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Abstract 

In this paper we will solve two open problems concerning pseudorandom permu- 
tations generators. 

1. We will see that it is possible to obtain a pseudorandom permutation generator with 
only threc rounds of DES - likc pcrrnutatioii and a single pseudorandom function. 
This will solve an open problem of [GI. 

2. We will see that it is possible to obtain a super pseudorandom permutation generator 
with a single pseudorandom function. This will solve an open problem of [5].  For 
this we will use only four rounds of DES - like permutation. 

For example, we will see that if C denotes the rotation of one bit, $(jl I, f o < 0 f )  is 
a pseudorandom function generator. And +(f, f l  f, j o C o f) is a super pseudorandom 
function generator. 

Here the  number of rounds used is optimal. It should be noted that here we introduce an 
important new idea in that we do not use a composition of f, i times, but f o < o f for 
the last round, where ( is a fixed and public function. 

1 Introduction 
In their important paper (11, M. Luby and C. Rackoff showed how to construct a pseudo- 
random permutation generator from a pscudorandom function generator and the applica- 
tion of three rounds of DES - like permutations. (This structure is notated as $ ( j , g , h ) ) -  
Later, Zheng, Matsumoto and Imai [G] showed lhat it is impossible to make a pseudoran- 
dom permutation with some composition of a single pseudorandom function f and three 
rounds of DES - like pcrinutations, i.e. $(f,ji, jk) is not pseudorandom for any i , j ,  k. 
At the end of their articlc, they raised two open problems : 
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a) Whether it is possible to use one single function f to construct a pseudorandom 

b) Whether it is possiblc tliat +(j,/,i) be a pseudorandom permutation, where i is 

permutation, by more than three applications of D S  - like transformation. 

constructed from I with i # f" lor any n E N. 

The problem a )  was solve by J. Pieprzyk in [4] where he explains that $ ( f r f , f , f 2 )  is 
a pseudorandom permutation (but not a super pseudorandom permutation as we will see). 

But problem b) remained open. Recently, we have solved this problem b) and will explain 
our results in this paper. 

Another open problem was : 
c )  How to construct super pseudorandom permutations from one single pseudorandom 

function. 
This notion of super pseudorandomness was introduced by M. Luby and C. Rackoff. 
It means that the block cryptosystem is secure against a chosen plaintext / ciphertext 
attack. They said that  $(f , r / ,  h , e )  is super pseudorandom, where f,g,h, and e are four 
independent pseudorandom functions. ( A  proof of this property is given in [3]). 
If only one pseudorandom function is used, we (in [3]), and J. Pieprzyk and S. Sadeghiyan 
( in  [5]), have independently found that $(J, f, f ,  j ' )  is not super pseudorandom. SO 
an open problem is how to construct a super pseudorandom permutation from a single 
pseudorandom function. This problem c )  i s  the second problem that we have solved. 

2 Notations 
The notalioil we use, is similar to [2] a n d  14). 

I,, = (0, I}^ is the set of all 2" binary strings of length R. 

0 For u, 6 E I,, [u, /J] will be the string of length 272 of I,,, which is the concatenation 
of u and 1. 

For u, 6 E I,,, a @ b stands for bit-by-bit exclusive- or of a and b. 

0 is the composition of function. 

fZ is f o f. 

0 T h e  set of all functions from I ,  to I,, is F,. It consists of IF,,] = 2".'" elements. 

0 The set of all permutations from I,, to I,, is En, so B,, c F,,. And IBnl = (2")!. 

0 Let f be a function of F,,. Let L ,  R,  S, and T be elements of I,,. Then by definition 
$(fi) is the permutation from Izn to Izn such that : 
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Remark : 
$ ( J l , .  . . ,jk) is in fact a k itcration DES Scheme wliere the S-boxes are replaced’by the 
functions fl, . . . , fk. 

We will assume that the definitions ol permutation generator, distinguishing circuit, nor- 
mal and inverse oracle gates, pseudorandom permutation generator and super pseudo- 
random permutation generator are known. These dcfinitions, may be found in [I] for 
example. 
In all this article the number of computations lhat can perform a distinguishing circuit is 
not bounded. But  the number of oracle gates of a distinguishing circuit i s  a fixed integer 
m. 

