
Public-Key Cryptosystems with Very Small Key

Greg Harper, Alfred Menezes and Scott Vanstone

Dept. of Combinatorics and Uptunization, University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

Abstract. In some applications of public-key cryptography it is desir-
able, and perhaps even necessary, that the key size be as small as possi-
ble. Moreover, the cryptosystem just needs to be secure enough so that
brcaking it is not cost-effective. Tlic pu~pusc or llLis paper is l u hives-
tigate the security and practicality of elliptic curve cryptosystems with
small key sizes of about 100 bits.

1 Introduction

It is sometimes convenient tor the users of a public-key cryptosystem that the
key sizes be as small as possible. For the applications we have in mind it is the
public part of the key which should be relatively small. The size of the public key
is typically difficult t o control. For example, in the RSA system [23] the public
key consists of the integers c and 1 2 , where IL is the r n d i u l u s . Although e can
be chosen to be small there is not the same flexibility with the choice of 7~ (n
should be a t least 512 bits in length). For the Diffie Hellmsn [7] and ElGamal
schemes [8] based on discrete exponentiation in a finite field, the private key I c ,
an integer, can be restrirted hilt the pirhlir key d, 0 a generator nf t h e field, is
the size of the field (which should certainly be at least 2500), For the Chor-Rivest
knapsack [6] , the public key is (a n , a t , . . ., up- l) , where 0 5 a, 2 p" - 2 (one
choice suggested in [6] is p = 197 , m = 24). The next two paragraphs describe
some situations which come to mind where a small public key size might be
desirable.

Consider the scenario where we have a small network where we would like to
have secure e-mail exchange, or where we would like to have secure transmission
of messages by fax. Rather than exchange public keys using certificates, key
exchange is done verbally with authentication provided by voice recognition.
If a symbol set consists of 32 alphanumeric characters represented by all 5-bit
vectors then an n-bit key can Lt: excliarigecl Ly representing i t as an lu/Cil-symbol
alphanumeric string. For n about 100 such a string is less than twice the length
of most current international telephonc numbcrs. Strings of this length would
also be convenient for business cards, letterheads etc.

Consider also the following scennrin. A snftware company places vm-imis pro-
grams on one distribution medium, however the purchaser can only access those
programs he has paid for (the distribution medium could contain special pur-
pose hardware that is tamper-proof for this DurDose). If the user later wishes

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 163-173, 1993.
0 Spnnger-Verlag Berlin Heidelberg 1993

1 E J

to purchase some of the other programs, he phones the company and places his
request. The company in turn replies with the appropriate access information,
which is digitally signed The signature is verified by the user's terminal, and
access is granted.

Most of the known public-key cryptosystems are totally insecure if the key
size is restricted to about 100 bits. For example, since factoring 100-bit inte-
gers can be readily done on a microcomputer, the RSA system is insecure for
keys of that size. The same holds true for systems whose security is based on
the intractability of the discrete logarithm problem in a finite field, such as the
ElGamal cryptosystem; recently La Macchia and Odlyzko [14] computed loga-
ri thms in the field Fp where p is a 192-bit prime, while Gordon and McCurley
[9] were able to compute logarithms in F 2 4 0 1 .

A good candidate that remains is the elliptic curve cryptosystem, which W ~ S

first proposed in 1985 by N. Koblitz [ll] and V . Miller 1181. The security of these
systems is based on the difficulty of the logarithm problem in the elliptic curve
group. If the curve is carefully chosen, then the only knwwn attacks on the prob-
lem are the so-called square root attacks whose running times are proportional
to the square root of the largest prime dividing the order of the group. The most
efficient way known to implement this algorithm is the Pollard pmethod [22]
which requires very little storage.

The paper is organized as follows. We begin with a review of elliptic curve
cryptosystems in Section 2. We outline Pollard's method in Section 3, and present
some results of our experiments. In Section 4 we compare two ways of perform-
ing finite field arithmetic in software. Finally, in Section 5 we present the results
of o u r software implementation of the elliptic curve cryptosystems. All imple-
mentations were done in the C-language on a S U N SPARCstation-2.

2 Elliptic Curve Cryptosystems

We will be concerned here with elliptic curves over fields of characteristic '2.
Some recent work has been done on the implementation of cryptosystems based
on these curves [12, 13, 161. For a n elementary introduction to eiliptic curves
consult [lo].

