
Resource Requirenicnts for the Application of Addition Chains

in Modulo Exponentiation

Jorg Sauerbrey
Andreas Dietel

Lehrstuhl fur Datenvenrbeitung
Technische Universiut Miinchen

P. 0. Box 20 24 20
W-8000 Muiichen 2

Germany

sy@ 1dv.e-tcchnik. tu-rnuenchen.de

Abstract

Addilion chiins or scqucnccs caii be uscd to rcducc the amou1Ii of multipliulions 10 accomplish an ex-
ponentiation at (lie cost of more memory rquircd. Wc cwmine known mehods of exponentWtions
h s c d oil additioii qucnces and dcrivc thc pwxncters dctermiiiing opcnlioii count arid number of rc-
q u i r d rcgislcrs for sloriiig iiilcrrncdiaic rcsulis. As a rcsult an improvcd method is propoSai Lo choose
window disuibulioiis as 3 basis for using Liiowii additiou sequcncc hcurislics.

1. Introduction

A lot of cryptographic methods and protocols rely on the fast evaluation of powers modulo a large
number 12. One of the famous members of this class of methods is RSA. Exponentiation is usually
based on modulo multiplications which can be broken down into additions. A lot of research work has
been done to impleinent fast modulo multiplicatiot~ [A l i M d l , CuBoKa91, EvenW, LipPos!W0.
LuHaLH88, MontgoX5, Moraga8Y. fvIonta90J and to speed up addition [KocHun90, Wwang791. This
paper deals with reducing the number OF modulo multiplications for one rnodulo exponentiation. The
aim is to obtain ;1 coinputation rule for a specific exponent which leads to less multiplications than the
usual methods. The effort for deriving this computation rule pays off, if one h a s to compute a lot of
exponentiations with the same exponent. This holds for example for RSA, where the exponent is pm
of the key and subsequent encryptions use the same key. The computation rule could then be stored
togcthcr with the key.

In this paper different computation rules are compared with regard to the number of rnultiplicatims
and thc ainount of memory required to perform the cxponentiations. We focus our investigation main-
ly on the amount of memory, because rnernory is a scarce resource for a VLSI implemenmion. We
propose an improved methtK1 far finding computation rules, where the memory requirements m eco-
nomic.

2. Exponcntiation and Addition Chains

According to the n i le 0'0' = b r + y the coinpuration of power h.r+y corresponds to the problem of
finding a sequence of increasing intcfers approaching the exponent. The sequence has to begin with
1 and every integer is the sum of two preceeding integers in the sequence. Such sequences are called
addition chains. In genenl, an addition chain for I I is a sequence of integers (l=ug, a], .l. , ar=n) with
the property that u, = LI, + u k for some k anti/. k 11 c i, for all i=l, 2, r ([Knuth69], p. 402).

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 174-182,1993
0 Spnnger-Verlag Berlln Heldelberg 1993

175

For example, the exponentiation li‘ accomplished by repeated inultiplications by b results in the ad-
dition chain (1,2,3, ...,.r). The well known binary algorithm (repeated squaring), which is based upon
the binary representation ofx, defines an addition chain (1, 2, ._. , ai, ... , x) , where

We will show later that it is desirable to compute several predefined powers within the application Of

a single sequence of exponentiations. According to this requirement we define an addition sequence
for no, q as an addition chain, which at least contains the elements ri0,...,~ik. A star chain is an addi-
tion chain or sequerice (uo,..,~,.), where each term ui is the sum ofai7, and a previous ak.

We define the following: I(rr0,ri],...I is the length of the addition chain or sequence containing ~rp”1,...
The length of the addition chain or sequence with the star property (star chain) is defined by
f*(rig .nl,...). The Hamming weight v(u) denotes the number of 1’s in the binary representation ofn .
For I (rr) of the shortest addition chain i t is known that logzri + log2v(t i) - 2.13 I / (/ I) . For addition
sequences i t is [Yao76j:

/(/lo, !I1, ..., / I I) < whcre c is a constant.
r = O

The star property may be suihble to reduce the amount of memory required to accomplish the expo-
nentiation, but i t does not guarantee that we get the shortest chain as I (r i)<I*(r iJ CTheorem of
W. Hansen in [Knuth6Yj. p. 413). For example the addition chain defined by equation (1) has the
property, that only the value of the preceding step of the chain (ul-,) and the value of b have to be
stored for computiiig IT‘. So using the binary algorithm, only two 11 bit registers are necessary to corn-
putc br mod 11.

