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Abstract. In some applications of public-key cryptography it is desir- 
able, and perhaps even necessary, that the key size be as small as possi- 
ble. Moreover, the cryptosystem just needs to be secure enough so that 
brcaking it  is not cost-effective. Tlic pu~pusc or llLis paper is l u  hives- 
tigate the security and practicality of elliptic curve cryptosystems with 
small key sizes of about 100 bits. 

1 Introduction 

It is sometimes convenient tor the users of a public-key cryptosystem that  the 
key sizes be as small as possible. For the applications we have in mind it is the 
public part of the key which should be relatively small. The size of the public key 
is typically difficult t o  control. For example, in the RSA system [23] the public 
key consists of the integers c and 1 2 ,  where IL is the r n d i u l u s .  Although e can 
be chosen to  be small there is not the same flexibility with the choice of 7~ (n 
should be a t  least 512 bits in length). For the Diffie Hellmsn [7] and ElGamal 
schemes [8] based on discrete exponentiation in a finite field, the private key I c ,  
an integer, can be restrirted hilt  the  pirhlir key d, 0 a generator nf t h e  field, is 
the size of the field (which should certainly be at  least 2500), For the Chor-Rivest 
knapsack [ 6 ] ,  the  public key is ( a n ,  a t , .  . ., up- l ) ,  where 0 5 a, 2 p" - 2 (one 
choice suggested in [6] is p = 197 , m = 24). The next two paragraphs describe 
some situations which come to mind where a small public key size might be 
desirable. 

Consider the scenario where we have a small network where we would like to  
have secure e-mail exchange, or where we would like to have secure transmission 
of messages by fax. Rather than exchange public keys using certificates, key 
exchange is done verbally with authentication provided by voice recognition. 
If a symbol set consists of 32 alphanumeric characters represented by all 5-bit 
vectors then an n-bit key can Lt: excliarigecl Ly representing i t  as an lu/Cil-symbol 
alphanumeric string. For n about 100 such a string is less than twice the length 
of most current international telephonc numbcrs. Strings of this length would 
also be convenient for business cards, letterheads etc. 

Consider also the  following scennrin. A snftware company places vm-imis pro- 
grams on one distribution medium, however the purchaser can only access those 
programs he has paid for (the distribution medium could contain special pur- 
pose hardware that is tamper-proof for this DurDose). If the user later wishes 
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to purchase some of the other programs, he phones the company and places his 
request. The company in turn replies with the appropriate access information, 
which is digitally signed The signature is verified by the user's terminal, and 
access is granted. 

Most of the known public-key cryptosystems are totally insecure if the key 
size is restricted to about 100 bits. For example, since factoring 100-bit inte- 
gers can be readily done on a microcomputer, the RSA system is insecure for 
keys of that  size. The same holds true for systems whose security is based on 
the intractability of the discrete logarithm problem in a finite field, such as the 
ElGamal cryptosystem; recently La Macchia and Odlyzko [14] computed loga- 
ri thms in the field Fp where p is a 192-bit prime, while Gordon and McCurley 
[9] were able to compute logarithms in F 2 4 0 1 .  

A good candidate that remains is the elliptic curve cryptosystem, which W ~ S  

first proposed in 1985 by N. Koblitz [ll] and V .  Miller 1181. The security of these 
systems is based on the difficulty of the logarithm problem in the elliptic curve 
group. If the curve is carefully chosen, then the  only knwwn attacks on the prob- 
lem are the so-called square root attacks whose running times are proportional 
to  the square root of the largest prime dividing the order of the group. The most 
efficient way known to implement this algorithm is the Pollard pmethod [22] 
which requires very little storage. 

The paper is organized as follows. We begin with a review of elliptic curve 
cryptosystems in Section 2. We outline Pollard's method in Section 3,  and present 
some results of our experiments. In Section 4 we compare two ways of perform- 
ing finite field arithmetic in software. Finally, in Section 5 we present the results 
of o u r  software implementation of the elliptic curve cryptosystems. All imple- 
mentations were done in the C-language on a S U N  SPARCstation-2. 

2 Elliptic Curve Cryptosystems 

We will be concerned here with elliptic curves over fields of characteristic '2. 
Some recent work has been done on the implementation of cryptosystems based 
on these curves [12, 13, 161. For a n  elementary introduction to eiliptic curves 
consult [lo]. 

