Implementation of a Key Exchange Protocol Using Real Quadratic Fields

Extended Abstract

Renate Scheidler
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2

Johannes A. Buchmann
FB-10 Informatik
Universität des Saarlandes
6600 Saarbrücken
West Germany

Hugh C. Williams
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2

Implementation of a Key Exchange Protocol Using Real Quadratic Fields

Extended Abstract

1. Introduction

In [1] Buchmann and Williams introduced a key exchange protocol which is based on the Diffie-Hellman protocol (see [2]). However, instead of employing arithmetic in the multiplicative group F^{*} of a finite field F (or any finite Abelian group G), it uses a finite subset of an infinite Abelian group which itself is not a subgroup, namely the set of reduced principal ideals in a real quadratic field. As the authors presented the scheme and its security without analyzing its actual implementation, we will here discuss the algorithms required for implementing the protocol.

Let $D \in \mathbf{Z}_{+}$be a squarefree integer, $K=\mathbf{Q}+\mathbf{Q} \sqrt{D}$ the real quadratic number field generated by \sqrt{D}, and $\mathbf{O}=\mathbf{Z}+\mathbf{Z} \frac{\sigma-1+\sqrt{D}}{\sigma}$ the maximal real quadratic order in K, where $\sigma=\left\{\begin{array}{llll}1 & \text { if } & D \equiv 2,3 & (\bmod 4) \\ 2 & \text { if } & D \equiv 1 & (\bmod 4)\end{array}\right.$.

A subset \mathbf{a} of O is called an ideal in \mathbf{O} if both $\mathbf{a}+\mathbf{a}$ and $\mathbf{O} \cdot \mathbf{a}$ are subsets of \mathbf{a}. An ideal is said to be primitive if it has no rational prime divisors. Each primitive ideal a in \mathbf{O} has a representation

$$
\mathbf{a}=\left[\frac{Q}{\sigma}, \frac{P+\sqrt{D}}{\sigma}\right]=\mathbf{Z} \frac{Q}{\sigma}+\mathbf{z} \frac{P+\sqrt{D}}{\sigma},
$$

where $P, Q \in \mathbf{Z}, Q$ is a divisor of $D-P^{2}$ (see [5]). Let $\Delta=\frac{4}{\sigma^{2}} D$ denote the discriminant of K, set $d=\lfloor\sqrt{D}\rfloor$.

A principal ideal \mathbf{a} of O is an ideal of the form $\mathrm{a}=\frac{1}{\alpha} \mathbf{0}, \alpha \in K-\{0\}$. Denote by \mathbf{P} the set of primitive principal ideals in O . An ideal $\mathrm{a}=\frac{1}{\alpha} \mathrm{O} \in \mathrm{P}$ is reduced if and only if α is a minimum in \mathbf{O}, i.e. if $\alpha>0$ and there exists no $\beta \in 0-\{0\}$ such that $|\beta|<\alpha$ and $\left|\beta^{\prime}\right|<\alpha$. Since the set $\{\log \alpha \mid \alpha$ is a minimum in $O\}$ is discrete in the real numbers R, the minima in \mathbf{O} can be arranged in a sequence $\left(\alpha_{j}\right) j \in \mathbf{Z}$ such that $\alpha_{j}<\alpha_{j+1}$ for all $j \in \mathbf{Z}$. If we define $\mathbf{a}_{j}=\frac{1}{\alpha_{\mathrm{j}}} \mathbf{O}$ for all $j \in \mathbf{Z}$, then the set \Re consisting of all reduced ideals in \mathbf{P} is finite and can be written as $\Re=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{l}\right\}$ where $l \in \mathbf{Z}_{+}$.

