Implementation of a Key Exchange Protocol Using Real Quadratic Fields

Extended Abstract

Renate Scheidler Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2

Johannes A. Buchmann FB-10 Informatik Universität des Saarlandes 6600 Saarbrücken West Germany

Hugh C. Williams Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2

Implementation of a Key Exchange Protocol Using Real Quadratic Fields

Extended Abstract

1. Introduction

In [1] Buchmann and Williams introduced a key exchange protocol which is based on the Diffie-Hellman protocol (see [2]). However, instead of employing arithmetic in the multiplicative group F^* of a finite field F (or any finite Abelian group G), it uses a finite subset of an infinite Abelian group which itself is not a subgroup, namely the set of reduced principal ideals in a real quadratic field. As the authors presented the scheme and its security without analyzing its actual implementation, we will here discuss the algorithms required for implementing the protocol.

Let $D \in \mathbb{Z}_+$ be a squarefree integer, $K = \mathbb{Q} + \mathbb{Q}\sqrt{D}$ the real quadratic number field generated by \sqrt{D} , and $\mathbb{O} = \mathbb{Z} + \mathbb{Z} \frac{\sigma - 1 + \sqrt{D}}{\sigma}$ the maximal real quadratic order in K, where $\sigma = \begin{cases} 1 & \text{if } D \equiv 2, 3 \pmod{4} \\ 2 & \text{if } D \equiv 1 \pmod{4} \end{cases}$.

A subset a of O is called an *ideal* in O if both a + a and O a are subsets of a. An ideal is said to be *primitive* if it has no rational prime divisors. Each primitive ideal a in O has a representation

$$\mathbf{a} = \begin{bmatrix} \underline{Q} \\ \sigma \end{bmatrix}, \frac{P + \sqrt{D}}{\sigma} = \mathbf{Z} \frac{\underline{Q}}{\sigma} + \mathbf{Z} \frac{P + \sqrt{D}}{\sigma},$$

where $P, Q \in \mathbb{Z}, Q$ is a divisor of $D - P^2$ (see [5]). Let $\Delta = \frac{4}{\sigma^2}D$ denote the *discriminant* of K, set $d = \lfloor \sqrt{D} \rfloor$.

A principal ideal **a** of **O** is an ideal of the form $\mathbf{a} = \frac{1}{\alpha} \mathbf{O}, \alpha \in K \cdot \{0\}$. Denote by **P** the set of primitive principal ideals in **O**. An ideal $\mathbf{a} = \frac{1}{\alpha} \mathbf{O} \in \mathbf{P}$ is reduced if and only if α is a minimum in **O**, i.e. if $\alpha > 0$ and there exists no $\beta \in \mathbf{O} \cdot \{0\}$ such that $|\beta| < \alpha$ and $|\beta'| < \alpha$. Since the set $\{\log \alpha \mid \alpha \text{ is a minimum in } \mathbf{O}\}$ is discrete in the real numbers **R**, the minima in **O** can be arranged in a sequence $(\alpha_j)_{j \in \mathbf{Z}}$ such that $\alpha_j < \alpha_{j+1}$ for all $j \in \mathbf{Z}$. If we define $\mathbf{a}_j = \frac{1}{\alpha_j} \mathbf{O}$ for all $j \in \mathbf{Z}$, then the set \Re consisting of all reduced ideals in **P** is finite and can be written as $\Re = \{\mathbf{a}_1, ..., \mathbf{a}_l\}$ where $l \in \mathbf{Z}_+$.

Define an (exponential) distance between two ideals $a, b \in \Re$ as follows:

$$\lambda(\mathbf{a}, \mathbf{b}) = \alpha$$
 where $\alpha \in K^{>0}$ is such that $\mathbf{b} = \frac{1}{\alpha} \mathbf{a}$ and llog α is minimal.

(The logarithm of this distance function is exactly the distance as defined in [1] and [4].) Similarly, let the distance between an ideal $a \in \Re$ and a positive real number x be

$$\lambda(\mathbf{a}, x) = \frac{e^x}{\alpha}$$
 where $\alpha \in K^{>0}$ is such that $\mathbf{a} = \frac{1}{\alpha} \mathbf{O}$ and $|x - \log \alpha|$ is minimal.

