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ABSTRACT 

Bellare and Micali have shown how to build strong signature 
schemes from the mere assumption that trapdoor permutation generators 
exist. Subsequently, Naor and Yung have shown how to weaken the 
assumption under which a strong signature scheme can be built: it is 
enough to start from permutations that are one-way rather than trapdoor. 

In this paper, which is independent from and orthogonal to the work of 
Naor and Yung, we weaken in a different way the assumption under 

which a strong signature scheme can be built: it is enough to start from 
what we call a weak signature scheme (defined below). Weak signature 
schemes are trapdoor in nature, but they need not be based on permuta- 
tions. As an application, the Guillou-Quisquater-Simmons signature 
scheme (a variant on Williams’ and Rabin’s schemes, also defined 
below) can be used to build a strong signature scheme, whereas it is not 
clear that it gives rise directly to an efficient trapdoor (or even one-way) 
permutation generator. 

1. Introduction 

In a very nice paper [BM], Bellare and Micali have shown how to build a strong 
signature scheme from the mere assumption that trapdoor permutation generators exist 
(trapdoor functions are not shown to suffice, despite the title of [BM]). Here, 
“strong” means “non existentially forgeable under an adaptive chosen message 
attack”. Refer to [GMR] for a precise definition of this concept. This was a 

significant improvement over [GMR], which needed the (possibly) stronger assumption 
that claw-free pairs exist in order to build strong signature schemes. 

This result of Bellare and Micali can be extended in several directions. One such 
extension was worked out by Naor and Yung, who showed that it is enough to start 

from permutations that are one-way rather than trapdoor [NY]. 
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In this paper, which is independent from the work of Naor and Yung, we extend 
the result of Bellare and Micali in an orthogonal direction: in order to build strong sig- 
nature schemes, it suffices to start with a signature scheme that is “randomly simulat- 
able”, but “non randomly forgeable under a key-only attack”, which we shall refer to 
as a “weak signature scheme” (a precise definition is given in Section 2) .  This gen- 
eralization is not achieved through a more clever construction, but rather through the 
observation that the original construction of Bellare and Micali works just as well 
under our weaker assumption. Following [GMR], a “key-onIy attack” is an attack in 
which the enemy knows only the legitimate signer’s public key. A “random forgery” 
is the ability to forge a signature for a message selected at random, with non-negligible 
probability of success. (This is somewhere between existential and universal forgery, 
in the terminology of [GMR].) In contrast, the scheme is “randomly simulatable” if 
knowledge of the public key suffices to produce pairs (m  , s )  of signed messages whose 
probability distribution is the same as if message m had been chosen randomly and 
signature s had been provided by the legitimate signer. The difference between these 
notions is best grasped if one thinks of the RSA signature scheme [RSA], which is ran- 
domly simulatable and conjectured not to be randomly forgeable. 

It is clear that a trapdoor permutation generator such as those used as building 
block in [BMI can be used to obtain a weak signature scheme, but the converse may 
not hold. In order to build a weak signature scheme from a trapdoor permutation gen- 
erator, generate a pair ( x ,  y ) such that E ( x ,  *) and I (  y ,  *) are permutations that are 
inverses of each other (refer to [BM] for the notation, not needed for the remainder of 
this paper), and write down x in the public directory. In order to sign message m ,  use 
the secret information y to compute signature s = Z ( y  ,m). In order to verify that sig- 
nature s is valid for message m ,  use the public information x to verify that 
E (x , s ) = m . Moreover, this signature scheme is randomly simulatable provided that 
knowledge of x is sufficient to draw randomly and uniformly in the domain of E (x , *). 