We let q = 2". Let E be a non-supersingular elliptic curve defined over the
field Fq. There a re precisely 2(p - 1) such curves, whose defining equations have
the form

(1)
3 I3 : yz + z y = x + a z 2 i b,

where b E F i , and a E {O,y), y E Fp being an element of trace 1. The set of
solutions (5 , y) in Fq x Fp to the equation (l), together with the special point
a t infinity, denoted 8, form an (additively written) abelian group denoted by
E(F,). By Hassr's Theorem, the order of this group is # E (F q) = y + 1 - 1 ,
where Ill L: 2,,4, and hence # E (F ,) z q . It is this group that is used instead
of the multiplicative group of a finite firld to implement the Diffie-Hellman key
passing, and the ElCamal message passing and signature schemes as describrd
in 111, IS].

The security of the elliptic curve schemes is based on the presumed difficulty
of computing logarithms in E ; namely the problem of finding the integer k
given the points P E E(F,) and Q = kP. We assume that the order of P (and
thus also #E(F,)) is divisible by a large prime p . To avoid the recent attack
of [15], the curve must also satisfy the condition that p does not divide q' - 1
for dl small I (i.e. for all I 5 3, where the discrete logarithm problem in F2s is
considered intractable). If these criteria are met, then the best known attack is
the combination of the Pollard p and Pohlig-Hellman methods.

TO select an appropriate curve one may simply pick random curves over F2n

and compute #E(F2n) by Schoof's algorithm [24], until the conditions of the
previous paragraph are met. Schoof's algorithm appears practical for n 5 155
as demonstrated by the computations in [17]. An alternate method is to pick a
curve defined over a small subfield K of FZn, count the number of points over K
directly, and then lift the result to F2.. by using the Weil Conjecturp (see [lo]).

3 Pollard p-Method

We outline the method for computing logarithms in an elliptic curve group lirhich
is a combination of the methods of Pohlig-Hellman [21] and Pollard (221.

Let P E E(F,) and Q = kP. We assume that the order rn of P is known as
is its prime factorization m = . - . p : ' . We first show how to determine k
modulo p' , where p is one of p1 p3 , . . . , pt One may similarly compute k modulo
p:' , 1 5 t 5 t , and then use the Chinese remainder theorem to recover k.

Let z = k (mod p ') , and write z = 1::; z t p x , where 0 5 z, < p . We have

the latter two equations hold since (rn,/p)P has order p . Using the method to be
described below, we determine 20, the logarithm of (m / p) Q to the base (m / p) P ,
which has order p . To find 21, we observe that

Again, by the method described below, we may then compute t l , and continue.
We can now assume that the order of P is a prime p . If R = (I, y) , let d (R)

denote the sum modulo 3 of the Hamming weights of the binary representations
of 2 and y (with w t (0) = 0) . Define a sequence of points {A!,} by Ro = 0, and

&+I = + R,, ZR, or P + R, if wi(R,)=O,l, or 2 respectively. (2)

If the sequence {&} behaves like a random sequence, then the least index J'
with R, = Rz, has expected value close to 1.030Sv$ 1221. We may find this j by
Floyd's cycle-finding algorithm as follows. Define integer sequences {a , } , {bx} ;

166

by a0 = 0, bo = 0, and ai+l = a; + 1,2ai or ai (mod p) , b;+* = bi, 2b; or b; + 1
(mod p) , according to the three cases in (2) . Observe that

R, = a,& + b,P for i 2 0.

We now compute the sequence (&,a,, b,, R2,, uZt , b2,) for i = 1 , 2 , 3 , . . . until
we have R, = Rz,. We then have (a , - a2,)Q = (b2$ - bi)P, which yields the
congruence

(at - a,a)k (bzt ~ b,) (mod p) .

This congruence can then be solved for k.
A faster way to find indices i, j , i # j, with R, = R, is to use Brent’s cycle-

finding algorithm [3], which is never slower and is on average 36% faster than
Floyd’s algorithm. Let the sequences (G), {a,} and { b , } be defined as above.
Brent’s algorithm is the following.

Let Y := RO; T := 1; i := 0; done := false;
repeat X : = Y ; j : = i ; r : = 2 r ;

repeat i := i + 1; Y := R,; done := (X = Y)
until done or (i 2 r)

until done

When the algorithm terminates, X = R,, Y = and R, = R,. We then
have (a, - a,)& = (bJ - b,)P, which yields the congruence (a , - a ,)k E (b, -
b,) (modp). This congruence is then solved for k. The expected value of z is
1.9828&, assuming that {&} behaves like a random sequence [3].