Throughout our protocol the inequalities $\eta^{-\frac{1}{4}} < \lambda(\mathbf{a}, \mathbf{b}), \lambda(\mathbf{a}, x) < \eta^{\frac{1}{4}}$ will be satisfied for all $\mathbf{a}, \mathbf{b} \in \Re, x \in \mathbb{R}_+$, where η is the fundamental unit of K.

Lemma 1: Let $\mathbf{b} \in \mathfrak{R}$ and write $\mathbf{b} = \mathbf{b}_j$, $\mathbf{b}_k = \left[\frac{\mathcal{Q}_{k-1}}{\sigma}, \frac{\mathcal{P}_{k-1} + \sqrt{D}}{\sigma}\right]$ for $k \ge j$. Then the following is true:

a)
$$\mathbf{b}_k \in \mathfrak{R}$$
 and $0 < P_k \le d, 0 < Q_k \le 2d$ for $k \ge j$,

b)
$$1 + \frac{1}{\sqrt{\Delta}} < \lambda(\mathbf{b}_{j+1}, \mathbf{b}_j) < \sqrt{\Delta},$$

c)
$$\lambda(\mathbf{b}_{j+2},\mathbf{b}_j) > 2,$$

d) If
$$\mathbf{b} = \frac{1}{\beta} \mathbf{O}, \ \beta \in K_{>0}$$
, then $\lambda(\mathbf{b}, x) = \frac{e^x}{\beta}$,

e)
$$\lambda(\mathbf{b}_k, \mathbf{b}_j) = \frac{\lambda(\mathbf{b}_k, x)}{\lambda(\mathbf{b}_j, x)}$$
 for any $x \in \mathbf{R}_+, k \ge j$.

Since principal ideal generators and distances are generally irrational numbers, we need to use approximations in our protocol. Denote by $\mathbf{a}(x)$ the reduced ideal *closest* to $x \in \mathbf{R}_+$, i.e. $|\log \lambda(\mathbf{a}(x), x)| < |\log \lambda(\mathbf{b}, x)|$ for any $\mathbf{b} \in \Re$, $\mathbf{b} \neq \mathbf{a}$, and by $\hat{\mathbf{a}}(x)$ the ideal actually computed by our algorithm. Define $\mathbf{a}_+(x)$ to be the reduced ideal such that its distance to x is maximal and < 1. Similarly, $\lambda(\mathbf{a}_-(x), x) > 1$ and minimal. Let $\lambda_1(x) = \lambda(\mathbf{a}(x), x)$, $\lambda_2(x) = \lambda(\hat{\mathbf{a}}(x), x)$. Denote by $\hat{\lambda}(\mathbf{a}, x)$ the approximation of $\lambda(\mathbf{a}, x)$ computed by our algorithm; write $\hat{\lambda}(\mathbf{a}, x) = \frac{\mathbf{M}(\mathbf{a}, x)}{2^p}$ where $\mathbf{M}(\mathbf{a}, x) \in \mathbf{Z}_+$ and $p \in \mathbf{Z}_+$ is a *precision constant* to be determined later. $\hat{\lambda}_1(x)$, $\mathbf{M}_1(x)$, $\hat{\lambda}_2(x)$, $\mathbf{M}_2(x)$ are defined analogously to $\hat{\lambda}(x)$ and $\mathbf{M}(x)$ with respect to $\lambda_1(x)$ and $\lambda_2(x)$. Set

$$G = 1 + \frac{1}{15(d+1)}$$
, $\gamma = \lceil G^{-1}2^p \rceil$, $\chi = 1 + \frac{1}{2^{p-1}}$

The protocol can be outlined as follows: Two communication partners A and B agree publicly on a small number $c \in \mathbf{R}_+$ and an initial ideal $\hat{\mathbf{a}}(c)$ with approximate distance $M_2(c)$ from c. A secretly chooses $a \in \{1,...,d\}$, computes $\hat{\mathbf{a}}(ac)$ and $M_2(ac)$ from $\hat{\mathbf{a}}(c)$ and $M_2(c)$, and sends both to B. Similarly, B secretly chooses $b \in \{1,...,d\}$, calculates $\hat{\mathbf{a}}(bc)$ and $M_2(bc)$, and transmits both to A. Now both communication partners are able to determine an ideal $\hat{\mathbf{a}}(abc)$. Although this ideal need not be the same for A and B (due to their different approximation errors in the computation), a little additional work will enable them to agree on a common ideal which is the secret key.