3 Definition of the “spreading” of a permutation 5 
To explain the results that we obtained, we will need to define the notion of the “spread- 
ing” of a permutation. This notion will be useful to formulate our results in general. 

Definition 1 Lct ( Ire u permutation o j  I,,. (Then, ( E B,,). By definition, the “spread- 
ing” of ( is  the smullesl integer A such thut : 
V L  E I,,, the equation x ((x) = L has at most X solutions in In. 

Examples 
1. If ( is the idcntity function, then X = 2“. This is because for L = 0 the equation 

5 @ z = L has 2” solutions. 

2. Let < be the rotation of one bit, such that the first bit becomes the second bit, the 
second bit the third, . . ., and the last bit becomes the first bit. 

SO if z = ~ 1 ~ 2 . .  . x,, where x E In, ((z) = 5nr152.. I Xn-1. 

Then we will see lhat X = 2. 
Let L = l,&. . , en. 
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First case : :c,~ = 0 
Then thc ( 1 %  - I) f irst cquations ol (I) give us zl, x2,. . . , z,,-~. And then if en = zn @ Z,-I 
the last equation is true. If not, xn = 0 is not possible. 

Second case : z, = 1 
In the same way, the systcm ( I )  thcn has zero or onc solution if 2, = 1. 

Conclusion : 
Lct ( Le the rotation o l  onc hit. Then we have seen that for all L E I,, the equation 
IC @ ((r) = L has at  most two solulions. (And for L = 0 it has exactly two solutions). SO 
the “spreading” of tlie furictioii rotation ol one hit is X = 2, as claimed. 

Remark : 
It is possible to find some permutations with X = 1. As pointed out by Mr Lothrop Mit- 
tenthal after my presciitation of this paper, in this c u e  a permutation C is call “Complete 
Mappings”. Cornplcte h.lalqhgs have bccii studied for diffcrents raisons before, and more 
details about them are given i i i  [7]. 

In Lhis paper, wc will prescnt two tlicoreiiis tlidt will use our  notion of ‘spreading”. 
These theorems are : 

Theorem 3.1 Lcl ( = ( ( n ) n E ~  be u sequence of permutations, (,, E B,. 
Let A, be the spreuding of (,,. 
If  for  all polynomial P ( n )  we I ~ U I J C  : 

$( f, f, f o(o f) is u pseudo-ruitdoin fuiiction gerterutor, where f is a single pseudo-random 
function. 
(When f E F,,, the noI.utioir f o ( o f iiicuns f o (,, of). 

Theorem 3.2 Wilh the same notalions, and the suine condition on C, we have : 
$(f, f, f, J o C o f) is u aupcr pscirdo-rundoin function generutor. 

Thcse two theorems solve tlie IWO opcn problems b) and c) discussed in paragraph 1. 
Theorem 3.1. solves p r o l ~ k i i i  11) itird Thcorcm 3.2 solvcs problem c). 
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For example, if  ( is the function rotation of one bit, A, = 2 and by Theorem 3.2 we have 
found a super pseudorandom permutation generator by using only one single pseudorari- 
doin function f .  Moreover we have found marly of these super pseudorandom permutation 
generators : 

each ( such that - n +-+m 0 (for all polynomial P(n) )  will give us such a gener- 
ator. 

2“ 

We will now see the ideas that we have used to prove these two new theorems. Para- 
graphs 4 and 5 discuss about theorem 3.1, and paragraph G and 7 will deal with theorem 
3.2. And i n  paragraph 8 we will compare our results with one single pseudorandom 
function with what can be obtained with two pseudorandom functions. 

4 A “basic property” of $(f, f, f o o f) 
To prove Theorem 3.1, we have first proved a “basic property” of + ( j , j , j  o C 0 f). 
T h e o r e m  4.1 Basic property of +( f, f ,  1 o C o f ) .  