For cryptographic applications, we only consider curves whose order is divis-
ible by a large prime p . The running time of the algorithm is then dominated by
the time to compute logarithms modulo this p . If we count elliptic curve addi-
tions as a basic step, then the expected running time is 1.9828@ curve additions
with Brent’s algorithm and 3.0924@ curve additions with Floyd’s algorithm
(since it takes 3 curve additions to compute the pair of points (&+l,Rz,+z)
from (R , Rz,)). Note that the amount of storage required by the algorithm is
negligible.

We have implemented the Pohlig-Hellman and Pollard prnethods for com-
puting logarithms in elliptic curves over Fz-. Field elements are represented with
respect to an optimal normal basis over F2 (see Section 4). Tables 1 , 2 and 3 give
the average running times for computing logarithms in various curves over the
fields F2.6) Fpm and Fzias.

4 Field Arithmetic

There are various methods for performing arithmetic in a finite field. The most
popular seem to be through polynomial and normal basis representations. In
this section we have attempted to compare software implementations for specific
f i d r l s - T t is errtremelv difficult to state with confidence which method is better

167

Number of digits in
largest prime factor

8

Order of curve

13609323 . 72 . 109 ,419 .5441 .30779339

Number of digits in
largest prime factor Order of curve

Z2 .3’ a 3845557 .266494324513
22 . I 1 . 2003~418616258967271
Z2 * 7 313 .4209663184776557

Observed time
(in minutes)

1

Table 1. Average times to compute logarithms in curves over F2ss

22 . 3 . 2 3 0 9 .go2977 .53353603 ,463686011
Z 3 . 5 . 2 3 . 61 . 1009 .2017 . 135559 .39978503273

23 . 3’ . 9049 .510843049 . 1859726335343

Number of digits

prime factor
8

10
13
16

Order of CUTYC in largest

2’ . 11 . 2 9 . 4 3 , 2 1 1 . 4 2 1 .751 . 1051 . 15541 , 2 5 6 2 1 .26481841

2* .7‘ . 13’ . 1009. 131251 . 173741 . 1086211970677
2’ .3’ .457.212913163 . 1431658159 ,4044445651

2’ . 3 1 . 712 . 131 , 2 1 1 .281 . 3697 . 1129982311077901

Observed
time (in
minutes)

6
17

172
3324

9
11
13
14
15

~~

Table 2. Avcrage times to compute logarithms in C U V C S over F 2 a s

since any implementation is machine and code dependent. Wi th this caveat we
proceed.

We compare the speeds in software of the basic operations of multiplication,
squaring, and inversion in the fields FZ’O6 and F210,, the former represented with
respect t o an optimal normal b u i s over F 2 , and the latter represented with
respect to a polynomial basis over F p .

Table 3. Avcrage timcs t o compute logarithms in CUTVCS ovcr F,lub

168

4.1 Normal Basis Representation

A normal basis for F,~os over FZ is a basis of the form

N = I@, p2, p2’, . . . , /3z104}.

The basis is optimal if i ts multiplication table is as “simple” as possible; see
[19] for more details and for an easy way t o construct such a basis. Given any
a E F2105, we can then express Q = ~ i = o c , ~ 2 ’ I where c, E FZr and we write
Q = (cot c1, ~ 2 , . . . , ~104). In software, (T is represented by a bit vector of length
105, i.e. on a 32-bit machine, Q is stored in an array of unsigned integers of
length 4, the last 23 bits of which are unused.

Addition of elements is achieved by simply XOR-ing the vector representa-
tions. Since

104

104 104

,=O i = O

(with indices reduced modulo 105), squaring CI is accomplished by a cyclic shift
of its vector representation.

The most efficient way we know to compute the inverse of a is to first convert
to a polynomial basis representation of F Z 1 0 5 using a precomputed change of basis
matrix, compute the inverse using an efficient implementation of the extended
Euclidean algorithm as described in [a, p.411, and then transform the result back
to the normal basis representation.

It has been our experience that a software implementation of an optimal
normal basis is more efficient that implementing an arbitrary normal basis. The
field F2105 was chosen because it is about 100 bits and an optimal normal basis
exists for i t .