There are plenty of theoretical results and asymptotic bounds concerning different kinds of addition
chains (sw references in [BosCosY9]). but much less practical hints for building and using addition
chains. The main problem is, [hat computing the shortest addition chain is an NP-complete problem
[DoLeSeS 11.

[McCart86] discusses the interaction betwecn the efficiency of the basic multiplication algorithm and
the addition chain used to compute h‘. I f the cost of a multiplication is bound to the length of the op-
erands, the multiplicative cost of evaluating h‘ is iniiiiinizd by using repeated squaring. But for mod-
ulo multiplications the cost of a multiplication is nearly constant. In this case it is clear, that the
shortest chain f0r.r will yield to the cheapest evaluation ofb‘, in terms of number of multiplications.
The binary algorithm does not define the shortest chain, as i t can be shown forx=15. Here the shortest
chain is (1, 2 , 3,6, 12, 15), whereas the binary algorithm yields to (1, 2, 3. 6, 7, 14. 15). However in
most cases, saving of multiplications results i n i l ic necessity of storing more intermediate results.

[BosCOSX~] have shown some licuristics to compute addition sequences, which are mostly better than
those derived from the standard biiiary method for exponentiation. With these heuristics it is possible
to produce addition chains, which are on [lie averige 21% shorter dian those of the binary algorithms
(using 5 12 bit exponents).

176

3.

Since even with these heuristics i t is not feasible to compute an addition chain for an exponentx with
length of 5 12 or 1024 bits, the goal of determining the computation rule is achieved in two steps. The
first step is to reduce the computation of an addition chain for a larger to the computation of an ad-
dition sequence by choosing an appropriate set of numbers (window values) which are much smaller
than x. The last step is to compute a 'good' addition sequence for these numbers.

There are different methods to accomplish the first step. They are all based on the rn-ary method de-
scribed in IKnuth69. p. 4041. If an exponentiation with the m-ary method has to be cornputed,x is re-
written as x = d o ~ ' + d , d - ' + . .. + d, . This means that with m = 2k the binary representation Of
the exponent is divided in r windows with the width of k bit each and window values di E [o, #-11.
The corresponding addition chain is as follows:

Known methods for the application of addition chains

1,2,3 ,.,., (nt - 2) , (m - I) ,

2d0,4d,,. . . pido, (rndO + d ,) , (3)

2 2 (n d o + d ,) ,4 (do + d l) ,. . . ,m (md, + d ,) , { m do + md, + d2) ,

. . . , (nt'd0 + t d - Id , + , . . + d,)

The first row serves to compute all possible window values (dl) , whereas cacti following row 'shifts'
a new window value to the next window position in the binary representation of the exponent. Note
that the width of the windows not necessarily have to be fixed.

There are severdl ways to decrease the length of the chain in order to reduce the nuinber of multipli-
cations for the exponentiation.

1. The last operation of a line of equation (3) correspondent to a particular window can be omitted
if the window value is zero. If we take each string of one or inore zeros of the binary represen-
lation of the exponent 3s a window, the LSBs of the remaining window values cannot be zero.
Now the values of the first line of equation (3) decrase to the odd values between 1, m-1.

2. Compute oiily those valucs in the first line, which are used as d,'s in the following lines. This
can be accomplished with an addition sequence algorithm. The maximum s i x of the windows
Can now be much larger. since we don't have to store all (odd) values of [lm-l] in a table.

3. Vie window distribution should be optimized. For example: the window values should be cho-
sen, such that a short addition sequence can be constructed, with respect to the preceding point;
there should be as few windows as possible; the same window values should appear more than
once.

4. Choose the windows from right to the left such that inany windows contain patterns of bits from
windows standing to the right of thein. This method is analog to the compression algorithm of
Ziv and Lempel [ZivLem78]. If the valucs are stored in a tree. the derivation of new values is
done easily using the values already computed. This method has been published in [YacobiWI
and is called compression method.

