Resource Requirements for the Application of Addition Chains

in Modulo Exponentiation

J6rg Sauerbrey
Andreas Dietel

Lehrstuhl fiir Datenverarbeitung
Technische Universitit Miinchen
P. 0.Box 2024 20
W-3000 Miinchen 2
Gemany

sy@1dv.e-technik.tu-muenchen.de

Abstract

Addition chains or scquences can be used to reduce the amount of multiplications 1o accomplish an ex-
ponentiation at the cost of more memory required. We examine known methods of cxpoacatiations
bascd on addition seyucnces and derive the parameters determining operation count and number of re-
quired registers for storing inlermediaie resulls. As a result an improved method is proposed to choose
window distribwtions as a basis for using known addition sequence heuristics.

1. Introduction

A lot of cryptographic methods and protocols rely on the fast evaluation of powers modulo a large
number 2. One of the famous members of this class of methods is RSA. Exponentiation is usually
based on modulo multiplications which can be broken down into additions. A lot of research work has
been done to implement fast module multiplication [AliMar91, CuBoKa91, Even90, LipPos90,
LuHal.H88, Montgo85, Moraga89, Morita90] and to speed up addition [KocHun90, Hwang79]. This
paper deals with reducing the number of modulo multiplications for one modulo exponentiation. The
aim is to obtain a computation rule for a specific exponent which leads to less multiplications than the
usual methods. The effort for deriving this computation rule pays off, if one has to compute a lot of
exponentiations with the same exponent. This holds for example for RSA, where the exponent is part
of the key and subsequent encryptions use the same key. The computation rule could then be stored
together with the key.

In this paper different computation rules are compared with regard to the number of multiplications
and the amount of memory required to perform the exponentiations. We focus our investigation main-
ly on the amount of memory, because memory is a scarce resource for a VLSI implementation. We
propose an improved method for finding computation rules, where the memory requirements are eco-
nomic.

2. Exponentiation and Addition Chains

X

According to the rule 5'% = &7 the computation of a power ° * corresponds to the problem of
finding a sequence of increasing integers approaching the exponent. The sequence has to begin with
I and every integer is the suin of two preceeding integers in the sequence. Such sequences are called
addition chains. In general, an addition chain for x is a sequence of integers (1=ay, a;, ... , @,=n) with
the property that ¢, = d +a, for some kand j, k € <, forall i=1, 2, ..., r ((Knuth69], p. 402).

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT °92, LNCS 658, pp. 174-182, 1993.

© Springer-Verlag Berlin Heidelberg 1993

175

For example, the exponentiation " accomplished by repeated multiplications by b results in the ad-
dition chain (1,2, 3...., x). The well known binary algorithm (repeated squaring), which is based upon
the binary representation of x, defines an addition chain (1, 2, ..., @;, X), where

a, -1 a; odd
i-1 = [m

a;/2 a; even

We will show later that it is desirable to compulte several predefined powers within the application of
a single sequence of exponentiations. According to this requirement we define an addition sequence
for ng,..., 1y, as an addition chain, which at least contains the elements ng,...,n;. A star chain is an addi-
tion chain or sequence (dyg....a,). where each term g; is the sum of @;_; and a previous .

We define the following: {(ng,n,....) is the length of the addition chain or sequence containing nyp.iy....
The length of the addition chain or sequence with the star property (star chain) is defined by
I*(ngny,...). The Hamming weight v(n) denotes the number of 1's in the binary representation of n.
For I(n) of the shortest addition chain it is known that log,n + log,v(n)—2.13 < I(n). For addition
sequences it is [Yao76}:

£ logn;)
Hong, nyy ooy ny) Slogny + ¢ »20W where ¢ 15 4 constant, 2)
t=

The star property may be suitabie to reduce the amount of memory required to accomplish the expo-
nentiation, but it does not guarantee that we get the shortest chain as {n) < /*(n} (Theorem of
W. Hansen in [Knuth69], p. 413). For exumple the addition chain defined by equation (1) has the
property, that only the value of the preceding step of the chain (g;_;) and the value of b have to be
stored for computing 6. So using the binary algorithm, only two n bit registers are necessary to com-
putc & mod n.

