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ABSTRACT 

In applications7 such as radar ranging or test pattern generation, linear 

recurring sequences are needed at rates that require a parallel genera- 

tion of the sequences. Two parallelisation methods for the generation of 

these sequences are discussed and previous results are made applicable to 

arbitrary degrees of parallelisation and arbitrary sequences. In particu- 

lar, a previously known technique (sometimes called windmill technique) 

is shown to be explainable in a very simple way and to be equally ap- 

propriate for the parallelisation of non-linear recursions. The method 

is, furthermore, shown to be suitable for VLSI-realisations and software 

implementations. 

I. INTRODUCTION 

Linear recurring sequences for high rate applications can often not be 

generated directly by the associated linear feedback shiftregister (LFSR), 

at least not at reasonable costs. Examples of such applications are radar 

ranging [l], di rect sequence spread spectrum (DSSS) communication [2], 

test pattern generation [3], stream cipher cryptography [4] and decoding 

by error trapping [5]. In some of these examples! such as radar ranging 

or the encryption of TV-pictures, the problem is a technological one, 

which can in principle be solved by faster, low price and low consumption 

semiconductors. For many applications, however, the difficulty is of a 
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more fundamental nature,  since the linear recurring sequences a re  not 
needed at a higher ra te  on a n  absolute scale but relative to  other rates. 
Examples are the hashing of the da ta  bits by the chipping sequence in 
DSSS communication [2] or the  clocking of the driven register in a binary 
rate multiplier [6]. 

Consequently, methods have been developed for the parallel genera- 
tion of several phases of a decimated sequence. These methods can be 
subdivided into two classes: those that  generate one phase with an ap- 
propriate LFSR and construct the other phases by the use of a linear 
feedforward network [7]-[l l]  (Fig. 1.a) and those that generate a t  once all 
phases in parallel by the  use of a network of interconnected shift registers 
[12]-[17] (Fig. 1.b). Warlick and Hershey have based their approach to  
the latter class of generators on a windmill-like arrangement of LFSR's 
[13]. For this reason such generators are sometimes called windmill gen- 
erators. As we wish t o  emphasize the characteristics of the two types of 
generators introduced above, we will, however: prefer to call the  genera- 
tors, from Fig. 1.a and  Fig. l . b ,  parallel feedforward (PFF) and parallel 
feedback generators  (PFB), respectively. 

S Svt Svt+l ' ' ' V t  + (v - 1) 

Fig. 1.a. A parallel feedforward generator 

s V  t S v t +  1 " '  S v t + ( v - l )  

Fig. 1.b. A parallel feedback generator 
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The main purpose of the paper is to present a simple and intuitive 
explanation of the  PFB-scheme and to give construction rules for such 
generators which are  valid for arbitrary recursions and arbitrary degrees 
of parallelism (Sec. 111). 

The  importance of these generators is due to their structure: They  
show a high degree of periodicity. This makes them very suitable for 
VLSI realisations and  for software implementations. 

The  PFF-generators do not seem to have a corresponding periodicity 
in their structure and  there is also no obvious generalisation t o  arbitrary 
recursions. In t he  linear case, however, we will see in Sec. I1 tha t  they 
are as universal as the  PFB-generators. 

11. PARALLEL FEEDFORWARD GENER-4TORS 

The decimation by Y of a sequence s is a sequence s' defined by s't := 

s,t. In the present context it is natural t o  also consider Zii) := s,t+i 
with i E { O , l , .  . .  ,Y - 1). The objective is to generate the sequences 
do), ,&') ,  . . . , idv-') in  parallel. 

We note, that since the period of any sequence decimated by v divides 
T/gcd(v, T ) ,  there are at most gcd(v, T )  different decimated sequences. 

Consider sequences s with an  irreducible minimal polynomial of period 
T and degree 1. For the  decimations S of s by v, Zierler [lS] has proved tha t  
the minimal polynominal of S is irreducible, of period T = T/gcd(T ,v )  
and of degree t = min{l : ? 1 2' - 1} if S # 0. 

