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I. INTRODUCTION 

The strict avalanche criterion was introduced by Webster and Tavares [3] 

in order to combine the ideas of completeness and the avalanche effect. 

A cryptographic transformation is complete if each output bit depends 
on all the input bits, and it exhibits the avalanche effect if an average of 
one half of the output bits change whenever a single input bit is comple- 

mented. To fulfil the strict avalanche criterion, each output bit should 

change with probability one half whenever a single input bit is comple- 

mented. This means, in particular, that there is no good lower order 

(fewer bits) approximation to the function. This is clearly a desirable 

cryptographic property since such an approsimation would enable a cor- 

responding reduction in the amount of work needed for an exhaustive 
search. 

The notion of strict avalanche criterion was recently extended by 
For& to consider subfunctions obtained from the original function by 

keeping one or more input bits constant. This is also important crypto- 
graphically because, in a chosen plaintest attack, the cryptanalyst could 

arrange for certain input bits to be kept constant. Fork defined the 

strict avalanche criterion of order m, with order 0 being the original 

strict avalanche criterion: and made a conjecture, supported by esperi- 

mental evidence, concerning the number of functions satisfying a higher 

order strict avalanche criterion. 
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In this paper, we shall first present unified definitions of the three 
concepts of completeness, the avalanche effect and the strict avalanche 
criterion. We shall then show how Forrk’s definition of the higher order 
strict avalanche criterion may be simplified, and then use this simplified 
form to prove her conjecture. 

11. DEFINITIONS 

In this section we shall discuss more fully the ideas of completeness, the 
avalanche effect and the strict avalanche criterion. We shall present these 
three criteria in a unified framework, in order to highlight the connections 
between them. 

Let f : 2; --f ZT ( n  2 m) be a cryptographic transformation. Then 
f is said to be complete [Z] if and only if for each pair ( i , j ) ,  1 5 i 5 n, 
1 5 j 5 m, there esists a pair of n-bit vectors g and x’ such that g and 
- x‘ differ only in bit i, and f(2) and f(2’) differ in at least bit j .  This 
property ensures that  each output bit depends on all the input bits. If 
some output bits depended on only a few input bits, then, by observing 
a significant number of input-output pairs, a cryptanalyst might be able 
to detect these relations and use this information to aid the search for 
the key. 

Webster and Tavares [3] pointed out that this condition can be re- 
stated as follows. Let us fis i, 1 < i 5 n, and write ci for the n-bit vector 
with a 1 in the i th  position and 0 elsewhere. Now consider the set of 
m-bit vectors f(2) @ f(.: 9 ci) as n: ranges over 2;. (These are called 
“avalanche vectors” in [3]). For each j ,  1 5 j 5 m, at least one of these 
vectors has a 1 in the j t h  position. So, if we add these vectors together 
(as elements of 2“ rather than elements of ZT), all components should 
be greater than 0. Thus we have the following definition. 
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Definition 2.1 Let f : ZF --+ Zy be a cryptographic transformation. 
Then f is complete if and only if 

where both the summation and the greater-than are component-wise over 
Z”. 

Forr6 considers only the case rn = 1, and, in this case, we see that 
f : Z; t 2 2  is complete if and only if 

We consider now the avalanche effect. A function exhibits the avalanche 
effect if and only if an average of one half of the output bits change 
whenever a single input bit is changed. This may be formalised [3] by 
considering again the “avalanche vectors” f(g) 9 f (s@ci)  as 2 varies over 
2;. The bits of these vectors are referred to as “avalanche variables”. 
Then f is said t o  eshibit the avalanche effect if and only if, for each i, 
1 <_ i <_ n, one half of the avalanche variables are equal to 1. 

We shall write this condition as follows. For each i, there are 2” 
avalanche vectors, and hence rn2n avalanche variables. If exactly half of 
them are 1, then their sum must be rn27z-1. Thus we have the definition 
below. 

Definition 2.2 Let f : 2; -+ ZF be a cryptopsphic transformation. Let 
w denote the Hamming weight fnnction. Then f exhibits the avalanche 
effect if and only if 
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In the case m = 1, w is essentially the identity, so we see that f : 2; --.+ 2 2  

exhibits the avalanche 'effect if and only if 

Note that, in this case, if f eshibits the avalanche effect, then f must 
automatically be complete. 

Finally, we consider the strict avalanche criterion. For a function 
to satisfy this, each output bit should change with probability one half 
whenever a single input bit changes. This can be written as below (see, 

Definition 2.3 Let f : 2; + ZT be a cryptographic transformation. 
Then f satisfies the strict avalanche criterion if and only if 

e.g. ~31). 

In the case m = 1, we see that the strict avalanche criterion is exactly 
the same as the avalanche criterion. 

I t  is clear that  a necessary and sufficient condition for a function 
f : Zz --f Z r  to  satisfy the strict avalanche criterion is that  the m 
functions which specify the behaviour of each bit should all satisfy the 
strict avalanche criterion. We are, therefore, justified in considering only 
the case m = 1 in what follows. 