Thus, it has been common practice since Diffie and Hellman [DH] to think of the 
signing process as computing a trapdoor permutation in the hard direction (the direc- 
tion that requires knowledge of the trapdoor), whereas the verification process 
corresponds to computing the trapdoor permutation in the easy direction. However, 
this perspective is unnecessarily restrictive for the following reasons: 

1) The public verification procedure is given both the message and its purported sig- 
nature. In general, it could compute on both of them in order to decide whether 
the signature is valid - rather than computing on the signature alone and then 
using the message merely for the purpose of a final comparison. In facf it wouId 
make perfect sense to have a signature scheme such that, given a signature, no one 
- perhaps not even the legitimate signer - could figure out which message is 
(or which messages are) actually signed by this signature, yet given a message and 
its signature, everyone could verify the validity of the signature. 
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2) A signature scheme could be secure even if some (or all) messages had more than 
one valid signature. In terms of trapdoor permutations, this would translate into 
allowing the function E ( x ,  *) not to be one-one, thus the “function” Z ( y , * )  
would be multi-valued (hence not a function). 

3) A signature scheme could be secure even if some (or all) signatures were valid for 
more than one message. In terms of trapdoor permutations, this would translate 
into allowing the function I ( y ,a) not to be one-one, thus the “function” E ( x ,  0) 

would be multi-valued (hence not a function). 

4) The space of messages and the space of signatures need not be the same, and they 
could even have different cardinalities (which is clearly not allowed in the trapdoor 
permutation setting). Moreover, the set of signatures could be different from one 
instance of a signature scheme to another even if the set of messages to be signed 
were the same. (As pointed out in [BM], a cross product construction due to Yao 
[Ya] can be used to bypass this difficulty. Nevertheless, from a practical point of 
view, it is preferable if Yao’s construction can be avoided.) 

After defining formally the notion of weak signature scheme in Section 2 and 
sketching how to transform any one of them into a strong signature scheme in Sec- 
tion 3, we conclude this paper in Section 4 with a discussion of a signature scheme 
due independently to Guillou and Quisquater [GQ] and to Simmons [S], which we 
shall refer to as the GQS signature scheme. This signature scheme is based on the 
scheme of Williams [Wi] - and thus also similar to Rabin’s [Ra]. Notice that all 
these schemes, including the GQS scheme, are totally broken under a directed chosen- 
message attack. Nevertheless, the GQS signature scheme fits our definition of a weak 
signature scheme, hence it can be used directly to build a strong signature scheme. 
Transforming the GQS signature scheme into an efficient trapdoor (or even one-way) 
permutation generator, on the other hand, would be difficult because of problems (21, 
(3) and (4) above. 

2. Definition of a weak signature scheme 

Let X be a finite set. Denote by p s [ X ]  the set of functions f from X to the real 
interval [0,1] such that C x c X f ( x ) =  1. (Think of ‘‘ps [XI” as the set of all probabil- 
ity distributions over X .) 

Let k be an integer parameter. Consider the set M = (0, l}k of length k messages, 
a set S of signatures (arbitrary for now), and two functions s i g : M  + p s [ S l  and 
ver :MxS-+{n-ue ,  f a l s e )  s u c h t h a t f o r a l l m E M  a n d s E S , v e r ( m , s ) = t r u e  if and 
only if (sig (m) ) ( s  ) > 0. Intuitively, this means that the verification function should 
accept s as a valid signature for m precisely when the probability that the signing pro- 
cess on m would produce s is nonzero. A weak signature pair (with parameter k )  is a 
pair of (possibly probabilistic) efficient algorithms SZG and VER such that VEf? 
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computes the function ver and such that the probability that SZG on input m returns s 
is precisely (sig ( m ) ) ( s  ) for all m and s . Furthermore, we require that: 

The signamre scheme is non randomly forgeable under a key-only attack: given a 
randomly chosen m E M ,  knowledge of the algorithm VER does not enable one 
(in feasible time) to find even one s E S such that ver ( m  , s ) = m e  (except with 
negIigible probability). 