Based on this observation, Lempel and Eastman [7] have proposed to  
generate S(o),S(l),. . . ,S("- ')  in parallel by the use of v LFSR's. This was 
the first step towards PFF-generators. 

The first PFF-generator was then introduced by Mohrmann [8]. He 
has noted tha t  the decimation of an m-sequence s by v = 2 , 4 , .  . . , 
does not change the  minimal polynomial and has observed t h a t  the  se- 
quences di) can be obtained by linearly combining s t - ~ + l ,  St-lf2, . . . , S t .  

(An m-sequence is a linear recurring sequence of maximal period.) Eier 
and Malleck [9] have further formalised these results and have indicated 
a general construction scheme €or the feedforward network. 

21-1 
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Surbiick and  Weinrichter[lO] have also extended the previous results. 
They have shown how sequences with irreducible polynomials and  non- 
prime periods can be generated in parallel by PFF-generators of lengths 
shorter than the  original LFSR’s if v I T .  

4 0 )  For arbitrary rates v E N,  we prove in the following t h a t  st , 
st 41) , , . . , si -(u-1) is . a linear function of St- i+l ,  St-i+2 , . . . , . i t ,  with fbounded 
from above by the  linear complexity 1 of s. (The linear complesity of 5 
is the length of the shortest linear recursion that can generate s.) This  
statement is obtained in three steps: i)  the sequences ido), id’), . . . S(”-l) 
all satisfy the same linear recursion (theorem l ) ,  ii) this recursion has a 
length which is bounded from above by 1 (corollary 2) and iii) there ex- 

(0) 4 1 )  - (u-1)  ists an initial condition SO, S1, . . . , Sii-l for S such that S; 
can be obtained by linearly combining St-[+:,  51- lL2 , .  . . , i t  (lemma 3). 

Theorem 1 extends Zierler’s result [18] t o  arbitrary sequences and  
describes the generating polynomial j ( z )  of the decimated sequence ex- 
plicitly. For the  formulafion and the later proof of theorem 1, we define 
ark and a; to be  p-conjugate (k,i E J )  if their images under z + z p  are 

conjugate,i.e., if there exists j such that a’ = at2’. With 

, st , . . . si 

- 
Jr, := {i E J : a; is ,LL - conjugate to crk}  

and 
J := {JC E J : IC = smallest element in J k } ,  

this defines a unique partition of J : 

Theorem 1. Let p ( z )  = n i E J p z ( z ) m z  be the decomposition of p ( z )  

canonical representation of the irreducible factors. For v = ZKp E N ,  
with 2 [ p ,  let 

into distinct irreducible factors and let p i ( i )  = nilo d.-1 ( z  - q2’) be the 

and let rTzk = max - 191. Then the following three assertions hold: i g J k  
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a. The polynomind p ( z )  of smal l e s t  degree, that  generates  all d e c i m a -  
tions S(Z), i E (0,. . . , v - l} of all sequences s which have minimal 
polynomial p ( z )  is given by 

b. If v is relatively prime to the period T of s, we have 
and rTzk = m k .  

= J ,  u!k = d k  

c. In this case: the polynomial p ( z )  zs mznimal  f o r  all d e c i m a t z o n s  
idi), i E (0,. . . , v - 1) of all  sequences with minimal polynomial p ( z ) .  

As far as we could trace it back, Duvall and Mortick [19] were the  first 
to prove that n k E J @ k ( r ) m k  can generate do). Recently, a very elegant 
and compact proof of the  assertion that n k E J j 5 j . ( z ) m k  generates di), Vi 
was given by Niederreiter [20]. Smeets [16] has proved the strongest 
result, so far, i e . ,  F(z )  generates d i ) , V i .  Based on Niederreiter’s result, 
we give a compact proof of this assertion and a proof of the theorem in 
the appendix. 

The following corollary is an  immediate consequence of theorem 1. 