Of course, these reductions can be combined. The methods for defining windows have a great effect
on the operation count, but their effect on the number of intermediate results to be stored (memory
demand) is not obvious.

i i;

4.

The effect on the ilumber of operations is rather clear. In detail there are four factors:

Effects on operation count and memory demand

1. The length of the exponent x determining the number of squarings.

2. The length of the leftmost window (MSB-window). which reduces the number of squarings.

3. The number of non-zero windows minus one, which determines the number of multiplications.
(Note: windows with the valuc of zero don’t need a multiplication.)

4. The length of the addition sequence minus one, which defines the number of operations needed
to compute the different window values. mote: This is not the case for the method of
[YacobiS)O])

Figure I gives an example:

Window distribution (non- zero windows underlined):
exponent in binaryrepresentation: 111 00 lJ0 1110 000 111 l O O l 0 L 0000 UQ
decimal window values; 7 4 1 4 7 37 4

Addition sequence, corresponding to the first row of equation 3 (window values underlined;
the m o w s indicate which numbers are added to get a new one):

number of operations: (length of the exponent)-(length of the MSB-window)+(number of n0n-xn

for comparison the numkr of operations with the
binary method (length of the exponent-l)+(number of 1’s in the exponent):

Figure 1: Window distribution and number of operations

The importance of examining the memory demand for computing br with the methods described in
section 3 becomes obvious, if we look at the cori-espondent hardware realization.

windows-l)+(length of the addition sequence- 1) 31-3+5+8=41

30+ 1 4 4 4

Figure 2 shows an example for the implementation of a hardware unit to compute 6x. There is a fixed
number of registers (R,) available for storing intermediate results. Initially R, is loaded with b. The
box ‘computation rule’ is a controller selecting the correct source and destination registers Ri for each
computation step. The computation rule for the actual x to accomplish the exponentiation is loaded
into this block in advance. It implicitly contains the window disvibutiori and the addition sequence,
found by one of the algorithms above.

The effects of the computation rule on the required number of registers, cannot be summarized in a
simple formula whereas the effects on the number of operations can be. The effect on the register
count is investigated in the following points:

1 . Does the window distribution contain non-adjacent windows sharing a common value?
Once this value is computed, it has to to be stored for later use. The window value 4 in the ex-
ample shown in figure 1 explains this point.

Tlie value I4 in the addition sequence is an example for this point, because it is needed 10 c r a t e
the value of 30.

3. Are the results, ansing from the computation of the present window value necessary for the
computation of the following window values?
The value of 2 Shows this aspect. because 2 is necessary to build 4, but has to be stored longer
to create 16.

This point is imponont because we can start to compute the corresponding row of equation 3
once we have computed the corresponding window value within the addition sequence. If this
value is not required any more we can drop it.

In the example of figure 1 at least 5 registers are needed to compute br. The contcnt of the registers
during the computation is as follows (figure 3):

2. Is a window value necessary for the computation of the following window values?

4. If traversed from left to right, how well are the windows sorted for increasing values?

R4 F RS

-

...

-

...

-

...

-

...

I - t
R,: TOW shows occupation of register i over time
6‘: computed power of b’ using the addition sequence
... : build the new partial result P, by squaring (see the corresponding row of equation 3)
P,: new partial result built by squaring h e old partial result and multiplication of b‘
P : unchanged partial result

Figure 3: Content of tlic registers during the coinputation

179

5. Opcration count and memory requirements of different exponentiation
methods

In this section we investigale three different exponeiitiation methods, which are combinations Of the
reduction methods discussed in section 3:

1. A combination of the standard ni-ary method, reduction 2, and the addition sequence heuristics
of [BosCos89], called 'modified m-ary method'.

2. A combination of the reductions 1, 2 and 3, SUgg€~td by [BosCos89]. We will refer to this
method as 'optimized m-ary method'.

3. A new combination of reductions 1. 2 and 3. with a special emphasis on the reduction of the
number of intermediate results to be stored, which we will cd1 'size oriented window distribu-
tion'.

The followirig figures show the average number of the required operations and registers for 100 ex-
ponentiations with randomly selected 5 12 bit exponents (' 1 ' and '0' are distributed evenly). The effect
of different window sizes on the number of operations and registers is presented.