There are plenty of theoretical resuits and asymptotic bounds conceming different kinds of addition
chains (see references in [BosCos89]), but much less practical hints for building and using addition
chains. The main problem is, that computing the shortest addition chain is an NP-complete problemn
[DoLeSe81].

[McCart86] discusses the interaction between the efficiency of the basic multiplication algorithm and
the addition chain used to compute &°. If the cost of a multiplication is bound to the length of the op-
erands, the multiplicative cost of evaluating &' is minimized by using repeated squaring. But for mod-
ulo multiplications the cost of a multiplication is nearly constant. In this case it is clear, that the
shortest chain for x will yield (o the cheapest evaluation of 5%, in terms of number of multiplications.
The binary algorithm does not define the shortest chain, as it can be shown for x=15. Here the shortest
chain is {1, 2, 3, 6, 12, 15), whereas the binary algorithm yields to (1, 2, 3, 6, 7, 14. 15). However in
most cases, saving of multiplications results in the necessity of storing more intermediate results.

[BosCos89] have shown some heuristics to compute addition sequences, which are mostly better than
those derived from the standard binary method for exponentiation. With these heuristics it is possible
to produce addition chains, which are on the average 21% shorter than those of the binary algorithms
(using 512 bit exponents).

176

3. Known methods for the application of addition chains

Since even with these heuristics it is not feasible to compute an addition chain for an exponent x with
length of 512 or 1024 bits, the goal of determining the computation rule is achieved in two steps. The
first step is to reduce the computation of an addition chain for a large x to the computation of an ad-
dition sequence by choosing an appropriate set of numbers (window values) which are much smaller
than x. The last step is to compute a "good’ addition sequence for these numbers.

There are different methods to accomplish the first step. They are all based on the m-ary method de-
scribed in {Knuth69, p. 404]. If an exponentiation with the m-ary method has to be computed, x is re-
writlen as x = dom’ +dm'” v+ d, . This means that with m = 2* the binary representation of
the exponent is divided in r windows with the width of & bit each and window values ¢; € [0, m-1].
The corresponding addition chain is as follows:

1,2,3,...,(m-2),(m=-1),
2d0,4d0....,md0,(md0+d]), ©))

2(mdy+d,) 4 (mdy+d,),...m(mdy+d,), (m*dy+md, +d,),

...,(m'do«)-ml_ ldl +..+d)

The first row serves to compute all possible window values (d,), whereas cach following row ‘shifts’
a new window value to the next window position in the binary representation of the exponent. Note
that the width of the windows not necessarily have to be fixed.

There are several ways to decrease the length of the chain in order to reduce the number of multipli-
cations for the exponentiation,

1. The last operation of a line of equation (3) correspondent to a particular window can be omitted
if the window value is zero. If we take each string of one or more zeros of the binary represen-
tation of the exponent as a window, the LSBs of the remaining window values cannot be zero,
Now the values of the first line of equation (3) decrease to the odd values between 1, ..., m-1.

2. Compute only those values in the first line, which are used as ¢;'s in the following lines. This

can be accomplished with an addition sequence algorithm. The maximum size of the windows
can now be much larger, since we don’t have to store all (odd) values of [1,m-1] in a table.

3. The window distribution should be optimized. For example: the window values should be cho-
sen, such that a short addition sequence can be constructed, with respect to the preceding point
there should be as few windows as possible; the sume window values should appear more than
once,

4. Choose the windows from right to the left such that many windows contain patterns of bits from
windows standing to the right of them. This method is analog to the compression algorithm of
Ziv and Lempel [ZivLem78]. If the values are stored in a tree, the derivation of new values is
done easily using the values alrcady computed. This method has been published in [Yacobi90)
and is called compression method.

Of course, these reductions can be combined. The methods for defining windows have a great effect

on the operation count, but their effect on the number of intermediate results to be stored (memory
demand) is not obvious.