Corollary 2. Let S be a sequence s decimated by I/. Then its Lnear 
complexity [is  related to  the linear complexity 1 of s by 

If v is relativelv prime t o  T ,  we have 

1 = 1 .  (5) 

By theorem 1, the sequences do), id1), . , . , dV-’) can thus be generated 
by v identical LFSR’s, each of maximal length 1. The following lemma 
shows that in fact only one such LFSR is needed: 

Lemma 3. Let p ( z )  be an arbitrary polynomial of degree I ,  then there 
is a sequence F generated by @ ( z )  such that any sequence S generated 



508 

by @(z)  can be  expressed as 

i=O 

The proof of this lemma is easily obtained from observing that the vector 
of initial conditions ( T i - 2 ,  . . . , F o )  = (1,0,. . . , 0 )  is transformed into 

The feedforward network is now derived from the initial conditions 

These are obtained by the use of the original linear recursion and  so, 

s i r . .  . si-1. The  maximal depth of the XOR-tree needed to implement 
the network is log;! f(< log2 I )  and the maximum number of XOR’s is 

linearly independent vectors by applying the linear recursion. 

so, S Y ,  - - - 7 s Y ( j - l ) ;  9 ; S Y - 1 ,  S 2 V - 1 , .  . . , 5 - for ~(0); g i l l ; .  . . ; i (y -1 ) .  ul-1 

u log2 r( 5 v log2 1 ) .  

In this context, we also observe that the number of memory cells is 
equal to  i(< I). Thus, if we compare the parallel implementatioll by a 
PFF-generator with the  serial implementation by an LFSR, we note tha t  
only the number of logical gates is increased by a factor u. 

111. PARALLEL FEEDBACK GENERATORS 

TWO different forms of the generator shown in Fig. 1.b have been intro- 
duced, one by Hsiao 1121 and the other by Hurd [13], by Maritsas, Arvillias 
and Bounas [14]: and later by Warlick and Hershey [15]. Hsiao has ob- 
tained his generator by considering iterates 2’” of the transfer matrix T ,  
associated with the linear recursion st = I 

~ i s i - i  : 

0 1 0 . . .  0 
. .  

T =  (i .i .; ; 1 .  (71 

n-3 r 2  n-1 7rl . . .  

This simple construction method was, however, not adopted by many 
authors, probably for two reasons: first the electronic components in 
the late 60’s were not suitable for practical implementations of this con- 
struction and secondly the method did not necessarily provide structured 
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generators. In their papers, Hurd, and Maritsas, i4rvillias and Bounas, 
correspondingly used a completely different approach. They started with 
a particular, well structured generator and searched for conditions un- 
der which the given generator yields different phases of a decimated m- 
sequence. More precisely, they considered a network of cyclically and 
linearly interconnected shiftregisters as represented in Fig. 2. 

Fig. 2. Generator with a cyclic arrangement of shiftregisters as consid- 
ered in [13]-[15] 

The sequences obtained from such a network are solutions of the fol- 
lowing system of linear recurrence equations 

Due to the cyclic nature of this system, they are also solutions of 

(9) 

(v-1). 

1 P(D)  * S t  (;j := (IT f(j)(,) + , i q q  . sp = 0 .  
u-1 V-1 

j=O j=O 

The polynomial p ( z )  thus generates the sequences s('),s('), . . . ,5 
If it is primitive, all sequences are correspondingly phases of one single 
m-sequence. Warlick and Hershey [ls], who started from an even more 
geometric conception, have obtained similar results for the special case 
f ; ( z )  = 1 + z , i E (0: 1,. . . ,v - I}; g ; (z )  = z ' ,  i E {0,1 , .  . . , v - 2)  and t 

g y - l ( - z )  = z? 
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In the work of Hurd, of Maritsas, Arvillias and Bounas and of Warlick 
and Hershey no assertions are made about the relative phases between the 
sequences ~ ( ~ 1 .  They  will usually be non consecutive. This severly limits 
the applicability of the scheme. Smeets [16] and Smeets and Chambers 
[17] have indicated sufficient conditions to  insure that the sequences s(2) 
have appropiate phase relations. The assumptions they need in order t o  
prove their assertions are, however, still quite restrictive and their proofs 
rather involved. 