Let C 6e u pemutu t ion  of I,. Let A be the spreading of C. 
Let [L ; ,  Ri], 1 <_ i 5 m, 6e u sequence of ni distinct elements o j l , , .  (Distinct means that 
i # j * R,, # R., or Li # L j ) .  
And lel [&,Ti], 1 5 i 5 m,  6e a sequence o j m  distinct elements of I,,, such that if i # j, 
then S; # Sj. 
Then the nunibcr Ii of functions f ojFn such tliut 

Vi,1 5 S m , d ~ ( l , f y f  o < o f ) [ L i , R i ] = [ S i , T i ]  

The proof of this theorem 4.1 is not very difficult : it is just a combinatorial evaluation. 
In [3] a complete proof of this Theorem is given. 

5 $( f ,  f, f o o f) is pseudorandom, if C is well chosen 
Let 4 be a distinguishing circuit. 

e We will denote by 4 ( F )  its output (1 or 0) when its oracle gates are given the values 
of a function F. 
Let C be a fixed permutation. 

We will denote by PI the probability that + ( F )  = 1 when f is a function rando& 
chosen in F,, and F = $(f, f ,  f o C o j ) .  

Ni~mber  of f E F, such that 4($(1, f ,  I o < o f ) )  = 1 

lFnl 
so PI = 
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We will denote by P; the probability that d ( F )  = 1 when F is randomly chosen in 
Fzn  9 

so P; = 
Number of function F 6 F,, such that d ( F )  = 1 

1Fzn I 
From Theorem 4.1, it is possible to prove this theorem : 

Theorem 5.1 For evcn j  dislitcguishing circuil with m omcle gates, we have : 

where X is t h e  spr-cading of(‘. 
G.5m2 Am 

2” 2” 
And then : /PI  - P;l _< - + -. 

(See [3] for the complete proof).h the APPENDIX we will give ageneral result (Theorem 
A l )  which shows that Theorem 5.1 is just a consequence of Theorem 4.1. 
Aiid theorcm 3.1 is an easy consccluence of this theorem 5.1. 

Reinarks 
1. Let Q1 be the probability that d ( F )  = 1 when f , g ,  h are threeindependant functions 

randomly chosen in F,, and F = +(fly,  h) .  Then, in 11) M. Luby et C .  Rackoff have 
proved that : lor evcry distinguisliiiig circuit 4 whith m oracle gates, we have : 

IQi - p;I I 2”. 
I t  is useful to compare this property with our property of theorem 5.1 : 

nil 

In theorern 5.1 the inequality is a little worse, bu t  the important thing is that  we 
use only one functiori f randomly chosen in F,,. When these theorems are used 
in order to obtain a cryptosystem, tlie functions f,g,h will generally be generated 
by a pseudorandom functions generator. So by using $(f, f, f o < o f )  instead of 
+(f,g,h) thc lenght of lhe secret key will generaly be divided by three (because we 
need to gencrate only oiie pseudorandom function instead of three). 

2. Theorem 5.1 is true because it concerns a distinguishing circuit. These circuits 
have only normal oracle gate. If we use super distinguishing circuit, with normal 
and inverse oracle gates, then the property of theorem 5.1 will not be true. This 
is because liere we use only three rounds of DES - like permutations. And in [l] 
M. Luby and C. Rackoll have proved that in this case a generator is never super 
pseudorandom. 

6 A basic “property” of $(f, f, f, f o ( o f) 
We will now present the ideas that  we have used to prove Theorem 3.2. The proof is very 
similar to  the proof of theorem 3.1. First, we proved this theorem : 
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Theorem 6.1 tllsic properly of +(f, f, f, f o (. o f). 

Lel f, be u pennulation of I,. Let X be the spreading of C, 
Let [L,,R,],l 5 i 5 m, t e  u sequence of m distinct cleinents ofI , , .  (Dislinct means that 
i # j + R; # Rj or L ,  # Lj). 
Lel [S;, Ti], 1 5 i 5 m, be ulso u sequericc o f m  distinct elements of Izn.  (Distinct rneoas 
that i # j + 5'; # Sj or T, # T,). 
Then the nuntler H of junctions f of F, S U G ~  lhal 

v i , l  5 i I rrr , lC,(f ,f ,f ,foC*f)[Li,RJ= [SitTi] 

See (31 for the complete proof. 

7 @(f, f, f, f o c o f )  is super pseudorandom, if ( is well 
chose 11 

Let C be a fixed and public permutalion. (For example a rotation of one bit). 
Let 4 be a super distinguishing circuit. (This is a circuit with normal and inverse oracle 
gates. See [I] for precise definitions). 