4.2 Polynomial Basis Represen ta t ion

We choose to represent F2104 as a vector space over Fz8, instead of over FZ 85 is
usually done. The polynomial

, 2 g(z) = 1 t Z +z3 + t 7 + 2
is a primitive polynomial over F2, and so the elements of Fze are the set of
polynomials Fz[z] modulo g (z) . For efficiency, we store two tables “log” and
“antilog” which are defined as follows:

log[a] = i, where z’ = Q and 0 5 i 5 254

and
antilog(i1 - u, where t’ = a and 0 _< z 5 254.

(a is the binary vector representation of Q E F;,.) Multiplication in F p is then
simply accomplished by table-lookup. For, if a , b E F i e , then

h : antilofir (logral 7 loqrh;) mod 2 5 5 ’.

We also store a table of inverses of elements in Fia.
The polynomial

f(x) = 1 + 5 f s8 t 27 1 513

is irreducible over F2, and thus also over F28 since gcd(8,13) = 1. Consequently,
we may represent the elements of F2x04 as polynomials in F24[z] of degree a t
most 12 modulo f(z). Each coefficient of the polynomial is stored in a single
computer word.

If a = C,=o usza, b = C1=o b,z' E F~Io., then we compute the product c =
by initializing c to 0, and then computing a , a z , . . . , uz12, afteI each stage, we
add bZ(u+') to C. Squaring is faster than a multiplication since u2 = Ctlo aTx2'.
Finally, the inverse of a is computed by applying the extended Euclidean algo-
ri thm in F28[2] to find s(z) such that a (x) s (x) E 1 (mod f(x)).

12 12

4.3 Timings

Arithmetic in the fields I72105 and Fzlo+ was implemented. In Table 4 we give the
running times for the operations of squaring, multiplication and inversion. The
arithmetic in F 2 1 0 4 was observed to be faster than in F2105 in our implementa-
tions, and this is primarily due to our choice of representing F21o1 as a vector
space over F 2 e 1 the arithmetic in F2. being essentially for free.

1 I

Table 4. Times for field operations (in seconds)

5 Implementation of an Elliptic Curve Cryptosystem

For a curve with equation (I) , the rules for adding points are the following. The
point 0 serves as the identity element. Let P = (x l , y l) and Q = (~ 2 ~ ~ 2) be
points on the curve. Then -P = (51, z1 + y l) . If Q # -P, then P+Q = (t 3 1 Y3)r

where

a6
- + x; I z;

P = Q

170

10,000 curve additions
10,000 curve doublinns

and

F210s/Fz10.

33.9
38.6

Y3 = {

P = Q.

Note that two multiplications and an inversion are needed to add two distinct
points, while a point can be doubled in 3 multiplications and an inversion (the
other operations are relatively inexpensive). We should also note that inversions
can, in general, be avoided by changing to projective coordinates at the expensive
of doing more multiplications. Hardware implementations (see for example [11)
can take advantage of this whereas, in software, the affine representation appears
to be superior.

Table 5 lists the running times of the elliptic curve operations for random
curves over F2105 and F Z I M (which are represented as descrihed in Section 4).

Table 5. Times for elliptic curve operations (in seconds)

For each of the Difie-Hellman key passing and ElGamal message passing
and signature schemes, one has to compute kP for a random integer k. This
is accomplished by the r e p a t e d doubling and adding algorithm. When p E
E (F 2 m) , k will have 52 bits on average that are 1 in its binary representation.
Hence computing ICP requires 103 curve doublings and 51 curve additions on
average, for an expected time of .24 seconds when working with E (F , I O ~) . This
time is certainly tolerable for many applications, including t h e ones described in
the Introduction.

If the cryptosystems are implemented in software, then there is a d d i t i o i d
storage available. In this case, the following method of 151 is more efficient for
computing kP. We first precompute the points P, = 8’P for 0 5 i 5 34. Let
1 5 k 5 #E(J’,10*). We write Ic in its base 8 representation as

k = ko + k18 + k2S2 + . . . + k34834, 0 5 k, 5 7.

(This is a n easy task given the binary representation of k.) The algorithm to
compute kP is the following:

(i) Compute B := Ck - 7 P,, and set A := B.
(ii) For d from 6 to 1 d,

B := B Ck,=d P,
.4 := A - B

(iii) Output A

The method requires the storage of 35 points and needs 36 curve additions on
average €or random k. This reduces our time estimate for computing kP €rum
.24 seconds t o .052 seconds.