We let q = 2". Let E be a non-supersingular elliptic curve defined over the 
field Fq. There a re  precisely 2(p - 1) such curves, whose defining equations have 
the form 

(1) 
3 I3 : yz + z y  = x + a z 2  i b,  

where b E F i ,  and a E {O,y), y E Fp being an element of trace 1. The  set of 
solutions (5 ,  y) in Fq x Fp to  the equation ( l),  together with the special point 
a t  infinity, denoted 8, form an  (additively written) abelian group denoted by 
E(F,). By Hassr's Theorem, the order of this group is # E ( F q )  = y + 1 - 1 ,  
where Ill L: 2,,4, and hence # E ( F , )  z q .  It is this group that  is used instead 
of the multiplicative group of a finite firld to implement the Diffie-Hellman key 
passing, and the ElCamal message passing and signature schemes as describrd 
in 111, IS].  



The security of the elliptic curve schemes is based on the presumed difficulty 
of computing logarithms in E ;  namely the problem of finding the integer k 
given the points P E E(F,) and Q = kP. We assume that  the order of P (and 
thus also #E(F,))  is divisible by a large prime p .  To avoid the recent attack 
of [15], the curve must also satisfy the condition that  p does not divide q' - 1 
for dl small I (i.e. for all I 5 3, where the discrete logarithm problem in F2s is 
considered intractable). If these criteria are met, then the best known attack is 
the  combination of the Pollard p and Pohlig-Hellman methods. 

TO select an  appropriate curve one may simply pick random curves over F2n 

and compute #E(F2n)  by Schoof's algorithm [24], until the conditions of the 
previous paragraph are met. Schoof's algorithm appears practical for n 5 155 
as demonstrated by the computations in [17]. An alternate method is to pick a 
curve defined over a small subfield K of FZn, count the number of points over K 
directly, and then lift the result to F2.. by using the Weil Conjecturp (see [lo]).  

3 Pollard p-Method 

We outline the method for computing logarithms in an elliptic curve group lirhich 
is a combination of the methods of Pohlig-Hellman [21] and Pollard (221. 

Let P E E(F,) and Q = kP. We assume that the order rn of P is known as 
is its prime factorization m = . - . p : ' .  We first show how to determine k 
modulo p' , where p is one of p1 p3 ,  . . . , pt One may similarly compute k modulo 
p:' ,  1 5 t 5 t ,  and then use the Chinese remainder theorem to recover k. 

Let z = k (mod p ' ) ,  and write z = 1::; z t p x ,  where 0 5 z, < p .  We have 

the latter two equations hold since (rn,/p)P has order p .  Using the method to be 
described below, we determine 20, the logarithm of ( m / p ) Q  to the base ( m / p ) P ,  
which has order p .  To find 21, we observe that 

Again, by the method described below, we may then compute t l ,  and continue. 
We can now assume that the order of P is a prime p .  If R = (I, y) ,  let d ( R )  

denote the sum modulo 3 of the Hamming weights of the binary representations 
of 2 and y (with w t ( 0 )  = 0) .  Define a sequence of points {A!,} by Ro = 0, and 

&+I = + R,, ZR, or P + R, if wi(R,)=O,l, or 2 respectively. (2) 

If the sequence {&} behaves like a random sequence, then the least index J' 
with R, = Rz, has expected value close to 1.030Sv$ 1221. We may find this j by 
Floyd's cycle-finding algorithm as follows. Define integer sequences {a , } ,  {bx} ;  
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by a0 = 0,  bo = 0, and ai+l = a; + 1,2ai  or ai (mod p ) ,  b;+* = bi, 2b; or b; + 1 
(mod p ) ,  according to  the three cases in ( 2 ) .  Observe that 

R, = a,& + b,P for i 2 0. 

We now compute the sequence (&,a,, b,, R2,, uZt ,  b2, )  for i = 1 , 2 , 3 , .  . . until 
we have R, = Rz,. We then have (a ,  - a2,)Q = (b2$  - bi)P, which yields the 
congruence 

(at - a,a)k (bzt ~ b,) (mod p ) .  

This congruence can then be solved for k. 
A faster way to  find indices i, j ,  i # j, with R, = R, is to  use Brent’s cycle- 

finding algorithm [3], which is never slower and is on average 36% faster than 
Floyd’s algorithm. Let the sequences (G), {a,} and { b , }  be defined as above. 
Brent’s algorithm is the following. 

Let Y := RO; T := 1; i := 0; done := false; 
repeat X : = Y ;  j : = i ;  r : = 2 r ;  

repeat i := i + 1; Y := R,; done := (X = Y) 
until done or (i 2 r )  

until done 

When the algorithm terminates, X = R,, Y = and R, = R,. We then 
have (a, - a,)& = (bJ - b,)P, which yields the congruence (a ,  - a , )k  E (b, - 
b, )  (modp). This congruence is then solved for k. The expected value of z is 
1.9828&, assuming that  {&} behaves like a random sequence [3]. 