0 We will denote by $ ( F )  its output (1 or 0) when its normal oracle gates are given 
the values of a permutation F, and its inverse oracle gates are given the values of 
P-1. 

0 We will denote by PI lhe probability tliat $ ( F )  = 1 when f is a function randomly 
chosen i n  I < , ,  and F = +(j, j, f, f o (. o J ) .  

&,. 
0 We will rlenolc by P;* the probability that # ( P )  = 1 whet1 F is randomly chosen in 

From theorem G.1, it is possible to prove this theorem : 

Theorem 7.1 For every super distinguishing circuit q5 with m oracle gates, we havc : 

10.5mZ Am m(m - 1) 
2.2" . IPI - P;*l I - + - + 2" 2" 

And then : 

(See [3] for the proof). In the APPENDIX we will give a general result (Theorem A2) 
which shows that Theorem 7.1 is just a consequence of Theorem 6.1. 
And theorem 3.2 is an easy consequence of this theorem 7.1. 
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R e  mark 

If for C we take the identity function, then X = 2" (see paragraph 3). 

Then - does not tend to 0 for any polynomial P. 
So the thcorem 3.2 can not conclude in this case that $(f,fl f , f )  is super pseudorandom. 
And in fact it is possible to show that $(f,f, f , f Z )  is not super pseudorandom. 
(See (51 or [3]). 

2" 

8 Generators with two functions 

Although that it is not exactly the  thcnia of this article, we will now briefly survey the 
properties of ihe generators with two iiidependant furiclions f and g randomly chosen in 
F,,. All these properties can be proved with the ''coeficient H technique" which is given 
i n  Appendix. Most  of these properties have been find before this article. With these 
properties we will then comment a result claimed in [5], and we will explain why we think 
that this result is wrong. 

The properties 

1. $(f, f ,g )  and +(f, g,g) are pseudorandom, but not super pseudo-random. They are 
not super pseudo-random beacause here there is only three rounds. 

2. $ ( f , g ,  f )  is not pseudorandom. This is easy to see because this permutation is its 
own  inverse if left and right halves of inputs and outputs are swapped. 

Remark : These results on 1. arid 2. have first been find by Ohnishi (see [6]). 

3. $(f, f, f, g )  and $(f, g,g, g )  are super pseudorandom. 

4. $(f, f, 9 , g )  is also super pseutlorandorn. 

5. $ ( f , g , g , f )  is not pseudorandom. This is easy to see because this permutation is 
its own inverse if left and right halves are swapped. 

6. $ ( f , g ,  f , g )  is super pseudorandom. 

7. $ ( f , f ,g , f )  and $ ( f , g ,  f,f) are  super pseudorandom. 

Because of these results, we think that the "Corollary 1" of [5] IS ' wrong. 
This "Corollary 1" claim : 

Let (f1, fi, I . . , f,) be i juncfiorrs o/ F, such lhot GI = $(f,, . . . , f i )  be a pseudorandom 
pennut alion. 
Then GI is supcr pseudotnndom if and only ifG2 = +(f,, . . . , f2)  and Gs = t+h(fl,. . . , fi-1) 

am pseudorandom permutations. 
But we have just seen that : 
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1. $(I, f , J , g )  is super pseudoraritlom and $(f, J, J) is not pseudorandom. 

2. $ ( f , g , f , g )  is supcr pseudorandom, but $(f,g, f )  and $(g,f,g) are not pseudoran- 
dom. Noticc here tlrat fi and are independant. 

So this is why we think that this “Corollary 1” of I51 is wrong. 