4. Effects on operation count and memory demand

The effect on the number of operations is rather clear. In detail there are four factors:

1. The length of the exponent x determining the number of squarings.
2. The length of the leftmost window (MSB-window), which reduces the number of squarings.

3. The number of non-zero windows minus one, which determines the number of multiplications.
(Note: windows with the value of zero don’t need a multiplication.)

4. ‘The length of the addition sequence minus one, which defines the number of operations needed
to compute the different window values. (Note: This is not the case for the method of

[Yacobi90])

Figure I gives an example:

Window distribution (non-zero windows underlined):

exponent in binary representation: 111 00 100 1110 000 111 100101 0000 100
decimal window values: 7 4 14 7 37 4

Addition sequence, corresponding to the first row of equation 3 (window values underlined;
the arrows indicate which numbers are added to get a new one):

SN SN

1, 2,4, 5 7,14, 16, 30, 37
TS~ AN

number of operations: (length of the exponent)-(length of the MSB-window)+(number of non-zerqg

windows-1)+(length of the addition sequence-1) 37-3+5+8=41
for comparison the number of operations with the
binary method (length of the exponent-1)+(number of ‘1's in the exponent): 30+14=44

Figure 1: Window distribution and number of operations

The importance of cxamining the memory demand for computing &* with the methods described in
section 3 becomes obvious, if we look at the correspondent hardware realization.

Multiplication mod n

Ree|
e
.

computation rule

Figure 2: Hardware implementation of an exponentiation unit using addition chain methods

178

Figure 2 shows an example for the implementation of a hardware unit to compute &*. There is a fixed
number of registers (R;) available for storing intermediate results. Initially R, is loaded with b. The
box ‘computation rule’ is a controller selecting the correct source and destination registers R; for each
computation step. The computation rule for the actual x to accomplish the exponentiation is loaded
into this block in advance. It implicitly contains the window distribution and the addition sequence,

found

by one of the algorithms above,

The effects of the computation rule on the required number of registers, cannot be summarized in a
simple formula whereas the effects on the number of operations can be. The effect on the register

count

1.

In the

is investigated in the following points:

Does the window distribution contain non-adjacent windows sharing a common value?
Once this value is computed, it has to to be stored for later use. The window value 4 in the ex-
ample shown in figure 1 explains this point.

- Is a window value necessary for the computation of the following window values?

The value 14 in the addition sequence is an example for this point, because it is needed to create
the value of 30.

. Are the results, arising from the computation of the present window value necessary for the

computation of the following window values?
The value of 2 shows this aspect, because 2 is necessary to build 4, but has 10 be stored longer
to create 16.

- If raversed from left to right, how well are the windows sorted for increasing values?

This point is important because we can start to compute the corresponding row of equation _3
once we have computed the corresponding window value within the addition sequence. If this
value is not required any more we can drop it.

example of figure 1 at least 5 registers are needed to compute &% The contcnt of the registers

during the computation is as follows (figure 3):

R;
R;

: new partial result built by squaring the old partial result and multiplication of b*

B I [0 T [o’ [b7 b ACACAF P37l Py
AT b b b 670179677
T 7 kg K T 7
D M DA
L T P T A
s i s W

——-——-——9(

row shows occupation of register { over time
computed power of &' using the addition sequence
build the new partial result P; by squaring (sec the corresponding row of equation 3)

unchanged partial result

Figure 3: Content of the registers during the computation

179

5. Opcration count and memory requirements of different exponentiation
methods

In this section we investigate three different exponentiation methods, which are combinations of the
reduction methods discussed in section 3:

1. A combination of the standard m-ary method, reduction 2, and the addition sequence heuristics
of [BosCos891, called ‘modified m-ary method”.

2. A combination of the reductions 1, 2 and 3, suggested by [BosCos89]. We will refer to this
method as ‘optimized m-ary method’.

3. A new combination of reductions 1, 2 and 3, with a special emphasis on the reduction of the
number of intermediate results to be stored, which we will call ‘size oriented window distribu-
tion’.