Figure 4 shows the simulation results for the 'modified m-ary method'. On the horizontal axis the win-
dow size is given in bit.

710 I 1

700 50
690
680 40

-3 660 2 ro 30

a640 2 20
630
620 10
610
600 0

VY 2 670 L

$650 M
._

window size window size
Figure 4: Number of operations and registcrs when applying the 'modified m-ary method'

Figure 5 shows simulation results for the 'optimized m-ruy method'. The horizontal axis shows the
maximal permitted window size in bits. I n this algorithm the MSB-window has always the maximum
size, thus reducin& the number of squaring operations, due to the effect on the operation count as stat-
ed in section 4.

i ao

v) 680 40 670 vl

5 30 *s 660

630
620 10
610
600 0

0
rn
.-.1 $650 en

g640 2 20

window size window size
I

Figure 5 : Number of operations and registers when applying the 'optimized m-ary method'

For comparison it should be recalled. that for 5 12 bit exponents the srandard binary algorithm leads
on the average to 767 operations and 2 required registers.

In both figures the number of operations has a distinct minimum. This is dut: to the fact that with in-
creasing window sizes the number of windows decreases while the size of the MSB-window increas-
es. However, when increasing the window sizes further, the addition chains for creating the window
values become longcr, because the employed lleuristics arc inefficient in identifying short sequences
out of large numbers.

For both methods there is a rapid increase of the number of required registers with increasing window
sizes. because of the exponential increase of the number of possible window values. This trend stops
at some maximum value and the development reverses with further increasing window size. The rea-
son for this effect is, that the bigger the window siu: the smaller the probability of the existence of all
possible window values in the set of window values. For example, i f the window size is 5 there are 16
possible window values (optimized ni-ary method). The probability is very high that these window
values exist more then once in the set of required window values of a 512 bit exponent. Thus a lot Of

different window values have to be stored for a long time, because they are needed later. With further
increase of the window size, this probability decreases rapidly. Now only some of the existing win-
dow values have to be stoi-ed for later use.

The results of figures 4 and 5 illustrate the following problem: window sizes leading to good results
for the number of operations require a lot of registers, and vice versa.

To reduce the memory requirements while keeping thc number of operations low, we developed a new
algorithm for selecting windows. The idea is to generate a window distribution with constantly in-
creasing window values from left to right. This overcomes some reasons of storing values, because
now window values appeare once and are sorted. However, this does not entirely eliminate the need
for storing values (see section 4). The dgorithm starts with a given size of the MSB-window and
chooses new window values such that tliese values are greatcr than those of the windows to the left.
Figure 6 shows an example of a window distribution generated with the ' s i x oriented window distri-
bu tion '.

18’

Example of ;I ‘size oriented window distribution’
(windows underlined; initial window size: 3):

111 0 0 1 0 0 1 1 1 0 0 001111 O O l O l O Q 0010. . -
7 9 1 2 15 2 0

~ ~

Figure 6: Window distribution with the ‘size oriented window distribution’

Figure 7 shows simulation results for the ‘size oriented window distribution’. The horizontal axis
shows the initial window size i n bit.

710 I I 1
700
690 1

.- 680 40
m 670 L.

2 v) 30 ’2 660
650 bo

a640 2 20
630
620 10
610
600 0

..1

0

window size window size

Figure 7: Number of operations and registers needed applying the
‘size oriented window distribution’

The new algorithm actually provides a good compromise balancing the number of operations and the
registers needed lo accomplish the exponentiation. I t is conceivable (hat an even better ratio can be
achieved by a further improvement of the ‘size oriented window distribution’ algorithms and of the.
addition chain heuristics according 10 the effects explained in sectiol14.

6. Conclusion

We have examined different methods of exponentiation using addition chains. These methods have
been compared with respect to h e average number of multiplications and registers needed to accom-
plish exponentiations with randomly chosen exponents. The main factors influencing the operation
count and memory requirements have been stated. A new method to choose window distributions
(size oriented window distribution) has been proposed. I t shows a better coiriproiriise ktwecrl opcm-
tion count and memory dcniand tlian previously known techniques.