As pointed out in [1], we expect $l = |\Re| >> D^{\frac{1}{2} - \varepsilon}$ for arbitrary ε if D is chosen correctly and sufficiently large. This shows that an exhaustive search attack is infeasible. The authors conjecture that breaking the protocol enables one to factor. In [1] it is proved that solving the *discrete logarithm problem* for reduced principal ideals in real quadratic orders given $a \in \Re$ find $\lambda(a, x)$ - in polynomial time implies being able to both break the scheme and factor D in polynomial time.

Throughout the protocol we will assume $M(a, x) \ge \gamma$ for all $a \in \Re$ and $x \in \mathbb{R}_+$. Any number $\theta \in K$ is approximated by $\hat{\theta} \in \mathbb{Q}$ such that $\chi^{-1}\theta \le \hat{\theta} \le \chi \theta$.

2. The Algorithms

For our protocol we need to perform arithmetic in both P and \Re . Our first algorithm enables us to compute any reduced ideal a_k from a given reduced ideal a_j by simply going through \Re "step by step".

<u>Algorithm 1</u> (Neighbouring in \Re): Input: $a_i \in \Re$.

Output: The neighbours $a_{j+1}, a_{j-1} \in \Re$ and ψ_+, ψ_- such that $a_{j\pm 1} = \psi_{\pm} a_j$.

Algorithm: a_{j+1} is obtained by computing one iteration in the continued fraction expansion of the irrational number $\frac{P_{j-1} + \sqrt{D}}{Q_{j-1}}$. The algorithm for a_{j-1} is the inverse of the algorithm for a_{j+1} . In particular:

$$q_{j-1} = \left\lfloor \frac{P_{j-1} + d}{Q_{j-1}} \right\rfloor, \quad P_j = q_{j-1}Q_{j-1} - P_{j-1}, \quad Q_j = \frac{D - P_j^2}{Q_{j-1}}, \qquad \psi_+ = \frac{\sqrt{D} - P_j}{Q_j},$$
$$Q_{j-2} = \frac{D - P_{j-1}^2}{Q_{j-1}}, \qquad q_{j-2} = \left\lfloor \frac{P_{j-1} + d}{Q_{j-2}} \right\rfloor, \quad P_{j-2} = q_{j-2}Q_{j-2} - P_{j-1}, \quad \psi_- = \frac{\sqrt{D} + P_{j-1}}{Q_{j-2}}.$$

<u>Algorithm 2</u> (Multiplication in P): Input: $a, a' \in P$.

Output: $U \in \mathbb{Z}_{\geq 0}$, $\mathbf{c} \in \mathbf{P}$ such that $\mathbf{aa'} = U\mathbf{c}$.

Algorithm: See [3], [4].

Lemma 2: If $a = a_s$, $a = a_t$ such that a_{s-1} , $a_{t-1} \in \Re$, then Algorithm 2 performs $O(\log D)$ arithmetic operations on numbers of input size $O(\log D)$.

Proof: By Lemma 1 all input numbers are polynomially bounded in D. The algorithm performs a fixed number of arithmetic operations plus two applications of the Extended Euclidean Algorithm which has complexity $O(\log D)$.

<u>Algorithm 3</u> (*Reduction in* **P**): Input: $\mathbf{c} = \begin{bmatrix} \underline{Q} \\ \sigma \end{bmatrix}, \frac{P + \sqrt{D}}{\sigma} \in \mathbf{P}.$

Output: $\mathbf{b} \in \mathfrak{R}, G, B \in \mathbb{Z}_{\geq 0}$ such that $\theta = \frac{G + B\sqrt{D}}{Q}$ and $\mathbf{b} = \theta \mathbf{c}$.

