instead of
¥(f,9,h) the lenght of the secret key will generaly be divided by three (because we
need to gencrate only one pseudorandom function instead of three).

2. Theorem 5.1 is true because it concerns a distinguishing circuit. These circuits
have only normal oracle gate. If we use super distinguishing circuit, with normal
and inverse oracle gates, then the property of theorem 5.1 will not be true. This
is because here we use only three rounds of DES - like permutations. And in [1]
M. Luby and C. Rackofl have proved that in this case a generator is never super
pseudorandom.

6 A basic “property” of ¥(f,f,f,fo(o f)

We will now present the ideas that we have used to prove Theorem 3.2. The proof is very
similar to the proof of theorem 3.1. First, we proved this theorem :
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Theorem 6.1 basic properly of Y{f, f, f, fo (o f).

Let ¢ be a permutation of I,,. Let ) be the spreading of (.

Let [Ly, Ri},1 < i < m, be a sequence of m distinel clements of I,,. (Dislinct means that
i£7= R # R; or Ly # L;).

Let [$;,T}],1 € i < m, be also a sequence of m distinct elements of .. (Distinct means
thati# j = 5 #S; or T, # T;).

Then the number H of functions f of F,, such thal

Vi, L <i<m,w(f, f, f, f oo N R) =[S, T}

s H > | P (1 _10.5m* ﬁr_z)

— 22nm on on

See (3] for the complete proof.

7 (f, f. f, folof) is super pseudorandom, if { is well
chosen

Let ¢ be a fixed and public permutation. (For example a rotation of one bit}.
Let ¢ be a super distinguishing circuit. (This is a circuit with normal and inverse oracle
gates. See [1] for precise definitions).

o We will denote by ¢(F) its output (i or 0) when its normal oracle gates are given
the values of a permutation F, and its inverse oracle gates are given the values of

F,

s We will denote By P, the probability that ¢(F) = 1 when f is a function randomly
chosen in I, and F =4(f, f,[,folof).

s We will denote by £;* the probability that ¢(£) = 1 when F is randomly chosen in
-B'Zu-

From theorem 6.1, it is possible Lo prove this theorem :
Theorem 7.1 For every super distinguishing circuil ¢ with m oracle gates, we have :

10.5m* Am  m{m-—1)

—_ b2 < —
|2 — P < on + 9n + 9 92n
And then : )
" 1lm m
|A-Pl L o o

(See (3] for the proof). In the APPENDIX we will give a general result (Theorem A2)
which shows that Theorem 7.1 is just a consequence of Theorem 6.1.
And theorem 3.2 is an easy consequence of this theorem 7.1.
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Remark

If for { we take the identity [unction, then A = 2" (see paragraph 3).
AP(n
Then

So the theorem 3.2 can not conclude in this case that ¥(f, f, f, f?) is super pseudorandom.
And in fact it is possible to show that ¥(/f, f, f, f?) is not super pseudorandom.
(See [5] or [3]).

) does not tend to 0 for any polynomial P.

8 (Generators with two functions

Although that it is not exactly the thema of this article, we will now briefly survey the
properties of the generators with two independant functions f and ¢ randomly chosen in
F,,. All these properties can be proved with the “coeflicient H technique” which is given
in Appendix. Most of these properties have been find before this article. With these
properties we will then coinment a result claimed in [5], and we will explain why we think
that this result is wrong.

The properties

1. ¥(f, f,9) and ¥(f, ¢,9) are pseudorandom, but not super pseudo-random. They are
not super pseudo-random beacause here there is only three rounds.

o

©(f, 9, f) is not pseudorandom. This is easy to see because this permutation is its
own inverse if left and right halves of inputs and outputs are swapped.

Remark : These results on 1. and 2. have first been find by Ohnishi (see [6]).
3. v(f, f, f,9) and ¢¥(f,g,9,y) are super pseudorandom.
4. ¥(f, f,9,9) is also super pseudorandoin.

5. ¥(f,9,9,f) is not pseudorandom. This is easy to see because this permutation is
its own inverse if left and right halves are swapped.

6. ¥(f,y,f,¢) is super pseudorandom.

7. ¥(f, f.9,f) and ¥(f, g, f, ) are super pseudorandom.

Because of these results, we think that the “Corollary 17 of [5] is wrong.
This “Corollary 17 claim :

Let (fi, f2,..., fi} be i funclions of F, such that Gy = ¥(fi,..., f1) be a pseudorandom
permulation.

Then G is super pseudorandom if and only if G3 = ¥(fi,..., f2) and G5 = ¥(f1,..., fi-1)
are pscudorendom permulations.

But we have just seen that :
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L. ¥(f, £, f,9) is super pseudoraudom and ¢(f, f, f) is not pseudorandom.