182

7. References

[AliMaBl J

[BosCos89]

[CuBoKa9I]

[DoLeSe8lJ

[Even901

[Hwang79]

(Knuth691

[KocHun90]

[LipPos90]

ILuflaLH881

[McCan86J

(Montgo85]

(Monga891

[Morita90]

IYacobi901

[Yao761

[ZivLe.m78]

Aha. Giuseppe; Martinelli, Enrico: "A VLSI Modulo m Multiplier". IEEE
Transactions on Computers. Vol. 40, No. 7, p. 873-878, July 1991

BOS. Jurjen; Coster, Matthijs: "Addition Chain Heuristics", in Brassard, G: (Ed.):
"Advances in Cryptology - Crypto '%9", Proceedings (Lecture Notes in Computer
Science 435). p. 400-407, Springer, 1989

Cunger. A.V.; Bonnenberg, H.; Kaeslin, H.: "Regular VLSI Architectures for
Multiplication Modulo (2 exp n + 1)". IEEE Journal on Solid State Circuits, VOl. 26,

Downey, P.; Leong, B.; Serhi, R.: "Computing Sequences with Addition Chains",
SIAM Journal on Computing, Vol. 3. No. 3, p. 638-646, August 1981

Even, Shimon: "Systolic Modular Multiplication", in Menezes, A.J.; Vanstone,
S.A.(Eds.): "Advances i n Cryptology - Crypto'90 Proceedings (Lecture Notes in
Computer Science 537), p. 619-624. Springer. 1990

Hwang, Kai: "Computer Arithmetic: Principles. Architecture, and Design", John
Wiley & Sons, New York. 1979

Knulh. Donald E.: 'The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms". Addison-Wesley. Reading, Massachusetu, 1969

Koc, C. K.; Hung. C. Y . : "Multi-Operand Modulo Addition Using Carry Save
Adders". Electronics Lettcrs, Vol. 26, No. 6. p. 361-363, IEE, March 1990

Lippitsch. P.; Posch, K.C.; Posch. R.: "Multiplication As Parallel As Possible",
Institute for Information Processing G m , Report 290. October 1990

Lu, E.H.; H m , L.;Lee, J.Y.; Hwang, W.Y.: "A Programmable VLSl Architecture for
Computing Multiplication and Polynomial Evaluation Modulo a Positive Integer",
IEEE Journal on Solid State Circuits. Vol. 23, No. 1, p. 204-207. February 1988

McCarthy. D. P.: "Effect of Improved Multiplications Efficiency on Exponentiation
Algorithms Derived from Addition Chains", Mathematics of Computations. Vol. 46,
No. 174, p. 603/608, American Mathematical Society, April 1987

Montgomery. P. L.: "Modular Multiplication without Trial Division". Mathematics
of Computation, Vol. 44, No. 170. p. 519-521. April 1985

Monga. Claudio: "Design of ;I Modulo p Multiplier", International Journal on
Electronics, Vol. 67, No. 5 , p. 819-827, Taylor & Francis, 1989

Morita. Hikaru: "A Fast Modular-multiplicatioii Module for Smart Cards",
Proceedings of AUSCRYPT '90 (Lecture Notes in Computer Science 453). p. 406-
409, Springer, January 1990

Yacobi, Y.: "Exponentiation Faster with Addition Chains", in Damgard, I.B. (Ed.):
"Advances in Cryptology - EUROCRYPT '90". Proceedings (Lecture Notes i n
Computer Science 473). p. 222-229. Springer, 191%~

Yao. Andrew: "On the Evaluation of Powers", SIAM Journal on Computing, Vol. 5,
No. 1. pp. 100-103, March 1976

Ziv, Jacob; Lempel. Abraham: "Compression of Individuel Sequences via Variable-
Rate Coding". IEEE Transactions on Information Theory, Vol. IT-24, No. 5. pp. 530-
536, September 1978

NO. 7, p. 990-994, July 1991

	Introduction
	Exponcntiation and Addition Chains
	Known methods for the application of addition chains
	Effects on operation count and memory demand
	Opcration count and memory requirements of different exponentiation methodsOpcration count and memory requirements of different exponentiation
	Conclusion
	References