For cryptographic applications, we only consider curves whose order is divis- 
ible by a large prime p .  The running time of the algorithm is then dominated by 
the time to  compute logarithms modulo this p .  If we count elliptic curve addi- 
tions as a basic step, then the expected running time is 1.9828@ curve additions 
with Brent’s algorithm and 3.0924@ curve additions with Floyd’s algorithm 
(since it takes 3 curve additions to compute the pair of points (&+l,Rz,+z) 
from ( R ,  Rz,)). Note that  the amount of storage required by the algorithm is 
negligible. 

We have implemented the Pohlig-Hellman and Pollard prnethods for com- 
puting logarithms in elliptic curves over Fz-. Field elements are represented with 
respect to an  optimal normal basis over F2 (see Section 4). Tables 1 , 2  and 3 give 
the average running times for computing logarithms in various curves over the 
fields F2.6) Fpm and Fzias.  

4 Field Arithmetic 

There are various methods for performing arithmetic in a finite field. The  most 
popular seem to be through polynomial and normal basis representations. In 
this section we have attempted to  compare software implementations for specific 
f i d r l s -  T t  is errtremelv difficult to state with confidence which method is better 
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Number of digits in 
largest prime factor 

8 

Order of curve 

13609323 . 72 . 109 ,419  .5441 .30779339 

Number of digits in 
largest prime factor Order of curve 

Z2  .3’ a 3845557 .266494324513 
22 . I 1  . 2003~418616258967271 
Z2 * 7 313 .4209663184776557 

Observed time 
(in minutes) 

1 

Table 1. Average times to compute logarithms in curves over F2ss 

22 . 3 . 2 3 0 9  .go2977 .53353603 ,463686011 
Z 3  . 5 .  2 3 .  61 . 1009 .2017 . 135559 .39978503273 

23 . 3’ . 9049 .510843049 . 1859726335343 

Number of digits 

prime factor 
8 

10 
13 
16 

Order of CUTYC in largest 

2’ . 11 . 2 9  . 4 3  , 2 1 1  . 4 2 1  .751 . 1051 . 15541 , 2 5 6 2 1  .26481841 

2* .7‘ . 13’ . 1009.  131251 . 173741 . 1086211970677 
2’ .3’ .457.212913163 . 1431658159 ,4044445651 

2’ . 3 1  . 712 . 131 , 2 1 1  .281 . 3697 . 1129982311077901 

Observed 
time (in 
minutes) 

6 
17 

172 
3324 

9 
11 
13 
14 
15 

~~ 

Table 2. Avcrage times to compute logarithms in C U V C S  over F 2 a s  

since any implementation is machine and code dependent. Wi th  this caveat we 
proceed. 

We compare the speeds in software of the basic operations of multiplication, 
squaring, and  inversion in the  fields FZ’O6 and F210,, the former represented with 
respect t o  an optimal normal b u i s  over F 2 ,  and the latter represented with 
respect to a polynomial basis over F p .  

Table 3. Avcrage timcs t o  compute logarithms in CUTVCS ovcr F,lub 
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4.1 Normal Basis Representation 

A normal basis for F,~os over FZ is a basis of the form 

N = I@, p2,  p2’, . . . , /3z104}. 

The basis is optimal if i ts  multiplication table is as “simple” as possible; see 
[19] for more details and for an easy way t o  construct such a basis. Given any 
a E F2105, we can then express Q = ~ i = o c , ~ 2 ’ I  where c, E FZr and we write 
Q = (cot c1, ~ 2 ,  . . . , ~104). In software, (T is represented by a bit vector of length 
105, i.e. on a 32-bit machine, Q is stored in an array of unsigned integers of 
length 4, the last 23 bits of which are unused. 

Addition of elements is achieved by simply XOR-ing the vector representa- 
tions. Since 

104 

104 104 

,=O i = O  

(with indices reduced modulo 105), squaring CI is accomplished by a cyclic shift 
of its vector representation. 

The most efficient way we know to compute the inverse of a is to first convert 
to  a polynomial basis representation of F Z 1 0 5  using a precomputed change of basis 
matrix, compute the inverse using an efficient implementation of the extended 
Euclidean algorithm as described in [a, p.411, and then transform the result back 
to  the normal basis representation. 

It has been our experience that a software implementation of an optimal 
normal basis is more efficient that implementing an arbitrary normal basis. The 
field F2105 was chosen because it is about 100 bits and an optimal normal basis 
exists for i t .  