In the elliptic curve analogue of the ElGamal cryptosystem, a curve E(F,)
and point P E E are public knowledge. Each user A has a public key UP, where
integer a is the corresponding secret key. To send messages ml, m2 E Fp t o A ,
user B selects a random integer k, and computes the points kP and IcuP = (Z, 3) .
Finally, B sends (kP, ml:, m23) to A . With our software implementation, the
encryption rate is about 2 Kbits/sec.

The public key is an elliptic curve point which is 2n bits long (where g = 2").
The key length can be shortened to n + 1 bits as follows. Observe first that the
change of variables (z, y) - (z, zz) transforms equation (1) to

z ' i 2 = s + a $ b z - 2 . (3)

Given the z-coordinate of a point P = (s l y) , we can compute the right hand
side of (3) . Then (3) has precisely 2 solutions, namely t' and z' + 1, and these
solutions can be easily found. We can then select the correct solution T (and
hence reconstruct 3 as 3 = ;tf) if we know the least significant bit of 7. Thus to
transmit P i t is sufficient to transmit 2 and the least significant bit of 31..

If E is a curve defined over F p with equation (I) , then # E (F p) is even, and
226 5 # E (F p) 5 228. If # E (F z e) = 242, 250 or 254, then #E(Fzl~*) is divisible
by a 29 digit prime. For example, the following curve

(4) 3 E : y2 + ZY = z -+ ZZ' + (z 3 + z4 + t0 + z7)
(with z defined as in Section 4.2) , has # E (F 2 .) = 250, and

E (F z l m) = 2 . 11' ~83811609932444916905404513441,

where the last integer is a 29-digit prime.
Based on our experimental results of Section 3, computing even a single log-

arithm in E (F ~ I o I) using Pollard's pmethod is computationally infeasible. For a
very rough analysis of the security, observe that the Pollard prnethod requires
about 1015 elliptic curve operations to compute a single logarithm in the curve
(4) . A rough count shows that an elliptic curve operatlon takes a t least 1000
word operations (i.e. operations such as exclusive-or's on 32-bit words). Hence
the expected number of word operations to compute a logarithm is a t least 10".
This is roughly equal to the computing resources required to factor a 512-bit
integer by the multipolynomial quadratic sieve, and for computing logarithms
in the field F'700 by the index-calculus method (see [2 5]) .

As noted by Brent [4], it does not seem possible to use parallelism to speed
UP the Pollard pmethod. The Lambda method [22] is a method for computing
logarithms given that the logarithm lies in some interval [A , B] . The running
time of the method is O(&) , where U! = B - A. If 1 processors are available,
then to compute logp Q whrre the order of P is a prime p, the interval [o, P - 11

172

is divided into t intervals of equal length, and the intervals are searched in
parallel by the 1 processors. The expected number of elliptic operations for each
processor is m. For example, if 10,000 processors are available then for the
curve (4) the expected number of elliptic curve operations is about If this
does not provide adequate security for the application at hand, then of course
the underlying field can be replaced by a larger field F2aC, T 2 14 (to use the
polynomial basis representation of Section 4.2 we need to work in a field F 2 n
where n is a multiple of 8).

6 Conclusions

We have demonstrated that implementing elliptic curve cryptosystems in Fz- for
n 100 can be done efficiently in software on a workstation. Curves over F ~ l o .
can be selected so that by current best methods computing logarithms requires
about 10’’ elliptic curve opera t ions (if addi t iona l securi ty is required then, of
course, TI can be increased). It should be pointed out that each logarithm in such
a system requires this amount of work. This is unlike the index-calculus method
[20] where there are 2 phases. Once phase one is completed all other logarithms
are relatively easy to find. Computing kP. where P 6 E(F,*O.) and X: is a random
104-bit integer, takes about .052 seconds. We can thus implement the ElCamal
cryptosystem and achieve an encryption rate of 2 Kbits/sec in software Public
keys are only 105 bits in length. The code for this scheme is fairly compact and
occupies about 40 Kbytes.