Define an (exponential) distance between two ideals $\mathbf{a}, \mathbf{b} \in \Re$ as follows: $\lambda(\mathbf{a}, \mathbf{b})=\alpha$ where $\alpha \in K^{>0}$ is such that $\mathbf{b}=\frac{1}{\alpha} \mathbf{a}$ and $\mid \log \alpha l$ is minimal.
(The logarithm of this distance function is exactly the distance as defined in [1] and [4].) Similarly, let the distance between an ideal $\mathbf{a} \in \mathscr{R}$ and a positive real number x be $\lambda(\mathrm{a}, x)=\frac{e^{x}}{\alpha}$ where $\alpha \in K^{>0}$ is such that $\mathbf{a}=\frac{1}{\alpha} \mathrm{O}$ and $\mid x-\log \alpha d$ is minimal.

Throughout our protocol the inequalities $\eta^{-\frac{1}{4}}<\lambda(\mathbf{a}, \mathbf{b}), \lambda(\mathbf{a}, x)<\eta^{\frac{1}{4}}$ will be satisfied for all $\mathbf{a}, \mathbf{b} \in \mathfrak{R}, x \in \mathbf{R}_{+}$, where η is the fundamental unit of K.

Lemma_ : Let $\mathbf{b} \in \mathfrak{R}$ and write $\mathbf{b}=\mathbf{b}_{j}, \mathbf{b}_{k}=\left[\frac{Q_{k-1}}{\sigma}, \frac{P_{k-1}+\sqrt{D}}{\sigma}\right]$ for $k \geq j$. Then the following is true:
a) $\quad \mathbf{b}_{k} \in \mathfrak{R}$ and $0<P_{k} \leq d, 0<Q_{k} \leq 2 d$ for $k \geq j$,
b) $\quad 1+\frac{1}{\sqrt{\Delta}}<\lambda\left(\mathbf{b}_{j+1}, \mathbf{b}_{j}\right)<\sqrt{\Delta}$,
c) $\lambda\left(\mathbf{b}_{j+2}, \mathbf{b}_{j}\right)>2$,
d) If $\mathbf{b}=\frac{1}{\beta} 0, \beta \in K_{>0}$, then $\lambda(\mathbf{b}, x)=\frac{e^{x}}{\beta}$,
e) $\lambda\left(\mathbf{b}_{k}, \mathbf{b}_{j}\right)=\frac{\lambda\left(\mathbf{b}_{k}, x\right)}{\lambda\left(\mathbf{b}_{j}, x\right)}$ for any $x \in \mathbf{R}_{+}, k \geq j$.

Since principal ideal generators and distances are generally irrational numbers, we need to use approximations in our protocol. Denote by $a(x)$ the reduced ideal closest to $x \in \mathbf{R}_{+}$, i.e. $|\log \lambda(\mathbf{a}(x), x)|<\| \log \lambda(\mathbf{b}, x) \mid$ for any $\mathbf{b} \in \mathfrak{R}, \mathbf{b} \neq \mathbf{a}$, and by $\hat{\mathbf{a}}(x)$ the ideal actually computed by our algorithm. Define $a_{+}(x)$ to be the reduced ideal such that its distance to x is maximal and <1. Similarly, $\lambda\left(\mathbf{a}_{-}(x), x\right)>1$ and minimal. Let $\lambda_{1}(x)=\lambda(\mathbf{a}(x), x)$, $\lambda_{2}(x)=\lambda(\hat{a}(x), x)$. Denote by $\hat{\lambda}(\mathbf{a}, x)$ the approximation of $\lambda(\mathrm{a}, x)$ computed by our algorithm; write $\hat{\lambda}(\mathbf{a}, x)=\frac{\mathrm{M}(\mathbf{a}, x)}{2 p}$ where $\mathrm{M}(\mathbf{a}, x) \in \mathrm{Z}_{+}$and $p \in \mathbf{Z}_{+}$is a precision constant to be determined later. $\hat{\lambda}_{1}(x), \mathrm{M}_{1}(x), \hat{\lambda}_{2}(x), \mathrm{M}_{2}(x)$ are defined analogously to $\hat{\lambda}(x)$ and $M(x)$ with respect to $\lambda_{1}(x)$ and $\lambda_{2}(x)$. Set

$$
G=1+\frac{1}{15(d+1)}, \quad \gamma=\left\lceil G^{-1} 2 p\right\rceil, \quad \chi=1+\frac{1}{2 p-1} .
$$