111. PRELIMINARIES 

Let f be a function from Zg to  Z2. It turns out to be convenient to 
consider instead the function f̂  defined by j(g) = (-l)f(d which has the 
same domain as f, but takes values in (1, -1) rather than in Z2. We 
shall use the following characterisstion of functions satisfying the strict 
avalanche criterion (SAC) due to F o r k  
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Theorem 3.1 [l] A function f : ZF -+ 2 2  satisfies the SAC if and only 
if 

>: f ^ ( : ) f ^ (nr  e3 G) = 0 
- rEZ; 

for all c E Zg with Hamming weight 1, where j (c) = (-l)f(d. 

The definition of the higher order SAC is as follows: 

Definition 3.2 [l] A function f : 2; 3 2 2  satisfies the SAC of order 
m, where 1 5 m 5 (n  - 2) if and only if 

(a) any function obtained from f by keeping rn of its input bits constant 
satisfies the SAC (for any choice of the positions and of the values of the 
constant bits) 

and 

(b) f satisfies the SAC of order m - 1. 

Note that it would be impossible for a function to satisfy the SAC of 
order (n - l), since this would be equivalent to finding a function g : 
2 2  --+ 2 2  satisfying the SAC. Using Theorem 3.1, this would mean that 
i j ( O ) i j ( l )  = 0 which is impossible, since both i ( 0 )  and i(1) have values in 
(1, -1). 

IV . SIMPLIFICATION 

In this section we shall show that condition (b) of Definition 3.2 is not 
necessary. For ease of notation, we introduce the following terminology. 

Definition 4.1 A function f : Z?j --c Z2 satisfies the partial strict 
avalanche criterion (PSAC) of order m, where 0 5 rn 5 (n -2) if and only 
if any function obtained from f by keeping m of its input bits constant 
satisfies the SAC (for any choice of the positions and of the values of the 
constant bits). 

Note that the PSAC of order 0 is esactly the same as the SAC (of order 0) 
and that a function satisfies the SAC of order m if and only if it satisfies 
both the PSAC of order m and the SAC of order (rn - 1). 

We shall show that the PSAC of order m alone is sufficient to ensure 
the SAC of order rn. We shall first prove a result concerning the PSXC. 
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Lemma 4.2 Let f be a function from 2; to 2 2  satisfying the PS-iC of 
order m (1 5 m 5 ( n  - 2)). Then f satisfies the PSAC of order (m - 1). 

Proof 
Let g be a function obtained from f by keeping ( m  - 1) input bits fised. 
We must show that g satisfies the SAC. By Theorem 3.1, we need to show 
that 

for all s E Z ; - k  with Hamming weight 1. Without loss of generality, we 
may assume that c = (0, .., 0 , l ) .  Now, since ( n  - m + 1) > 1, we know 
that 3: and 3: @ c agree on the first bit, so we may split the sum up  into 
those terms where the first bit of 2 is 0, and those where it is 1. 

where go, g1 denote the functions obtained from g by setting the first 
input bit to 0, 1 respectively, and G' denotes the vector of length (n - m) 
obtained from c by deleting the first bit. Now both go and g1 are obtained 
from g by fixing one bit, and hence from f by fising rn bits, so by our 
assumption, they satisfy the SAC. Hence by Theorem 3.1, both the sums 
above are zero, and so S = 0 as required. We have therefore proved the 
result. 

We are now able to prove the following theorem. 

Theorem 4.3 -4 function f : 2; -+ Zz satisfies the Strict Avalanche 
Criterion (SAC) of order m if and only if any function obtained from f 
by keeping m of its input bits constant satisfies the SAC (for any choice 
of the positions and of the values of the constant bits) 
Proof 

In other words, we must prove that f satisfies the S,4C of order rn if and 
only if i t  satisfies the PSAC of order m. Clearly, by the definitions of the 
SAC and PSAC, we linotv that if f satisfies the SAC of order m, then 
it satisfies the PSAC of order m. Hence we need only prove that if f 
satisfies the PS-4C of order m, then it satisfies the SAC of order rn. 

The proof is by induction. The base step is trivial, since. as we 
have already remarked, the PSA4C of order 0 is identical to the S-iC (of 
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order 0). So let us assume the result for m = k, and try to  prove it for 
rn = k + 1. Suppose that f satisfies the PSAC of order (k + 1). We must 
show that f satisfies the. SAC of order (k + 1). By Lemma 4.2,  f satisfies 
the PSAC of order k. By the inductive hypothesis, therefore, f satisfies 
the SAC of order k. Hence, by the definition of the SAC, f satisfies the 
SAC of order (k + 1). 

V . COUNTING FUNCTIONS 

In this section, we shall prove a result conjectured by Forrk [l] in the 
light of experimental results. 

Theorem 5.1 Let n E 2 be such that n >_ 2. Then the number of 
functions f : 2; -+ 2 2  satisfying the SA4C of order (n - 2) is 2n+1. 