Algorithm: The algorithm is very similar to Algorithm 1 and uses again the continued fraction expansion of $\frac{P + \sqrt{D}}{Q}$ (see [3]).

Lemma 3: If $\mathbf{c} = \frac{1}{U} \mathbf{a}_s \mathbf{a}_t$ where \mathbf{a}_s , \mathbf{a}_t are as in Lemma 2, then Algorithm 3 performs $O(\log D)$ arithmetic operations on numbers of input size $O(\log D)$.

Proof: By [5], Algorithm 2, and Lemma 1, the maximun number of iterations is $O(\log D)$. The bound on the input size follows from Lemma 1 and results in [4]. \blacklozenge

<u>Algorithm 4</u>: Input: $\hat{\mathbf{a}}(x), \hat{\mathbf{a}}(y) \in \mathfrak{R}, M_2(x), M_2(y)$ for $x, y \in \mathbb{R}_+$.

Output: $\hat{\mathbf{a}}(x+y) \in \mathfrak{R}, M_2(x+y)$.

Algorithm: First use Algorithm 2 to compute $U \in \mathbb{Z}$, $\mathbf{c} = \begin{bmatrix} Q \\ \sigma \end{bmatrix}$, $\frac{P + \sqrt{D}}{\sigma} \in \mathbb{P}$ such that $(U)\mathbf{c} = \hat{\mathbf{a}}(x)\hat{\mathbf{a}}(y)$. Then compute $\mathbf{b} = \begin{bmatrix} Q' \\ \sigma \end{bmatrix}$, $\frac{P' + \sqrt{D}}{\sigma} \in \mathbb{R}$ and $G, B \in \mathbb{Z}_{\geq 0}$ such that $\mathbf{b} = \theta \mathbf{c}, \ \theta = \frac{G + B\sqrt{D}}{Q}$ using Algorithm 3. Finally apply Algorithm 1 to \mathbf{b} a certain number of times to obtain $\hat{\mathbf{a}}(x+y) = \zeta \mathbf{b} = \frac{\zeta \theta}{U} \hat{\mathbf{a}}(x)\hat{\mathbf{a}}(y)$. Set

$$M_2(x+y) = \left[\frac{\zeta \partial M_2(x) M_2(y)}{2^p U} \right],$$

where $\hat{\boldsymbol{\zeta}}, \hat{\boldsymbol{\theta}}$ are rational approximations to $\boldsymbol{\zeta}, \boldsymbol{\theta}$, respectively.

Lemma 4: If $\hat{\mathbf{a}}(x) = \mathbf{a}_s$, $\hat{\mathbf{a}}(y) = \mathbf{a}_t$ such that \mathbf{a}_{s-1} , $\mathbf{a}_{t-1} \in \Re$, then Algorithm 4 performs $O(\log D)$ arithmetic operations on inputs of size $O(\log D)$.

Proof:By Lemma 2, computing c takes $O(\log D)$ arithmetic operations on inputs of size $O(\log D)$. By Lemma 3, the same is true for the computation of b. From Lemma 1 it can be proved that, in obtaining $\hat{a}(x+y)$ from b, all numbers involved are polynomially bounded in D and $\hat{a}(x+y)$ can be obtained from b in $O(\log D)$ iterations.

Both communication partners can determine the key by using the following algorithm which is based on the idea of a standard exponentiation method:

<u>Algorithm 5</u>: Input: $\hat{a}(x) \in \Re$ for $x \in \mathbb{R}_+$, $M_2(x), y \in \mathbb{Z}_+$.

Output: $\hat{\mathbf{a}}(xy)$, $M_2(xy)$.

Algorithm: 1) Determine the binary decomposition $y = \sum_{i=0}^{l} b_i 2^{l-i}$ of $y, b_i \in \{0,1\}, b_0 = 1$.