The protocol can be outlined as follows: Two communication partners A and B agree publicly on a small number $c \in \mathbf{R}_{+}$and an initial ideal $\hat{A}(c)$ with approximate distance $\mathrm{M}_{2}(c)$ from c. A secretly chooses $a \in\{1, \ldots, d\}$, computes $\hat{\mathrm{a}}(a c)$ and $\mathrm{M}_{2}(a c)$ from $\hat{\mathrm{A}}(c)$ and $\mathrm{M}_{2}(c)$, and sends both to B. Similarly, B secretly chooses $b \in\{1, \ldots, d\}$, calculates $\mathrm{A}(b c)$ and $\mathrm{M}_{2}(b c)$, and transmits both to A . Now both communication partners are able to determine an ideal $\mathrm{A}(a b c)$. Although this ideal need not be the same for A and B (due to
their different approximation errors in the computation), a little additional work will enable them to agree on a common ideal which is the secret key.

As pointed out in [1], we expect $l=|\Re| \gg D^{\frac{1}{2}-\varepsilon}$ for arbitrary ε if D is chosen correctly and sufficiently large. This shows that an exhaustive search attack is infeasible. The authors conjecture that breaking the protocol enables one to factor. In [1] it is proved that solving the discrete logarithm problem for reduced principal ideals in real quadratic orders given $a \in \mathscr{R}$ find $\lambda(a, x)$ - in polynomial time implies being able to both break the scheme and factor D in polynomial time.

Throughout the protocol we will assume $M(\mathbf{a}, \boldsymbol{x}) \geq \gamma$ for all $\mathbf{a} \in \mathcal{R}$ and $x \in \mathbf{R}_{+}$. Any number $\theta \in K$ is approximated by $\hat{\theta} \in \mathrm{Q}$ such that $\chi^{-1} \theta \leq \hat{\theta} \leq \chi \theta$.

2. The Algorithms

For our protocol we need to perform arithmetic in both \mathbf{P} and \mathfrak{R}. Our first algorithm enables us to compute any reduced ideal \mathbf{a}_{k} from a given reduced ideal a_{j} by simply going through \mathfrak{R} "step by step".

Algorithm 1 (Neighbouring in \mathfrak{R}): Input: $\mathbf{a}_{j} \in \mathfrak{R}$.
Output: The neighbours $\mathbf{a}_{j+1}, \mathbf{a}_{j-1} \in \Re$ and ψ_{+}, ψ_{-}such that $a_{j \pm 1}=\psi_{ \pm} a_{j}$.
Algorithm: a_{j+1} is obtained by computing one iteration in the continued fraction expansion of the irrational number $\frac{P_{j-1}+\sqrt{D}}{Q_{j-1}}$. The algorithm for a_{j-1} is the inverse of the algorithm for a_{j+1}. In particular:

$$
\begin{array}{lll}
q_{j-1}=\left\lfloor\frac{P_{j-1}+d}{Q_{j-1}}\right\rfloor, & P_{j}=q_{j-1} Q_{j-1}-P_{j-1}, \quad Q_{j}=\frac{D-P_{j}^{2}}{Q_{j-1}}, & \psi_{+}=\frac{\sqrt{D}-P_{j}}{Q_{j}}, \\
Q_{j-2}=\frac{D-P_{j-1}{ }^{2}}{Q_{j-1}}, & q_{j-2}=\left\lfloor\frac{P_{j-1}+d}{Q_{j-2}}\right\rfloor, P_{j-2}=q_{j-2} Q_{j-2}-P_{j-1}, & \psi_{-}=\frac{\sqrt{D}+P_{j-1}}{Q_{j-2}} .
\end{array}
$$

Algorithm 2 (Multiplication in \mathbf{P}): Input: $\mathbf{a}, \mathbf{a}^{\prime} \in \mathbf{P}$.
Output: $U \in \mathbf{Z}_{\geq 0}, \mathbf{c} \in \mathbf{P}$ such that $\mathbf{a a}^{\prime}=U \mathbf{c}$.