4.2 Polynomial Basis Represen ta t ion  

We choose to represent F2104 as a vector space over Fz8, instead of over FZ 85 is 
usually done. The polynomial 

, 2  g(z) = 1 t Z  +z3 + t 7 + 2  
is a primitive polynomial over F2,  and so the elements of Fze are the set of 
polynomials Fz[z]  modulo g ( z ) .  For efficiency, we store two tables “log” and 
“antilog” which are defined as follows: 

log[a] = i, where z’ = Q and 0 5 i 5 254 

and 
antilog(i1 - u, where t’ = a and 0 _< z 5 254. 

( a  is the binary vector representation of Q E F;,.) Multiplication in F p  is then 
simply accomplished by table-lookup. For, if a ,  b E F i e ,  then 

h : antilofir (logral 7 loqrh;) mod 2 5 5  ’. 



We also store a table of inverses of elements in Fia. 
The polynomial 

f(x) = 1 + 5 f s8 t 27 1 513 

is irreducible over F2, and thus also over F28 since gcd(8,13) = 1. Consequently, 
we may represent the elements of F2x04 as polynomials in F24[z] of degree a t  
most 12 modulo f(z).  Each coefficient of the polynomial is stored in a single 
computer word. 

If a = C,=o usza, b = C1=o b,z' E F~Io., then we compute the product c = 
by initializing c to 0, and then computing a ,  a z , .  . . , uz12, afteI each stage, we 
add bZ(u+') to  C. Squaring is faster than a multiplication since u2 = Ctlo aTx2'. 
Finally, the inverse of a is computed by applying the extended Euclidean algo- 
ri thm in F28[2] to  find s(z) such that  a ( x ) s ( x )  E 1 (mod f(x)). 

12 12 

4.3 Timings 

Arithmetic in the fields I72105 and Fzlo+ was implemented. In Table 4 we give the 
running times for the operations of squaring, multiplication and inversion. The 
arithmetic in F 2 1 0 4  was observed to be faster than in F2105 in our implementa- 
tions, and this is primarily due to our  choice of representing F21o1 as a vector 
space over F 2 e 1  the arithmetic in F2. being essentially for free. 

1 I 

Table 4. Times for field operations (in seconds) 

5 Implementation of an Elliptic Curve Cryptosystem 

For a curve with equation ( I ) ,  the rules for adding points are the following. The 
point 0 serves as the identity element. Let P = ( x l , y l )  and Q = ( ~ 2 ~ ~ 2 )  be 
points on the curve. Then -P = (51, z1 + y l ) .  If Q # -P, then P+Q = ( t 3 1  Y3)r 

where 

a6 
- + x; I z; 

P = Q  
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10,000 curve additions 
10,000 curve doublinns 

and 

F210s/Fz10. 

33.9 
38.6 

Y3 = { 

P = Q. 

Note that two multiplications and an inversion are needed to add two distinct 
points, while a point can be doubled in 3 multiplications and an inversion (the 
other operations are relatively inexpensive). We should also note that  inversions 
can, in general, be avoided by changing to  projective coordinates at the expensive 
of doing more multiplications. Hardware implementations (see for example [ 11) 
can take advantage of this whereas, in software, the affine representation appears 
to  be superior. 

Table 5 lists the running times of the elliptic curve operations for random 
curves over F2105 and F Z I M  (which are represented as descrihed in Section 4).  

Table 5. Times for elliptic curve operations (in seconds) 

For each of the Difie-Hellman key passing and ElGamal message passing 
and signature schemes, one has to compute kP for a random integer k. This 
is accomplished by the r e p a t e d  doubling and adding algorithm. When p E 
E ( F 2 m ) ,  k will have 52 bits on average that are 1 in its binary representation. 
Hence computing ICP requires 103 curve doublings and 51 curve additions on 
average, for an expected time of .24 seconds when working with E ( F , I O ~ ) .  This 
time is certainly tolerable for many applications, including t h e  ones described in 
the Introduction. 

If the cryptosystems are implemented in software, then there is a d d i t i o i d  
storage available. In this case, the following method of 151 is more efficient for 
computing kP. We first precompute the points P, = 8’P for 0 5 i 5 34. Let 
1 5 k 5 #E(J’,10*). We write Ic in its base 8 representation as 

k = ko + k18 + k2S2 + . . . + k34834, 0 5 k, 5 7. 