- 2) Set $\hat{a}(z_0) = \hat{a}(x)$.
- 3) for i = 1 to l do

a) Compute $\hat{a}(2z_{i-1})$, $M_2(2z_{i-1})$ using Algorithm 4. Set $\hat{a}(z_i) := \hat{a}(2z_{i-1})$, $M_2(z_i) := M_2(2z_{i-1})$.

b) if $b_i = 1$ then compute $\hat{a}(z_i+x)$, $M_2(z_i+x)$ using Algorithm 4.

Set
$$\hat{\mathbf{a}}(z_i) := \hat{\mathbf{a}}(z_i + x), M_2(z_i) := M_2(z_i + x).$$

4) Set
$$\hat{\mathbf{a}}(xy) := \hat{\mathbf{a}}(z_l), M_2(xy) = M_2(z_l)$$

Lemma 5: If $\hat{a}(x) = a_s$ such that $a_{s-1} \in \Re$ and y is polynomially bounded in D, then Algorithm 5 performs $O((\log D)^2)$ arithmetic operations on inputs of size $O(\log D)$.

Proof: For each iteration, steps 3a and 3b each perform $O(\log D)$ operations on numbers of input size $O(\log D)$ by Lemma 4. So the number of operations needed for step 3 is $O(l \log D) = O((\log D)^2)$.

3. The Protocol

<u>Algorithm 6</u> (Initial values): Input: $r \in \{2, ..., d\}$.

Output: $a \in \Re$, $M \in \mathbb{Z}_+$, such that the ideal a and its distance M can be used as initial values for the protocol.

Algorithm: Set $\mathbf{a} = \hat{\mathbf{a}}(c) = \mathbf{O}$, $\mathbf{M} = \mathbf{M}_2(c) = \lceil 2^p r \rceil$, where $c = \log r$. Then $\mathbf{M} \ge 2^{p+1} > \gamma$. Since $1 + \frac{1}{\sqrt{\Lambda}} < r = \lambda_2(c) < \sqrt{\Delta}$, we have $\mathbf{a} = \mathbf{a}_{-}(c)$.

In order to find a unique key ideal, all approximation errors $\rho_2(x) = \frac{\hat{\lambda}_2(x)}{\lambda_2(x)}$ $(x \in \mathbf{R}_+)$ in Algorithms 4, 5, and 6 must be close to 1, i. e. p must be sufficiently large.

<u>Theorem 1</u>: Let $a, b \in \{1, ..., d\}$, $\hat{a}(c)$, $M_2(c)$ as in Algorithm 6. Let $\hat{a}(abc)$ be computed by applying Algorithm 5 first to $\hat{a}(c)$, $M_2(c)$, and b to obtain $\hat{a}(bc)$ and $M_2(bc)$, then to $\hat{a}(bc)$, $M_2(bc)$, and a to obtain $\hat{a}(abc)$ and $M_2(abc)$. If $2P \ge 1280d(d^2-1)$, then $\hat{a}(abc) \in \{a_{abc}, a_{abc}\}$ and $M_2(abc) \ge \gamma$.

The uniqueness of the key ideal is guaranteed by the following Lemma:

Lemma 6: Let p, a, b, c, $\hat{a}(c)$, M₂(c) be as in Theorem 1. Set x = abc.

If $\lambda_1(x) > G^2$ or $\lambda_1(x) < G^{-2}$ then $\hat{a}(x) = a_{-}(x)$.

If $G^{-2} \le \lambda_1(x) \le G^2$ then $\mathbf{a}(x)$ can be determined from $\mathbf{\hat{a}}(x)$.

Proof: Omit the argument x for brevity. If $\lambda_1 > G^2$ or $\lambda_1 < G^{-2}$ then $\hat{\lambda}_2 > G$ and hence $\lambda_2 = \frac{\hat{\lambda}_2}{\rho_2} > 1$, so $\hat{a} = a_-$.