Algorithm: See [3], [4].

Lemma 2: If $\mathbf{a}=\mathbf{a}_{s}, \mathbf{a}=\mathbf{a}_{t}$ such that $\mathbf{a}_{s-1}, \mathbf{a}_{t-1} \in \mathfrak{R}$, then Algorithm 2 performs $\mathrm{O}(\log D)$ arithmetic operations on numbers of input size $\mathrm{O}(\log D)$.

Proof: By Lemma 1 all input numbers are polynomially bounded in D. The algorithm performs a fixed number of arithmetic operations plus two applications of the Extended Euclidean Algorithm which has complexity $\mathrm{O}(\log D)$.

Algorithm $\mathbf{3}$ (Reduction in \mathbf{P}): Input: $\mathbf{c}=\left[\frac{Q}{\sigma}, \frac{P+\sqrt{D}}{\sigma}\right] \in \mathbf{P}$.
Output: $\mathbf{b} \in \mathfrak{R}, G, B \in \mathbb{Z}_{\geq 0}$ such that $\theta=\frac{G+B \sqrt{D}}{Q}$ and $\mathbf{b}=\theta \mathbf{c}$.

Algorithm: The algorithm is very similar to Algorithm 1 and uses again the continued fraction expansion of $\frac{P+\sqrt{D}}{Q}$ (see [3]).

Lemma 3: If $\mathbf{c}=\frac{1}{U} \mathbf{a}_{s} \mathbf{a}_{t}$ where $\mathbf{a}_{s}, \mathbf{a}_{t}$ are as in Lemma 2, then Algorithm 3 performs $\mathrm{O}(\log D)$ arithmetic operations on numbers of input size $\mathrm{O}(\log D)$.

Proof: By [5], Algorithm 2, and Lemma 1, the maximun number of iterations is $\mathrm{O}(\log D)$. The bound on the input size follows from Lemma 1 and results in [4].

Algorithm 4: Input: $\hat{\mathrm{a}}(x), \hat{\mathrm{a}}(y) \in \mathfrak{R}, \mathrm{M}_{2}(x), \mathrm{M}_{2}(y)$ for $x, y \in \mathbf{R}_{+}$. Output: $\hat{\mathbf{a}}(x+y) \in \mathfrak{R}, \mathrm{M}_{2}(x+y)$.

Algorithm: First use Algorithm 2 to compute $U \in \mathbf{Z}, \mathbf{c}=\left[\frac{Q}{\sigma}, \frac{P+\sqrt{D}}{\sigma}\right] \in \mathbf{P}$ such that $(U) \mathbf{c}=\hat{\mathbf{a}}(x) \hat{\mathbf{a}}(y)$. Then compute $\mathbf{b}=\left[\frac{Q^{\prime}}{\sigma}, \frac{P^{\prime}+\sqrt{D}}{\sigma}\right] \in \Re$ and $G, B \in \mathbf{Z}_{\geq 0}$ such that $\mathbf{b}=\theta \mathbf{c}, \theta=\frac{G+B \sqrt{D}}{Q}$ using Algorithm 3. Finally apply Algorithm 1 to \mathbf{b} a certain number of times to obtain $\hat{\mathbf{a}}(x+y)=\zeta \mathbf{b}=\frac{\zeta \theta}{U} \mathrm{a}(x) \hat{\mathrm{a}}(y)$. Set

$$
\mathbf{M}_{2}(x+y)=\left\lceil\frac{\zeta \hat{\theta} \mathrm{M}_{2}(x) \mathrm{M}_{2}(y)}{2 P U}\right\rceil
$$

where $\hat{\zeta}, \hat{\theta}$ are rational approximations to ζ, θ, respectively.