9 Conclusion 
In this papcr we have explained the idcas that we have used to solve two open problems 
about pseudorandom pci mutation gcncrators. We have presented a notion of “spreading” 
€or a permutalioil, and this iiotiori i5 very useful for our  results. Another new idea was to 
use functions f o  ( o f ,  where ( is a fixctl and public permutation with small “spreading”, 
and J a pscutlorandoni fuuctioii. 
Using this sort of function give us vcry difkrent results irom those obtained when using 
only compositions o f f .  
Our main result is that it is possible to construct super pseudorandom permutations from 
a single pseudorandom function. Such pcrmutations give block cryptosyslems secure 
against chosen plaintext / ciphertext attack. Finally, we have explained that there are 
many such permutations : any $(I, f, j ,  f o ( o j ) ,  where ( is a fixed and public permutation 
with small “spreading7’ will be a super pscutlorandom permutation constructed from the 
pseutlorandoiii f ~ ~ i n c t i o ~ ~  J. And here t l ~ c  number of rounds used (four) is also optimal. 
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APPENDIX 

The “coefficients H technique” for proving pseudo- 
raiidoiniiess and super-pseudorandomness 
We will formulatc liere the two main Thcorc~ns that we generally used in order to prove 
some pscudorantlom or super-pseudorandom properties. 
These theorems show a technique (we call it the “coefficienl tl technique”) for provillg 
such propcrtio;. hiorc tIeLails iliitl variants of thcse technique (some geiieralisatior~s exist) 
are givcn in [3] wit11 the proof or thesc tlieorcins. 

Theorem A1 (“coefficient H technique for pseudoraiidomness”) 
Let A be a pseudoiundoin pen~iututiorr gcircrator such that if ( j i , .  . . , fp) are p junctions 

Let a be a real, a > 0 .  
o f K : , , A ( f i , . * * , f p : . )  E B z n -  

If : 

(1) For 011 scquciicc [L , ,  R,], 1 5 i 5 ni, of m distinct elements of I,, (distinct means 
that i # j s R; # R, or L; # L j )  u i d  Jor u11 scpcnces [S, ,  T,], 1 5 i 5 m, of m elements 
01 I,, such Lhal ij i # j lhen S; # Sj ,  I U E  huve : 
tlic number E l  (11 11-tuplc ojfuicctions ( J l , .  . . , fp) such lhat 

V i ,  1 5 i 5 m, A ( j 1 , .  . . ,fp)[L;, R;] = [S,,T,] 

Then : 

(2) For aI1 distinguishing circuit 4 with in orucle yules, UJC have : 

m(m - 1) 
2.2” * 

IP, - P;l I a +  

Where PI is the probability Ucut $ ( F )  = 1 when F = h(j , ,  , . . , f,) and (fi, . . . , f,) are p 
firnctions mndoinly (and indcpenduntly) chosen in F,. 
And P; is thc probability tltut + ( F )  = 1 wlicn F is randotdy chosen in FZn. 

Notice that here there is no limitation in tlie numbcr of computations that can perform 
the dislinguisliing circuits in order t o  analyse the IR values given by its oracle gates. 

Example 
With this Theorem A1 wc can obtain a new proof of the result of M. Luby and C. Rackolf 
about yP(fi,f2.f3), for example. 
First, it. is possible to prove this property : 
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For all sequence [Li,R,],l 5 a 5 m, of m distinct dements of I,,, and for all sequence 
[S,,Ti], 1 5 i 5 i n ,  o fm elements of I,,, such that if i # j lhen S; # Sj,  we have : 
the nuinher /I  of 3-tuple oj  junctions (f,, fz, /3) such h t  

Then, from Theorem A1 we ;blain : 

m(m - 1) 
IP, - PJ I 2" claimed. 

Theorem A2 ("coefficient H technique for super-pseudorandomness") 
f j  : 

(1) Fov all sequence [Li,  R,], 1 5 i _< rn, of rn distinct elements of 12-, and tor all se- 
qucnces [Si,TiJ, 1 5 i 5 in, of m dislinct elements of IZ,, &he number iI of p-tuple of 
junctions (11,. . . , j p )  such that 

(2) For ail super distinguishing circuit qb with m super oracle yates (normals o r  inverses), 
we have : 

n(m - 1) 
2.22" a 

lP1 - K'l 5 a + 
IVhert PI is Ihe p ~ ~ b a b i l i i y  thal (P(F) = 1 when F = A(f1, .  . . ,fp) and (f,, . . . , J p )  are 
randomly (and iiidepcndady) chosen in F,, . 
And P," is l h e  probability that # ( F )  = 1 when F is rundomly chosen in BZn. 

Notice that here there is also no limitation in the number of computations that can 
perform the super distinguishing circuits in order to analyse the m values given by its 
super oracle gates. 
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