In the following a construction method is exposed, which associates to 
every sequence s and to  every degree of parallelisation v a PFB-generator 
for 3('), dl), . . . , idy- ' ) .  The only restriction for the sequence s is that it 
can be implemented by a not necessarily linear recursion. T h e  simplest 
case of such a construction is discussed in lemma 4. 

Lemma 4. If s is a linear recurring sequence with a characteristic 
polynomial of the form p ( z )  = l + z A f ( z )  with X > 1 and degp(z)  = 1. 
Then, for any degree of parallelisation v 5 A, the generation of s can be 
parallelised with a PFB-generator, graphically constructed according 
to  algorithm A. 

Algorithm A: (see also Fig. 3) 

a) draw the  indices 0 ,1 ,  . . . ,1+ v - 1 on a line and their values modulo 
Y underneath, 

b) draw the  recursions for sl, . . . , sltv-1, 

c) distribute the memory cells of the shiftregister on v Lines according 
to  the partition induced by the indices modulo Y (the cells on line 
i will contain successive values of idi)), 

d) interconnect the  successive cells in each line and determine the new 
content of the  first cell of line i by use of the linear recursion for 
sl+i, draw-n in step b).  

The idea behind this lemma is the following: due to  the particular form 
of the feedback polynomial the elements si+i, i E { 0 , 1 , .  . . , v - 1) do 
not depend on the  elements stSj ,  j E {0,1, .  . . , i  - I} and, therefore: the 
linear recursion for these new elements can be evaluated in parallel. The 
construction of these recursions is straightforward and leads, e.g., to  the 
description given by algorithm A. The completion of these remarks to a 
proof is trivial. 
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6 5 4 3 2 1 0  
0 1 0 1 0 1 0  

Fig. 3. Algorithm -4 applied to  the linear recursion p ( z )  = 1 - z 3  z 5  
with rate v = 2. Step (z)  shows the LFSR for a serial generation 
and  step (d) the PFB-generator for a generation of two elements 
in parallel. 

We note t h a t  i n  lemma 4 the linearity of the recursion was not used. 
Furthermore, t he  -independence of the st+i from the s t + j ,  with 0 5 j 5 
i - 1, was not essential either, as the elements stt j ,  0 5 j 5 i - 1 can be 
expressed in terms of the elements sl+k, with 0 5 k 5 j - 1 5 i - 2 and 
so on: 

s t t z  = qst-2-11. . * , S t + i - l )  

(10) 
= W ( s t ; ; - a ,  * .  . ,  S t + i - l - l ) ,  S t - 2 - 2 ,  * , StTi-z) 

. . .  - - 

= Gi(st-1, .  . . , s t - [ )  , i E {0 ,1 , .  . . , V  - l}, 

where F is the recursion that generates s, and where G; is the recursion 
obtained by iteratively applying F t o  eliminate all s t t _ j ,  0 5 j < i. These 
remarks lead us immediately to: 

Theorem 5 .  Let F be an arbitrary recursion of length 1 .  Then the 
generation of any sequence s, associated with F,  can be parallelised 
with a PFB-generator up  to  an arbitrary degree of parallelisation. The  
corresponding generator can be constructed using either algorithm B, 
which requires I memory cells, or algorithm B’. In the latter case the 
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generator has a total  number of memory cells d bounded from above 
by d 5 1 + v. 

Algorithm B: (see also Fig. 4.a) 

a) unchanged, 

b) draw the recursion G; for sl+i, i E (0,. . . , v - I}, ie., draw the 
recursion with the values of s l+ j ,  0 5 j < i eliminated by the use 
of the recursion F, 

c) draw v outputs on v lines and distribute the 1 memory cells of the  
shiftregister on the min(1, v} upper lines, according to the partition 
induced by the indices modulo v, 

d) unchanged. 