2. ¥(f,g,f,g) is super pseudorandom, but ¥(f,g, f) and (g, f,g) are not pseudoran-
dom. Notice here that f; and f;_, are independant,

So this is why we think that this “Corollary 17 of [5] is wrong.

9 Conclusion

In this paper we have explained the ideas that we have used to solve two open problems
aboutl pseudorandom permutation generators. We have presented a notion of “spreading”
for a permutation, and this notion is very useful for our results. Another new idea was to
use functions fo¢ o f, where ¢ is a fixed and public permutation with small “spreading”,
and f a pseudorandom [uuction.

Using this sort of function give us very different results from those obtained when using
only compositions of f.

Our main result is that it is possible to construct super pseudorandom permutations from
a single pseudorandom function. Such permutations give block cryptosysiems secure
against chosen plaintext / ciphertext attack. Finally, we have explained that there are
many such permutations : any ¥(f, f, f, fo(of), where ( is a fixed and public permutation
with small “spreading” will be a super pscudorandom permutalion constructed from the
pseudorandom function f. And here the number of rounds used (four) is also optimal.
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APPENDIX

The “coefficients H technique” for proving pseudo-
randomness and super-pseudorandomness

We will formulate here the two main Theorems that we generally used in order to prove
some pseudorandom or super-pseudorandom properties.

These theorems show a technique (we call it the “coefficient H technique”) for proving
such propertics. More details and variants of these technique (some generalisations exist)
are given in [3] with the proof of these theorcins.

Theorem Al (“coeflicient H technique for pseudorandomness”)

Let A be a pseudorundom permulation generator such that if (fy,..., f,) are p functions

aaniA(fh'nafp) € BZn'
Lel a be a real, @ > 0.

If :

(1) For all sequence [L;, R;],1 < i < m, of m distinct elements of I, (distinct means
thati# j = R; # R; or L; # L;) and for all scquences [S;, T3}, 1 <1 < m, of m elements
of I2n such that if t # j then S; # §;, we have :
the number H of p-tuple of functions ([i,..., f,) such that

Vi, l <i<m,A(f,..., )L, Ri]=[5,T]
. [P
is i > 227"‘" (1 -a).

Then :

(2) For ali distinguishing circuit ¢ with m oracle gules, we have :
m(m — 1)
2.2n

Where Py is the probability that ¢(FF) = 1 when F = A(fi,..., f,) end (fi,...,fp) are p
Sfunctions randomly {and independantly) chosen in F,.
And Py is the probability that ¢(F) =1 when F is randomly chosen in Fy,.

P~ P <a+

Notice that here there is no limitation in the number of computations that can perform
the dislinguishing circuits in order to analyse the m values given by its oracle gates.

Example

With this Theorem Al we can obtain a new proof of the result of M. Luby and C. Rackolf

about ¢>(f1, fa, f5), for example.
First, it is possible to prove this property :
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Property of 4(f1, f2, f)

For all sequence [Li, R;],1 <t < m, of m distinct clements of I, and for all sequence
[5i:Ti),1 <i <, of m elements of I, such that if i # j then S; # S;, we have :

the number H of 3-tuple of functions (fi, f2, fa) sueh that

VI,]. S H S m, ¢3(f1,f2,f3)[Ln Rt] = [SHTY‘]

. |E P m(m - 1)
> — .
is H — 9inm 1 2.9n

Then, from Theorem Al we oblain :

as claimed.

o o mm—1
PR

Theorem A2 (“coeflicient H technique for super-pseudorandomness”)
if :

(1) For all sequence [L;, R),1 < i < m, of m distinct elements of L, and for all se-
quences {S;, Ti],1 < ¢ € m, of m distinct elements of I, the number H of p-tuple of
functions (fy,..., f,) such that

Vivl < 1 < maA(fl»' "7fP)[L‘7Ri] = [Sl’Ti]

. FL.P
s H > IE%"—(I ~a),

Then ;

(2) For all supcr distinguishing circuit ¢ with m super oracle gates (normals or inverses),
we have :
m(m — 1)

2,22
Where Py is the probability that ¢(F) = 1 when F = A(fi,...,f,) and (fi,..., f,) are
randomly (and independantly) chosen in F),.
And Py* is the probability that ¢(F) = | when F is randomly chosen in B,

|Py— P <a+

Notice that here there is also no limitation in the number of computations that can
perform the super distinguishing circuits in order to apalyse the m values given by its
super oracle gates.



	Introduction
	Notations
	Definition of the “spreading” of a permutation 5
	4 A “basic property” of $(f, f, f o o f)
	$(f, f, f o o f) is pseudorandom, if C is well chosen
	Reinarks
	A basic “property” of $(f, f, f, f o ( o f)
	@(f, f, f, f o c o f ) is super pseudorandom, if ( is well
	Generators with two functions
	Conclusion
	Refer e 11 c e s