The signature scheme is randomly simulatable: knowledge of the algorithm VER 
does enable one to come up efficiently with pairs (m  , s ) such that 

- ver(m,s)=true ; 

- the marginal probability on the m thus generated is uniform on M ; and 

- no matter which m is generated, the conditional probability on s is given by 

In other words, knowledge of VER does not enable one to forge signatures for 
randomly chosen messages, but enables one to forge pairs ( m , s )  that look just like 
what the legitimate signer would produce where she to choose a random message and 
sign it. 

A weak signature scheme is a generator of weak signature pairs. More precisely, 
it is a probabilistic algorithm G that outputs such a pair on input lk. The description 
of algorithms SIG and VER produced by G must be of a length polynomially related 
to k. The set S may be different from pair to pair, but the set M must always be 
(0, I }k. We require that every pair < SZG , VER > thus generated be randomly simulat- 
able. However, we only require that it be non randomly forgeable in a probabilistic 
and uniform sense: given any (possibly probabilistic) polynomial-time algorithm A ,  
any polynomial p ,  and any sufficiently large integer k, the probability that 
VER (rn , A  (k, VER, m)) = rrue is less than l l p (k ) ,  where VER is obtained by a call on 
G ( I k )  and m is a random element of (0 ,  (The probabilities are taken over all 
random choices of G and A ,  and over the random choice of m .) 

sig ( m ) .  

3. How to improve weak signature schemes 

Assume the existence of a weak signature scheme. A strong signature scheme can 
be obtained with the techniques of Bellare and Micali [BM]. The only modification is 
that algorithms for trapdoor permutations are replaced by the SZG algorithms and, simi- 
larly, the inverse of the trapdoor permutations are replaced in the obvious way by the 
application of the VER algorithms. For the sake of completeness, here is a brief 
sketch of the construction of Bellare and Micali, adapted for our purpose. 

Let k be an integer safety parameter and let I be the maximum length of the 
description of VER that can be produced by a call on G ( l k ) .  In order to set up a 
strong signature capability, each user obtains one weak signature pair < SZG ? VER > by 
a call on G ( l k ) .  The user also chooses Z+1 pairs (no ,  yo),  (xl,  y l ) ,  , . . , ( x ; ,  y l )  of 
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elements drawn uniformly at random among (0, l}k. These Z+1 pairs are made public, 
together with the description of algorithm VER . In order to sign a first bit b, the user 
exhibits SZG (xo)  if b = 0 or  SZG ( y o )  if b =I.  Furthermore, the user calls G (1 k, again, 
thus producing a new pair < SIG 1, VER >. The pairs (x  1, y J, . . . , (xl , y I )  are used 
to sign the description of VER bit-by-bit, much the s h e  way that (xo , y o )  had been 
used to sign bit b .  At this point, a second bit can be. signed by producing either 
SZG l(xo) or SIG 1( yo) ,  depending on the value of the bit to be signed. This process is 
continued in order to sign an arbitrary (polynomial in k) number of bits. 

The process by which such a signature can be verified should be clear. The reader 
is referred to [BM] for more detail, in particular for the various ways in which more 
than one message can be signed. The proof that this scheme is non existentially forge- 
able under an adaptive chosen message attack [GMR] (assuming that the underlying 
signature scheme is weakly secure) follows the lines of the proof given in [BM] and is 
not repeated here. 

4. The GQS signature scheme and how to use it 

Our main motivation for this work was to be able to use a simple, elegant and 
natural variant on Williams’ signature scheme as basis for the construction of Bellare 
and Micali [BM]. This work was necessary since this signature scheme does not yield 
a trapdoor permutation generator, because of difficulties (2) and (3) mentioned in Sec- 
tion 1, and because the removal of difficulty (4) through Yao’s construction would be 
expensive in practice 