Algorithm B': (see also Fig. 4.b) 

a) draw the indices 0,1,. . . ! l f2v-2  on a line and their values modulo 
v underneath, 

b) draw the recursion G,-1 for s ~ + ~ - l + i ,  i E {0,1,. . . ! v - I}, i . e . ,  
draw the recursion with the values of s ~ + j - ~ + ; !  j E (0:. . . , v - 1) 
eliminated by the use of the recursion F! 

c) draw v outputs on v lines and distribute the memory cells (5  
1 + v - 1) of the shiftregister associated with Gy- l ,  according t o  
the partition induced by the indices modulo v, 

d) unchanged. 

After completion of the contruction, the generators B and B' are 
loaded with the  initial conditions, so,. . . sl-1 and sl+,-d,. . . sl+,-l, 

respectively, where sl ,  . . . , s ~ + ~ - l  is obtained by repeated application 
of the recursion F. 
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. . _  6 5 4 3 2 1  0 
, , ~ 2 1 0 3 2 1 0  

S4t w 
‘4t +1 w 
S4t +2 I. 
’41 +3 u 

Fig. 4.a. Generator obtained by applying algorithm B to p ( z )  = 1 -+ 
z2 - z3 and u = 4. 

In the linear case, algorithm B’ is equivalent to the contruction of a 
polynomial q ( z )  = 1 + z ” f ( z )  which is a multiple of p ( z )  and has no tabs 
in the v leading positions. It is obvious that such a polynomial generates 
the sequence s if applied to the correct initial conditions. By Lemma 
4 this polynomial can, furthermore, be used to  generate id’), ..., S(”-’) 
in parallel. A complete proof of the theorem is an easy consequence of 
remarks made prior to i ts  formulation. 

(a) 9 8 7 6 5 4 3 2 1 0  
1 0 3 2 1 0 3 2 1 0  

Fin. 4.b. Generators obtained with algorithm 3’ are alwavs well struc- 
I 

tured. Algorithm B’ was a&lied to  the same ekarnple as in 
Fig. 4.a. 
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Hsiao’s result, described a t  the beginning of the paragraph, is a par- 
ticular case of theorem 5/algorithm B, which correspondingly does not 
necessarily lead t o  hghly structured generators. The structure of the 
generators is much improved with algorithm B’, which, however, requires 
up to v additional memory cells and a corresponding extension of t he  
initial conditions. 

It is obvious tha t  generators constructed according t o  algorithm B’ 
can easily be implemented in VLSI-technique and are also well suited for 
software implementations. 

In software implementations, when v ,/’ 1 ,  the structure obtained from 
algorithm B’ is further improved by matching the length of the recursion 
with a multiple of the wordlength w.  In the typical case I 2 w, it is done 
by changing the recursion s t fY-1  = Gv-l(st-l,  . . . , st - i , .  . . , s t - l )  into 
~ t + ~ - i  = Gv-l (s t - l , .  . . ,F ( s t - i - l , .  . . s t - ; - [ ) , .  . . , s t - l )  with i + 1 + v - 
1 = nw, n E N ,  i E {l, . . . ,  Z}. In the case I < ‘UI this transformation 
is applied repeatedly. If F is linear, the tranformation corresponds to  a 

Z S V - 1  change of the polynomial q ( z )  = y(z)p(z) = l + q v z v + . .  -+qltv-lz 
into q’(z) = ( y ( z )  + znu-‘)p(z)  = q( z )  + znur-‘p(z) with nw - I 2 v. 
Clearly, these recursions have the required form, and the smallest n which 
fulfills the above inequalities is 

Z f v  
n =  r-1. 

W 

This is exactly the number of words required anyway. Therefore the 
adaptation, w h c h  we shall call algorithm C, can always be performed 
without increasing the  space complexity with respect to algorithm B’. The  
complexity of the  software implementation becomes mainly dependent on 
the number of tabs  in  the polynomial q ( z ) .  Unfortunatly: no results are 
known for constructing multiples of polynominals that  have only few non- 
vanishing coefficients and, in particular, that have v vanishing leading 
coefficients. 