If $G^{-2} \leq \lambda_1 \leq G^2$, then by Theorem 1 $\hat{\mathbf{a}} \in {\mathbf{a}_+, \mathbf{a}_-}$, so $\mathbf{a} = \hat{\mathbf{a}}$ or \mathbf{a} is one of the neighbours of $\hat{\mathbf{a}}$. From Theorem 1 it can be proved that $G^{-1} \leq \rho_2 \leq G$ and hence $G^{-3} \leq \hat{\lambda}_1 < \frac{1+2^{-p}}{1-G^3 2p} G^3$. So both communication partners can determine an ideal \mathbf{b} which is either $\hat{\mathbf{a}}$ or a neighbour of $\hat{\mathbf{a}}$ such that $G^{-3} \leq \hat{\lambda}(\mathbf{b}, abc) < \frac{1+2^{-p}}{1-G^3 2p} G^3$. Then it can be shown that $\frac{1}{1+\frac{1}{\sqrt{\Delta}}} < \lambda(\hat{\mathbf{a}}, \mathbf{b}) < 1 + \frac{1}{\sqrt{\Delta}}$ therefore by Lemma 1: $\hat{\mathbf{a}} = \mathbf{a}$.

We are now equipped to set up the protocol. We assume $2^p \ge 1280d(d^2 - 1)$.

Protocol:

The two communication partners Alice and Bob perform the following steps:

1) Both Alice and Bob agree on D and a small positive integer r. They compute $\mathbf{a} = \hat{\mathbf{a}}(c)$, M = M₂(c) $\geq \gamma$ using Algorithm 6 where $c = \log r. D$, a, and M can be made public.

2) Alice secretly chooses $a \in \{1, ..., d\}$ and from a, M computes $\hat{a}(ac), M_2(ac) \ge \gamma$ using Algorithm 5. She sends both to Bob.

3) Bob secretly chooses $b \in \{1, ..., d\}$ and from a, M computes $\hat{a}(bc)$, $M_2(bc) \ge \gamma$ using Algorithm 5. He sends both to Alice.

4) From $\hat{\mathbf{a}}(ac)$, M₂(ac), and b, Bob computes $\hat{\mathbf{a}}(abc)$ and its two neighbours as well as their approximate distances (i.e. M values) using Algorithms 5 and 1. If he finds among these an ideal **b** such that $\frac{2p}{G^3} \leq \mathbf{M}(\mathbf{b}, abc) < \frac{(1+2p)G^3}{1-2pG^3}$, then $\mathbf{b} = \mathbf{a}(abc)$. In this case he sends

'0' back to Alice. If he cannot find such an ideal, then by Lemma 6 he can compute $a_{a}(abc)$. In this case he sends '1' to Alice.

5) From $\hat{a}(bc)$, $M_2(bc)$, and a, Alice computes $\hat{a}(abc)$, $M_2(abc)$ using Algorithm 5. If she received '0' from Bob, then she computes the neighbours of $\hat{a}(abc)$ and their M values and attempts to compute a(abc). If successful, she sends '0' back to Bob. The common key is then a(abc). Otherwise the ideal $\hat{a}(abc)$ she computed is $a_{-}(abc)$. In this case she sends '1' to Bob. If Alice received '1' from Bob, then he was unable to determine a(abc), so we must have $\lambda_1(abc) < G^{-2}$ or $\lambda_1(abc) > G^2$ by Lemma 6, in which case the ideal $\hat{a}(abc)$ computed by Alice is $a_{-}(abc)$. This is then the key. In this case she sends '1' back to Bob.

6) If Bob receives the same bit he sent, then the ideal he computed in step 4 is the key. The only other possibility is that he sent '0' and received '1'. In this case Alice was unable to determine $\mathbf{a}(abc)$. The key is then the ideal $\hat{\mathbf{a}}(abc) = \mathbf{a}_{a}(abc)$ initially computed by Bob.

References:

- [1] J. A. Buchmann, H. C. Williams, A key exchange system based on real quadratic fields, extended abstract, to appear in: Proceedings of CRYPTO '89.
- W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, vol. 22, 1976.
- [3] R. A. Mollin, H. C. Williams, Computation of the class number of a real quadratic field, to appear in: Advances in the Theory of Computation and Computational Mathematics (1987).
- [4] A. J. Stephens, H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. of Comp. vol. 50, no. 182, April 1988.

[5] H. C. Williams, M. C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm, Math. of Comp. vol. 48, no. 177, January 1987.