Williams’ key observation [Wi] is that if n = p q  where p and q are primes 
congruent to 3 and 7 modulo 8, respectively, then -1 is a quadratic non-residue 
modulo n with Jacobi symbol +1, whereas 2 has Jacobi symbol -1. Such an integer is 
called a Williams’ integer. In his paper, Williams uses this property to remove a 
difficulty found in Rabin’s previously proposed scheme [Ra]: without using the secret 
factorization of n, Williams transforms any element of 25: between 1 and n/8  (or 
“my odd number between 1 and n/4” [Wi]) into an element of Z: that can be 
signed directly and deterministically (with knowledge of the factors of n )  by a scheme 
as hard to break as it is to factor n (under a key-only attack). (Recall that Z denotes 
the set of integers modulo n ,  whereas Z,* denotes the subset of Z,, consisting of 
those integers relatively prime with n . For simplicity, we confuse a residue class with 
its smallest non-negative representative, so that it makes sense to talk about an odd ele- 
ment of z ,* .) 

In the opinion of the current author, Williams’ observation could have been used 
in a much simpler way: if n is of the form proposed by Williams and if x E Zn , then 
exactly one among { x  , -x , 2 x ,  -2x } (modulo n )  is a quadratic residue, and whichever 
it is can be signed by providing one of its square roots modulo n. This idea was 
discovered independently by Guillou and Quisquater [GQJ and by Simmons cs] 

* 
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(see also [SP]). (In a personal communication, Quisquater has given credit to 
Goldwasser for the observation that there exists exactly one quadratic residue among 
{ X  , --x , 2x, -2x } modulo a Williams’ integer.) We refer to the resulting scheme and its 
immediate variants as the Guillou-Quisquater-Simmons (or GQS) signature scheme. 
We now describe in more detail a version of this scheme that is well suited for our 
purpose. 

Let k be an integer parameter. In order to build a weak signature pair, randomly 
choose two distinct primes p and q of binary length 1 + Lk/2 J and 1 + r k / 2 1 ,  respec- 
tively, such that p = 3 (mod 8) and q E 7 (mod 8). Compute n = p q .  Note that 
2k < n  < 4 X 2 k .  For any x E Z,*, let a denote the (possibly empty) set 
( Y  E X: I x z y 2  (mod n)}, and let c a r @ )  stand for the unique element of 
{ x ,  -x ,  k, -2x } (modulo n ) that is a quadratic residue. If X is a non-empty finite set, 
let u n i f ( X )  denote an element of X chosen randomly with uniform distribution. 

The weak signature pair corresponding to n is defined by the following algorithms, 
where M = (0, l}k will be confused with the set of integers between 0 and 2‘ - 1, and 
S=Z,: 

if gcd(m, n )  # I SZG(m) = { 
unif (I.lcar(m) otherwise , 

true if gcd(m,n)# l  and m = s  

VER(m*s)  = true if gcd(m,n)=l  ands  E (m,-m,Zm,-2m} (mod n )  2 1 false otherwise . 

The signing process is well-defined because n ~ 2 ~ ,  hence M c E n  . The reader 
can verify that all the desired properties of a weak signature scheme are fulfilled under 
the conjecture that factoring Williams’ integers is hard. (It is easy to see that it is non 
randomly forgeable under a key-only attack assuming the factoring conjecture; it is a 
bit more subtle to show that it is randomly sirnulatable - and the fact that n E O ( Z k )  
is important here.) Therefore, this weak signature scheme can serve as basis for the 
construction of Bellare and Micah in order to obtain a strong signature scheme. 

It should be pointed out that the version of the GQS signature scheme described 
above should not be used directly. Not only is it totally breakable under a chosen mes- 
sage attack, but it could even be broken under a known message attack [GhlRl if the 
same message is ever signed twice by the legitimate signer ! For this reason, Simmons 
[S] suggests that only one of the four elements of should be returned for any 
given m (for instance, we suggest that it be the one that is simultaneously odd and 
whose Jacobi symbol is +1 - this defines a unique signature because both prime fac- 
tors of n are congruent to 3 modulo 4). Nevertheless, this safeguard is not necessary 
if the basic scheme is used only as building block in the construction of Bellare and 
Micali in order to obtain a strong signature scheme. 
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