In t l s  situation we have to use a trick in order to generate in parallel 
32 bits of an  m-sequence of period 232 - 1 on a 32-bit machine. We 
choose a polynomial p ( z )  = 1 + z25 + z2’ + z30 + z 3 2 ,  which has the  fewest 
possible number of tabs  and no tabs in the 16 leading positions. (We 
note that  when I 3 0 (mod 8)’ no irreducible trinomials exits [Zl].) Then 
by squaring p ( z )  we obtain a polynomial q ( 2 )  = ( ~ ( z ) ) ~  = 1 + z  50 2.58 , + 
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z60 + .z64, which has the same small number of tabs and no tabs in  the 
31 leading positions. This polynomial q ( z )  can be used to write a very 
simple assembler program which generates the sequence wordwise. 

IV. SUMMARY AND CONCLUSION 

Recurring sequences are often needed at  rates that  cannot easily be 
achieved by sequential generation of the elements. Two methods for the 
parallel generation were correspondingly described: the parallel feedfor- 
ward (PFF) and the parallel feedback method (PFB). 

The  parallel feedforward method, which was previously known as the 
more universal method, could be shown to be applicable to all linear 
recurring sequences. T h e  parallel feedback method is even more perfor- 
mant: it  is not only applicable to linear recurring sequences but t o  any 
sequence with a minimal recursion of reasonable length, and is highly 
suitable for VLSI- and  for software-implementations. 

In hardware implementations, both methods have a space complex- 
ity that is increased by a factor v with respect to the number of logical 
gates and tha t  remains essentially unchanged with respect t o  the number 
of memory cells. The  effective gain in time complexity, ie., the effec- 
tive rate, is urST/ max{r,,, Tgagate log2 l } ,  where T,, and Tgate are the time 
delays introduced by the shift register cells and the gates, respectively. 
In software implementations the parallel generation of whole words by 
the PFB-method is possible at practically no costs in space complexity 
and no costs in time complexity (rate= v). This is due to  the wordwise 
processing capability of arithmetic logic units (ALU's). 

by either of the algorithms, depending on the implementation intended. 
Finally, we note tha t  parallel feedback generators are easily constructed 
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APPENDIX: Proof of Theorem 1 

In order t o  prove the minimality of p ( z ) ,  we need two preliminary results: 
theorem A.l  and lemma A.2 .  With 

( A 4  

and 
d-1 

Tr(J) := EE2', if < E GF(Zd) (A.2j 
j =O 

theorem A.l  reads: 

Theorem A.1. (Milne-Thomson [22] and Ward [23], see also Key 
[ 2 4 ] ,  Herlestam [25]) 
Let p ( z )  be as in  theorem 1 then all sequences s generated by the 
polynomial p ( z )  have the form 

and the period 

T = 2maxi€Jrloga ~ ' l ~ c m { ~ z } ; ~ j ,  (A.4) 

with 7+. E G F ( 2 4 ) ,  a; a root of p ; ( z )  and Ti the period of a;. Fur- 
thermore, p ( z )  is the minimal polynomial of s if and only if ~ i , ~ ,  # 
0, vi E J.  

For the formulation of lemma A.2,  we need the Hasse-derivative. It is 
defined as follows [ 2 6 ] :  

( i1 .5)  

and is formaly equivalent to  7 I d '  (-)J. 

3. 

Lemma A.2. Let v = 2Kp with 2 / p, let 

let w be such tha t  pw G 1 mod 2'. Then 

:= 1 - K ,  ii := [$%: and 

i=O 2 
( A . 6 )  
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where 

c; := q ' - " ( 1 +  (( - 1) w ) 2 i - l i  /(=O. (A.7)  

and cl  = 1. 