We shall prove this by giving an esplicit form for the functions satisfying 
the SAC of order ( n  - 2). 

Lemma 5.2 Suppose that n E 2,  n 2 2 and f : 2; -+ 2 2 .  Then f 
satisfies the SAC of order ( n  - 2) if and only if for all S C {1,2 ,  .., n},  

where g ,  denotes the element of 2; which satisfies e; = 1 
and as before, f(g) = ( - l ) f (E) .  

Proof 

By Theorem 4.3 and Theorem 3.1, f satisfies the SAC of order (n - 2) if 
and only if 

i E S 

for all c E Z i  with Hamming weight 1, and all functions g obtained from 
f by fixing (n - 2) bits. There are two choices for c, namely c = ( 1 , O )  or 
- c = (0 , l ) .  

In fact, these two give rise to  the same equation as folloxs. 
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and 

But all i(g) have the value il, so we may multiply the second equation 
through by 6(0,1)6(1,0) to  obtain the first equation. Hence we have 
essentially one equation for each function g. This equation may be written 
as 

For example, if g were obtained from f by setting the last ( n  - 2) bits t o  
0, then this equation becomes, in terms of values of f 

j(1) 1 , 0 ,  . . ,O) = - j ( O ,  . . , O ) j ( O ,  1,0, . . , O ) j ( l , O ,  .., 0). 

In general, the equation defines the value of f at a point 2 of Hamming 
weight (w + 2) in terms of the values of f̂  at points with Hamming weight 
( w + l )  and w. This means that we can espress the value o f f  at all points 
of Hamming weight greater than or equal to 1 in terms of the values of f 
at points with Hamming weight 0 or 1. Of course, in general, there will 
be more than one equation defining the value of f(z), so we will need to 
check that these equations are consistent. Each equation corresponds to  
a set S E {1,2 ,  .., n} with IS1 2 2 together with a pair i,j E S, i f j .  
This corresponds to  the function obtained from f by setting all but the 
ith and j t h  bits to  agree with g, .  Then the equation obtained is (writing 
T for S \ { z ) j } )  

We shall prove the result by induction on the size of the set S. The base 
step consists of the cases in which IS\ 5 1. We may subdivide these cases 
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into S = 0 and S = {T} for some 1' E (1, ..,n}. In the first case, we want 
to show that 

which is clearly true, and in the second case that 

which is also clearly true. 

Now let us assume that the result is true for all T with IT/ 5 k 
(k >_ 1) and let IS1 = k + 1. Then we obtain a set of equations 

for each distinct pair i , j  E S ,  where T = S\ { i , j } .  Now since IT1 = k - 1 
and IT U {i}l = IT U { j } l  = k, we may apply the induction hypothesis 
and obtain 

Now for each T E T ,  the term f(qTl) will occur once in each of those 
expressions, and so exactly three times in the espression for f(gs), while 
the terms f^(qi)) and f(qjl) occur exactly once each in the expression 

for f(gs). Furthermore, the terms (-1)- and (f(Q))"' both occur 
twice in the espression and so cancel out, leaving 

I 

b b-1  
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Now 

'(' + ') (mod2) - - ( k  - l ) ( k  - 2) k2 - 3k + 4 - - 
2 2 - 2  I +  

and k = (k + 2)(mod2), so 

as required. 

Example 

Let us consider the simple case of n = 3. We want to discover which 
functions f satisfy the S,AC of order (n-2)  = 1. Then as at the beginning 
of the proof of the lemma, we must have 

for all g obtained from f by fixing one bit. 
functions g, giving us the following equations. 

Now there are six such 
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So we see that the 16 functions f i ,  .. f16 : 2: i 2 2  satisfying the SAC of 
order 1 are the following. 
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Proof of Theorem 5-1 

By Lemma 5 . 2 ,  the set of functions f : Zz -+ 23, satisfying the SAC of 
order ( n  - 2) is the same as the set of functions f : Z; -, 2 2  satisfying 
the set of equations 

where the notation is as in the statement of Lemma 5.2. Now, since any 
element in ZT can be ivritten as gs for exactly one set S { 1 , 2 .  ... n } ,  
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this determines the value of g(g)  for all values of g with Hamming weight 
greater than 1 in terms-of the values of g(:) for values of 2 with Hamming 
weight less than or equal to 1. In other words, if we choose values for 
g(Q) and for g(g{,j) for all r E (1, .., n}, then g is completely determined 
on the whole of 22. Thus there are 2n+1 ways to choose such a function, 
and so the size of the set of these functions is 2"+l. 

We have the following immediate corollary. 

Corollary 5.3 The proportion of functions f : 2; -, Zz satisfying the 
SAC of order (n - 2) is 2n+1/2(2"). 

VI . CONCLUSIONS 

We have presented a simplified definition of the higher order strict avalanche 
criterion and showed its equivalence with the original. We have then used 
this to calculate the number of n-bit binary functions which satisfy the 
strict avalanche criterion of order (n - 2). 
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