Refer en c e s

1. G. Agnew, R. Miullin and S. Vanstone, “An implementation of cUiptic CUTYC cryp-

2. E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New Yosk, 1968.
3. R. Brent, “An improved Monte Carlo factoring algorithm”, BIT, 20 (19801, 176-

184.
4. R. Brent, ‘‘Parallel algorithms for integer factorisation”, in Number Theory and

Cryptography, Cambridge University Press, 1990, 26-37.
5. E. Brickell, D . Gordon, K . McCuley and D. Wilson, “Fast exponentiation w i t h

prccomputation”, prcprint, 1992.
6 . B. Chor and R. Rivest, “A knapsack-type public key cryptosystem based on arith-

metic in f ini te ficlds”, I E E E Tramactions on Information Theory, 34 (1988), 901-
909.

7 . W. DiiEe and M. Hellman, “New directions in cryptography”, IEEE TranJactionj
on Information Theory, 22 (1976), 644-654.

8. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrctc
lugarithms”, IEEE TranJactionJ o n Information Theory, 31 (1985), 469-47‘2.

9. D. Gordon and K . McCurley, “Computation of discrete logarithms in GF(2“)” ,
presentation at Crypto ’91, Santa Barbara, 1991.

10. N. Koblitz, A Courje in Number Theory and Cryptography, Springer-Verlag, XCW
York, 1987.

t09ystems over F,ISS”, prcprint, 1992.

173

11. N. Koblitz, “Elliptic curve cryptosystems”, Mathemat i c s of Computa t ion , 48
(1987), 203-209.

12. N. Koblitz, “Constructing elliptic curve cryptosystems in characteristic 2”, A d -
vances in Cryptology: Proceedings of Crypto ’90, Lecture Notes in Computer Sci-
ence, 53’7 (1991), Springer-Verlag, 156-167.

13. N. Koblitz, “CM-Curves with good cryptographic properties”, Advances in Cryp-
tology: Proceedings of Crypto ’91, Lecture Notes in Computer Science, 576 (1992),
Springer- Verlag , 2 7 9- 2 8 7.

14. B. La Macchia and A. Odlyzko, “Computation of discrete logarithms in prime
fields”, Designs , Codes and Cryptography, 1 (1991), 47-62.

15. A. Menezes, T. Okamoto and S. Vanstone, “Reducing elliptic curve logarithms t o
logarithms in a finite field”, Proceedings of the 22nd A n n u a l A C M S y m p o s i u m on
the Theory of Comput ing , 80-89, 1991.

16. A. Menezes and S. Vanstone, “Elliptic curve cryptosystems and their implementa-
tion”, submit ted to Journal of Cryptology, 1991.

17. A. Menezes, S. Vanstone and R. Zuccherato, “Counting points on elliptic curves
over F2m”. to appear in Mathemat ics o f Computa t ion , 1992.

18. V. Miller, “Uses of elliptic curves in cryptography”, Advances in Cryptology: Pro-
ceedings of Crypto ’85, Lecture Notes in Computer Science, 218 (1986), Springer-
Verlag, 417-426.

19. R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, “Optimal normal bases in
GF(p”)”, Discrete Applied Mathemat ics , 22 (1988 /89) , 143-161.

20. A. Odlyako, “Discrete logarithms in finite fields and their cryptographic signifi-
cance’’, Advances in Cryptology - Proceedings of Eurocrypt ’84, Lecture Notes in
Computer Science, 209 (1985), Springer-Verlag, 224-314.

21. S. Pohlig and M. Hellman, “An improved algorithm for computing logarithms
over G F (p) and its cryptographic significance”, IEEE Yransactaons o n I n f o r m a t i o n
Theory , 24 (1978), 106-110.

22. J. Pollard, “Monte Carlo methods for index computation (mod p) ” , Mothemat ics
of Computa t ion , 32 (1978), 918-924.

23. R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems”, Communica t ions of the A C M , 21 (1978), 120-126.

24. R. Schoof, “Elliptic curves over finite fields and the computation of square roots
mod p ” , Mathemat i c s o f Gomputa tron , 44 (1985), 483-494.

25. P. van Oorschot, “A comparison of practical public key cryptosystems”, in Con-
temporary Cryptology, IEEE Press, 1992, 289-322.

	Introduction
	Elliptic Curve Cryptosystems
	Pollard p-Method
	Field Arithmetic
	Normal Basis Representation
	Polynomial Basis Representation
	Timings

	Implementation of an Elliptic Curve Cryptosystem
	Conclusions
	References