Lemma_4: If $\hat{a}(x)=a_{s}, \hat{a}(y)=a_{t}$ such that $a_{s-1}, a_{t-1} \in \mathfrak{R}$, then Algorithm 4 performs $\mathrm{O}(\log D)$ arithmetic operations on inputs of size $\mathrm{O}(\log D)$.

Proof:By Lemma 2, computing \mathbf{c} takes $\mathrm{O}(\log D)$ arithmetic operations on inputs of size $O(\log D)$. By Lemma 3, the same is true for the computation of \mathbf{b}. From Lemma 1 it can be proved that, in obtaining $\mathbf{a}(x+y)$ from b, all numbers involved are polynomially bounded in D and $\mathrm{a}(x+y)$ can be obtained from b in $\mathrm{O}(\log D)$ iterations. *

Both communication partners can determine the key by using the following algorithm which is based on the idea of a standard exponentiation method:

Algorithm 5: Input: $\mathrm{A}(x) \in \mathfrak{R}$ for $x \in \mathbf{R}_{+}, \mathrm{M}_{2}(x), y \in \mathbf{Z}_{+}$. Output: $\mathrm{A}(x y), \mathrm{M}_{2}(x y)$.
Algorithm: 1) Determine the binary decomposition $y=\sum_{i=0}^{l} b_{i} 2^{l-i}$ of $y, b_{i} \in\{0,1\}, b_{0}=1$.
2) $\operatorname{Set} \hat{A}\left(z_{0}\right)=\hat{A}(x)$.
3) for $i=1$ to l do
a) Compute $\mathrm{A}\left(2 z_{i-1}\right), \mathrm{M}_{2}\left(2 z_{i-1}\right)$ using Algorithm 4.

$$
\operatorname{Set} \hat{\mathrm{A}}\left(z_{i}\right):=\mathrm{A}\left(2 z_{i-1}\right), \mathrm{M}_{2}\left(z_{i}\right):=\mathrm{M}_{2}\left(2 z_{i-1}\right) .
$$

b) if $b_{i}=1$ then compute $\mathrm{A}\left(z_{i}+x\right), \mathrm{M}_{2}\left(z_{i}+x\right)$ using Algorithm 4.
$\operatorname{Set} \hat{\mathrm{A}}\left(z_{i}\right):=\mathrm{a}\left(z_{i}+x\right), \mathrm{M}_{2}\left(z_{i}\right):=\mathrm{M}_{2}\left(z_{i}+x\right)$.
4) $\operatorname{Set} \mathrm{A}(x y):=\hat{\mathrm{a}}\left(z_{l}\right), \mathrm{M}_{2}(x y)=\mathrm{M}_{2}\left(z_{l}\right)$.

Lemma 5: If $\hat{\mathrm{a}}(x)=\mathbf{a}_{s}$ such that $\mathbf{a}_{s-1} \in \mathfrak{R}$ and y is polynomially bounded in D, then Algorithm 5 performs $\left.\mathrm{O}(\log D)^{2}\right)$ arithmetic operations on inputs of size $\mathrm{O}(\log D)$.

Proof: For each iteration, steps 3 a and 3 b each perform $\mathrm{O}(\log D)$ operations on numbers of input size $O(\log D)$ by Lemma 4. So the number of operations needed for step 3 is $\mathrm{O}(l \log D)=\mathrm{O}\left((\log D)^{2}\right)$.

3. The Protocol

Algorithm 6 (Initial values): Input: $r \in\{2, \ldots, d\}$.

Output: $\mathbf{a} \in \Re, M \in \mathbf{Z}_{+}$, such that the ideal \mathbf{a} and its distance M can be used as initial values for the protocol.