The foliowing figures show the average number of the required operations and registers for 100 ex-
ponentiations with randomly selected 512 bitexponents (‘1" and ‘0’ are distributed evenly). The effect
of different window sizes on the number of operations and registers is presented.

Figure 4 shows the simulation results for the ‘modified m-ary method’. On the horizontal axis the win-
dow size is given in bit.

i .ﬂi"f‘

{,m[xu}m} |

i Il Illlf

H ’
i

wmdow size window size

Figure 4: Number of operations and registers when applying the *‘modified m-ary method’

Figure 5 shows simulation results for the ‘optimized m-ary method’. The horizontal axis shows the
maximal permitted window size in bits. [n this algorithm the MSB-window has always the maximum

size, thus reducing the number of squaring operations, due to the effect on the operation count as stat-
ed in section 4.

180

gisters
L
<

re

[\

(=]
1

‘-1‘ | | 101
AR]

B i
lili

wmdow size

window size

Figure 5: Number of operations and registers when applying the ‘optimized m-ary method’

For comparison it should be recalled, that for 512 bit exponents the standard binary algorithm leads
on the average to 767 aperations and 2 required registers.

In both figures the number of operations has a distinct minimum. This is due to the fact that with in-
creasing window sizes the number of windows decreases while the size of the MSB-window increas-
es. However, when increasing the window sizes further, the addition chains for creating the window
values become longer, because the employed heuristics arc inefficient in identifying shont sequences
out of large numbers.

For both methods there is a rapid increasc of the number of required registers with increasing window
sizes, because of the exponentiai increase of the number of possible window values. This trend stops
at some maximum value and the development reverses with further increasing window size. The rea-
son for this effect is, that the bigger the window size the smaller the probability of the existence of all
possible window values in the set of window values. For example, if the window size is 5 there are 16
possible window values (optimized m-ary method). The probability is very high that these window
values exist more then once in the set of required window values of a 512 bit exponent. Thus a lot of
different window values have to be stored for a long time, because they are needed later. With further
increase of the window size, this probability decreases rapidly. Now only some of the existing win-
dow values have to be stored for later use.

The results of figures 4 and 3 iilustrate the following problem: window sizes ieading to good resuits
for the number of operations require a lot of registers, and vice versa.

To reduce the memory requirements while keeping the number of operations low, we developed a new
algorithm for selecting windows. The idea is to generate a window distribution with constantly in-
creasing window values from left to right. This overcomes some reasons of storing values, because
now window values appearc once and are sorted. However, this does not entirely eliminate the need
for storing values (see section 4). The algorithm starts with a given size of the MSB-window and
chooses new window values such that these values are greater than those of the windows to the left.
Figure 6 shows an example of a window distribution generated with the ‘size oriented window distri-
bution’.

Example of a ‘sizc oriented window distribution’
(windows underlined; initial window size: 3):

exponent in binary representation: 111 001001 1100 ©01111 0010100 0010.

decimal window values: 9 12 15 20

Figure 6: Window distribution with the ‘size oriented window distribution’

Figure 7 shows simulation results for the ‘size oriented window distribution’. The horizontal axis
shows the initial window size in bit.

wmdow size window size

Figure 7: Number of operations and registers needed applying the
‘size oriented window distribution’

The new algorithm actually provides a good compromise balancing the number of operations and the
registers needed to accomplish the exponentiation. It is conceivable that an even better ratio can be
achieved by a further improvement of the ‘size oriented window distribution” algorithms and of the
addition chain heuristics according to the effects explained in section 4.

6. Conclusion

We have examined different methods of exponentiation using addition chains. These methods have
been compared with respect to the average number of multiplications and registers needed to accom-
plish exponentiations with randomly chosen exponents. The main factors influencing the operation
count and memory requirernents have been stated. A new method to choose window distributions
(size oriented window distribution) has been proposed. It shows a betier compromise between opera-
tion count and memory demand thun previously known technigues.