Proof: Let z = Ciq2i and y = Ciy;22 then Lukas' theorem states ( c )  = ni (c:) .  This implies 

We thus have only to prove 

and C; = 0, 
expressions: 

Vi > f i .  We consider the generating functions of these 

(A.lO) 

and 
9-1 21-1 21-1 

(A . l l )  
t=O i=O 

The substitution < = 1 + z leads to 

2'-1 - 
w Zi-, c 2 p - i  = (1 + (C - 1) ) 

i = O  

and by taking the (2' - i)-th Hasse derivative in < = 0:  

(A.12) 

(-4.13) 

In modulo 2 arithmetic this derivative vanishes Vi > 6. For i = 6 we 
have 

C& f w 21-6 - = 1 mod 2 (A.14) 

since 2 [ w .  This concludes the proof of lemma A.2. 
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Theorem A. l  and lemma A.2 lead to an explicit representation of the 
decimated sequence do) and with some simple additions to an explicit 
representation of all decimated sequences. This could have been used t o  
prove theorem 1. We shall, however, extract most results directly from 
the polynomind, w h c h  turns out to be much simpler. 

Proof of theorem 1. a. We first prove that j ( z )  can generate all dec- 
imations di). Through a very elegant approach, Niederreiter [20] has 
shown that 

d,-1 

(-4.15) 

By regrouping terms, p ( z )  can thus be written in the following form 

(A.16) 

with an mi t o  be determined. 

sequence, respectively. Then 
Let D and fi denote the time shift on the undecimated and decimated 

p(B)s'z' I t  = p ( D y v t i i .  (A.17) 

The left hand side (lhs) of this equation is zero'by definition. Since s has 
minimal polynomial p ( z ) ,  a necessary and sufficient condition for this to 
hold on the right hand side (rhs) is 

P ( 4  IP(zV) 
2,. - 1 (-4.18) 

k E j  j = O  

1 
Now n,,j ( z  - C Y ? ' ) / Z ~  - aE2 holds since every factor of the lhs divides 
the rhs anh since these factors are relatively prime. The divisibility con- 
dition (A.18) is thus satisfied whenever m; < 2%; and rTz; = (31 is the 
smallest such m:. 

Next we prove the existence of a sequence s such that do) has minimal 
polynomial @ ( z ) .  Since gCd($k(Z),$k,(Z)) = 1 ,if k # k', we can restrict 
ourselves to p ( z )  = niEjk pi(.)"; and p ( z )  = @ k ( z ) % k .  We consider 

(-4.19) 
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with yi # 0, which by theorem A . l ,  has minimal polynomial p ( z ) .  By 
using lemma A.2 the decimation becomes 

Define the set of factors with maximal multiplicity fk := {i E jr, : iTzi 2 
" j ,  V j E jk} and the sequence ii associated with these factors 

then by theorem -4.1, do) - U is generated by ? k ( z ) % k - ' .  If 
d .  &-I 

(A.21) 

the same theorem implies tha t  Fk(z)&k is minimal for i'i and thus also 
for do) = ii + (do) - 5). The condition can always be fullfilled, e.g., by 
choosing a set { y i J i E j k  with Tr(y;) = 1 for one index i and Tr(yif)  = 

0, V? E j k  \ {i}. 
b. We prove the assertions for LJ relatively prime to T. = J and dr, = d k  
are trivial. For the  proof of mk = m k  we note that 

T = 2 m ~ i ~ ~ r ' o g ~ m i l  . Icm{T;)iEJ, (A.23) 

with T; the period of cri (theorem A. l ) .  Thus gcd(v,T) = I, i e . ,  

2 m i n { n , m u i ~ J  b g 2  mil}gcd(p, I C ~ { T ; } ~ ~ ~ )  = 1 (A.24) 

implies either K = 0 i .e.,  f i k  = m k  or maxi{log2rn;] = 0, ie., mi = 1 
and %; = [&-I = 1 = mi. 

c. Finally, we have to prove that F ( 0 )  is minimal for all decimations 
of all sequences s generated by p ( z ) ,  whenever gcd(v,T) = 1. By the 
primality condition, there is an e such that ve ZE 1 mod T ,  ie., a n  e-fold 
decimation by v leads back to the original sequence. Now, degree ? ( z )  5 
degree p (z ) ,  for every one of the decimations 

deg p ( z )  2 deg F ( z )  2 deg $ ( z )  2 . . .deg p ( z )  ( A . 2 5 )  

which is only possible if all degrees are equal. 
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