Algorithm: Set $\mathbf{a}=\hat{\mathbf{a}}(c)=\mathbf{0}, \mathrm{M}=\mathrm{M}_{2}(c)=\left\lceil 2 p_{r}\right\rceil$, where $c=\log r$. Then $\mathrm{M} \geq 2^{p+1}>\gamma$. Since $1+\frac{1}{\sqrt{\Delta}}<r=\lambda_{2}(c)<\sqrt{\Delta}$, we have $\mathbf{a}=\mathbf{a}_{-}(c)$.

In order to find a unique key ideal, all approximation errors $\rho_{2}(x)=\frac{\hat{\lambda}_{2}(x)}{\lambda_{2}(x)}\left(x \in \mathbf{R}_{+}\right)$in Algorithms 4,5 , and 6 must be close to 1 , i. e. p must be sufficiently large.

Theorem 1: Let $a, b \in\{1, \ldots, d\}, \hat{\mathrm{A}}(c), \mathrm{M}_{2}(c)$ as in Algorithm 6. Let $\hat{\mathrm{A}}(a b c)$ be computed by applying Algorithm 5 first to $\hat{\mathrm{A}}(\mathrm{c}), \mathrm{M}_{2}(c)$, and b to obtain $\hat{\mathrm{a}}(b c)$ and $\mathrm{M}_{2}(b c)$, then to $\hat{\mathbf{a}}(b c), \mathrm{M}_{2}(b c)$, and a to obtain $\hat{\mathbf{a}}(a b c)$ and $\mathrm{M}_{2}(a b c)$. If $2 p \geq 1280 d\left(d^{2}-1\right)$, then $\mathrm{a}(a b c) \in\left\{\mathrm{a}_{-}(a b c), \mathrm{a}_{+}(a b c)\right\}$ and $\mathrm{M}_{2}(a b c) \geq \gamma$.

The uniqueness of the key ideal is guaranteed by the following Lemma:

Lemma 6: Let $p, a, b, c, \mathrm{a}(c), \mathrm{M}_{2}(c)$ be as in Theorem 1. Set $x=a b c$.
If $\lambda_{1}(x)>G^{2}$ or $\lambda_{1}(x)<G^{-2}$ then $\hat{A}(x)=a_{-}(x)$.
If $G^{-2} \leq \lambda_{1}(x) \leq G^{2}$ then $\mathbf{a}(x)$ can be determined from $\mathrm{A}(x)$.
Proof: Omit the argument x for brevity. If $\lambda_{1}>G^{2}$ or $\lambda_{1}<G^{-2}$ then $\hat{\lambda}_{2}>G$ and hence $\lambda_{2}=\frac{\hat{\lambda}_{2}}{\rho_{2}}>1$, so $\hat{a}=\mathbf{a}$.

If $G^{-2} \leq \lambda_{1} \leq G^{2}$, then by Theorem $1 \mathbf{a} \in\left\{\mathbf{a}_{+}, \mathbf{a}_{-}\right\}$, so $\mathbf{a}=\mathbf{a}$ or \mathbf{a} is one of the neighbours of \hat{a}. From Theorem 1 it can be proved that $G^{-1} \leq \rho_{2} \leq G$ and hence $G^{-3} \leq \hat{\lambda}_{1}<\frac{1+2-\mathrm{P}}{1-G^{3} 2 \mathrm{P}} G^{3}$. So both communication partners can determine an ideal \mathbf{b} which is either \hat{a} or a neighbour of \hat{a} such that $G^{-3} \leq \hat{\lambda}(b, a b c)<\frac{1+2-p}{1-G^{3} 2^{p}} G^{3}$. Then it can be shown that $\frac{1}{1+\frac{1}{\sqrt{\Delta}}}<\lambda(\mathbf{a}, \mathbf{b})<1+\frac{1}{\sqrt{\Delta}}$ therefore by Lemma $1: \hat{a}=\mathbf{a}$.