(This is a n  easy task given the binary representation of k.) The algorithm to  
compute kP is the following: 

(i) Compute B := Ck - 7  P,, and set A := B. 
(ii) For d from 6 to  1 d, 

B := B Ck,=d  P, 
.4 := A - B 



(iii) Output A 

The method requires the storage of 35 points and needs 36 curve additions on 
average €or random k. This reduces our time estimate for computing kP €rum 
.24 seconds t o  .052 seconds. 

In the elliptic curve analogue of the ElGamal cryptosystem, a curve E(F,) 
and point P E E are public knowledge. Each user A has a public key UP, where 
integer a is the corresponding secret key. To send messages ml, m2 E Fp t o  A ,  
user B selects a random integer k, and computes the points kP and IcuP = (Z, 3) .  
Finally, B sends (kP, ml:, m23) to A .  With our software implementation, the 
encryption rate is about 2 Kbits/sec. 

The public key is an  elliptic curve point which is 2n bits long (where g = 2"). 
The key length can be shortened to n + 1 bits as follows. Observe first that  the 
change of variables (z, y) - (z, zz) transforms equation (1) to 

z ' i 2  = s + a $ b z - 2 .  ( 3 )  

Given the z-coordinate of a point P = ( s l y ) ,  we can compute the right hand 
side of ( 3 ) .  Then ( 3 )  has precisely 2 solutions, namely t' and z' + 1, and these 
solutions can be easily found. We can then select the correct solution T (and 
hence reconstruct 3 as 3 = ;tf) if we know the least significant bit of 7. Thus to 
transmit P i t  is sufficient to transmit 2 and the least significant bit of 31.. 

If E is a curve defined over F p  with equation ( I ) ,  then # E ( F p )  is even, and 
226 5 # E ( F p )  5 228. If # E ( F z e ) =  242, 250 or 254, then #E(Fzl~*)  is divisible 
by a 29 digit prime. For example, the following curve 

(4) 3 E : y2 + ZY = z -+ ZZ' + ( z 3  + z4 + t0 + z7) 
(with z defined as in Section 4.2) ,  has # E ( F 2 . )  = 250, and 

# E ( F z l m )  = 2 .  11' ~83811609932444916905404513441, 

where the last integer is a 29-digit prime. 
Based on our experimental results of Section 3,  computing even a single log- 

arithm in E ( F ~ I o I )  using Pollard's pmethod is computationally infeasible. For a 
very rough analysis of the security, observe that the Pollard prnethod requires 
about 1015 elliptic curve operations to compute a single logarithm in the curve 
(4) .  A rough count shows that an elliptic curve operatlon takes a t  least 1000 
word operations (i.e. operations such as exclusive-or's on 32-bit words). Hence 
the expected number of word operations to compute a logarithm is a t  least 10". 
This is roughly equal to the computing resources required to factor a 512-bit 
integer by the multipolynomial quadratic sieve, and for computing logarithms 
in the field F'700 by the index-calculus method (see [ 2 5 ] ) .  

As noted by Brent [4], it  does not  seem possible to use parallelism to speed 
UP the Pollard pmethod.  The Lambda method [22] is a method for computing 
logarithms given that the logarithm lies in some interval [ A ,  B ] .  The running 
time of the method is O(&) ,  where U! = B - A.  If 1 processors are available, 
then to compute logp Q whrre the order of P is a prime p, the interval [o, P -  11 
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is divided into t intervals of equal length, and the intervals are searched in 
parallel by the 1 processors. The  expected number of elliptic operations for each 
processor is m. For example, if 10,000 processors are available then for the 
curve (4) the  expected number of elliptic curve operations is about If this 
does not provide adequate security for the application at hand, then of course 
the underlying field can be replaced by a larger field F2aC, T 2 14 (to use the 
polynomial basis representation of Section 4.2 we need to work in a field F 2 n  
where n is a multiple of 8). 

6 Conclusions 

We have demonstrated that implementing elliptic curve cryptosystems in Fz- for 
n 100 can be done efficiently in software on a workstation. Curves over F ~ l o .  
can be selected so that by current best methods computing logarithms requires 
about 10’’ elliptic curve opera t ions  (if addi t iona l  securi ty  is required then, of 
course, TI can be increased). It should be pointed out that  each logarithm in such 
a system requires this amount of work. This is unlike the index-calculus method 
[20] where there are 2 phases. Once phase one is completed all other logarithms 
are relatively easy to find. Computing kP. where P 6 E(F,*O. )  and X: is a random 
104-bit integer, takes about .052 seconds. We can thus implement the ElCamal 
cryptosystem and achieve an encryption rate of 2 Kbits/sec in software Public 
keys are only 105 bits in length. The code for this scheme is fairly compact and 
occupies about 40 Kbytes. 
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