182

7. References

[AliMar91]

[BosCos89]

{CuBoKa%1}

{DoleSed1}

[Even90]

[Hwang79j

[Knuth69]

[KocHun90}

[LipPos90]

{LutiaLH83]

[McCart86]

{Montgo83]

[{Moragag9]

[Morita90]

[Yacobi90]

[Yao76]

[ZivLem78|

Alia, Giuseppe; Martinelli, Enrico: "A VLSI Modulo m Multiplier”, IEEE
Transactions on Computers, Vol. 40, No. 7, p. §73-878, July 1991

Bos, Jurjen; Coster, Matthijs: "Addition Chain Heuristics”, in Brassard, G, (Ed.):
"Advances in Cryptology - Crypto '89", Proceedings (Lecture Notes in Computer
Science 435), p. 400-407, Springer, 1989

Curiger, AY.; Bonnenberg, H.; Kaeslin, H.: "Regular VLSI Architectures for
Multiplication Modulo (2 exp n + 1)", IEEE Journal on Solid State Circuits, Vol. 26,
No. 7, p. 990-994, July 1991

Downey, P.; Leong, B.; Sethi, R.: "Computing Sequences with Addition Chains”,
SIAM Journal on Computing, Vol. 3. No. 3, p. 638-646, August 1981

Even, Shimon: "Systolic Modular Multiplication”, in Menezes, A.J.; Vanstone,
S.A.(Eds.): "Advances in Cryptology - Crypto’90 Proceedings (Lecture Notes in
Computer Science 537), p. 619-624, Springer, 1990

Hwang, Kai: "Computer Arithmetic: Principles, Architecture, and Design”, John
Wiley & Sons, New York, 1979

Knuth, Donald E.: "The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms”, Addison-Wesley, Reading, Massachusetts, 1969

Koc, C. K,; Hung, C. Y.: "Multi-Operand Modulo Addition Using Carry Save
Adders", Electronics Letters, Vol. 26, No. 6, p. 361-363, 1EE, March 1990

Lippitsch, P.; Posch, K.C.; Posch, R.: "Multiplication As Parallel As Possible”,
Institute for Information Processing Graz, Report 290, Octaber 1990

Lu, E.H.; Harn, L.;Lee, J.Y.; Hwang, W.Y.: "A Programmable VLSI Architecture for
Computing Multiplication and Polynomial Evaluation Modulo a Positive Integer”,
IEEE Journal on Solid State Circuits, Vol. 23, No. 1, p. 204-207, February 1988

McCarthy, D. P.: “Effect of Improved Multplications Efficiency on Exponentiation
Algorithms Derived from Addition Chains”, Mathematics of Computations, Vol. 46,
No. 174, p. 603/608, American Mathematical Society, April 1987

Montgomery, P. L.: "Modular Multiplication without Trial Division", Mathematics
of Computation, Vol. 44, No. 170, p. 519-521. April 1985

Moraga, Claudio: "Design of a Modulo p Multiplier”, International Journal on
Electronics, Vol. 67, No. S, p. 819-827, Taylor & Francis, 1989

Morita, Hikaru: "A Fast Modular-multiplication Module for Smart Cards”,
Proceedings of AUSCRYPT 90 (Lecturc Notes in Computer Science 453), p. 406-
409, Springer, January 1990

Yacobi, Y.: "Exponentiation Faster with Addition Chains”, in Damgard, 1.B. (Ed.):
“Advances in Cryptology - EUROCRYPT 90", Proceedings (Lecture Notes in
Computer Science 473), p. 222-229, Springer, 1990

Yao, Andrew: "On the Evaluation of Powers", SIAM Journal on Computing, Yol. 5,
No. 1, pp. 100-103, March 1976

Ziv, Jacob; Lempet, Abraham: “Compression of Individuel Sequences via Variable-
Rate Coding”, IEEE Transactions on Information Theory, Vol. IT-24, No. 5, pp. 530-
536, Septernber 1978

	Introduction
	Exponcntiation and Addition Chains
	Known methods for the application of addition chains
	Effects on operation count and memory demand
	Opcration count and memory requirements of different exponentiation methodsOpcration count and memory requirements of different exponentiation
	Conclusion
	References