We are now equipped to set up the protocol. We assume $2 p \geq 1280 d\left(d^{2}-1\right)$.

Protocol:

The two communication partners Alice and Bob perform the following steps:

1) Both Alice and Bob agree on D and a small positive integer r. They compute $\mathbf{a}=\hat{\mathbf{a}}(c)$, $\mathrm{M}=\mathrm{M}_{2}(c) \geq \gamma$ using Algorithm 6 where $c=\log r . D$, a , and M can be made public.
2) Alice secretly chooses $a \in\{1, \ldots, d\}$ and from a, M computes $\hat{\mathrm{a}}(a c), \mathrm{M}_{2}(a c) \geq \gamma$ using Algorithm 5. She sends both to Bob.
3) Bob secretly chooses $b \in\{1, \ldots, d\}$ and from \mathbf{a}, M computes $\mathrm{a}(b c), \mathrm{M}_{2}(b c) \geq \gamma$ using Algorithm 5. He sends both to Alice.
4) From $\hat{\mathrm{A}}(a c), \mathrm{M}_{2}(a c)$, and b, Bob computes $\mathrm{A}(a b c)$ and its two neighbours as well as their approximate distances (i.e. M values) using Algorithms 5 and 1 . If he finds among these an ideal \mathbf{b} such that $\frac{2 p}{G^{3}} \leq \mathbf{M}(\mathbf{b}, a b c)<\frac{(1+2 p) G^{3}}{1-2^{p} G^{3}}$, then $\mathbf{b}=\mathbf{a}(a b c)$. In this case he sends
' 0 ' back to Alice. If he cannot find such an ideal, then by Lemma 6 he can compute $a_{-}(a b c)$. In this case he sends ' 1 ' to Alice.
5) From $\mathrm{A}(b c), \mathrm{M}_{2}(b c)$, and a, Alice computes $\hat{\mathrm{A}}(a b c), \mathrm{M}_{2}(a b c)$ using Algorithm 5 . If she received ' 0 ' from Bob, then she computes the neighbours of $\mathrm{A}(a b c)$ and their M values and attempts to compute $\mathbf{a}(a b c)$. If successful, she sends ' 0 ' back to Bob. The common key is then $\mathbf{a}(a b c)$. Otherwise the ideal $\hat{\mathrm{a}}(a b c)$ she computed is $\mathbf{a}_{-}(a b c)$. In this case she sends ' 1 ' to Bob. If Alice received '1' from Bob, then he was unable to determine $\mathbf{a}(a b c)$, so we must have $\lambda_{1}(a b c)<G^{-2}$ or $\lambda_{1}(a b c)>G^{2}$ by Lemma 6 , in which case the ideal $\hat{\mathrm{a}}(a b c)$ computed by Alice is $\mathbf{a}_{-}(a b c)$. This is then the key. In this case she sends ' 1 ' back to Bob.
6) If Bob receives the same bit he sent, then the ideal he computed in step 4 is the key. The only other possibility is that he sent ' 0 ' and received ' 1 '. In this case Alice was unable to determine $\mathbf{a}(a b c)$. The key is then the ideal $\hat{\mathrm{a}}(a b c)=\mathbf{a}_{-}(a b c)$ initially computed by Bob.

References:

[1] J. A. Buchmann, H. C. Williams, A key exchange system based on real quadratic fields, extended abstract, to appear in: Proceedings of CRYPTO '89.
[2] W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, vol. 22, 1976.
[3] R. A. Mollin, H. C. Williams, Computation of the class number of a real quadratic field, to appear in: Advances in the Theory of Computation and Computational Mathematics (1987).
[4] A. J. Stephens, H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. of Comp. vol. 50, no. 182, April 1988.
[5] H. C. Williams, M. C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm, Math. of Comp. vol. 48, no. 177, January 1987.

