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Abstract: A statistical cryptanalysis method for the initial state 
reconstruction of a noisy clock-controlled shift register using the 
noisy output sequence only, is proposed. The method is based on the 
sequence comparison approach. 

1. PROBLEM STATEMENT 

A review of clock-controlled shift registers is presented in Cl]. A 

statistical model of the clock-controlled shift register structure, 

which is under consideration in this correspondence, is shown in 

Fig.1. For simplicity, we assume that the shift register whose 

output is correlated with the generator output is one-two clocked. 
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Fig.1. A model of the clock-controlled shift register structure. 

A binary sequence {x,} is the output of a linear feedback shift 

register (LFSR) with characteristic polynomial f(x)=E;=ocL_eKe * 

Co’1 I and Xo=Cx_,l~=, IS the LFSR initial state. For example, 

a decimation sequence (a,) is the output of another binary shift 

register. The decimation box output is defined by y, = x 
f(n) ’ 

f(n) = n + X” j=l aj ’ n=0,1.2.... . 
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In the statistical model, (an) is regarded as a realization 

of the sequence of i.i.d. binary variables {A,} such that 

Pr(A =1) = 0.5 for every n . A binary sequence (en} is a 

realization of a sequence of i.i.d. binary variables (En} such 

that Pr(En=l) = p < 0.5 for every n , where p is the cross- 

correlation parameter, which may involve the plaintext statistics 
as well, [ 2 ] .  Finally, a binary sequence (zn} is defined by 

n 

In this correspondence. the problem of the initial state 

(Xo=[x-e]e=l )  reconstruction when f(X) , p , and a segment 

iZn}n=l 

L 

are known, is considered. 

2. INITIAL STATE RECONSTRUCTION 

A correlation attack [ 2 ]  is based on the Hamming distance between 
two binary sequences of the same length. Obviously, the same 
statistical approach can not be applied here. However. suppose we 

defined a suitable distance measure d between two binary 
sequences of different length, which reflects the transformation of 
the LFSR sequence {x,} into the output sequence (zn} according 

to the model displayed in Fig.1. Then, we could proceed along 
essentially the same lines as in [2 ] .  thus establishing a 
statistical procedure which we call a generalized correlation 
attack. 

Due to the assumed statistical model, each Xo gives rise to 

a conditional probability distribution on the set of all binary 
. We thus have a pattern recognition system with sequences 

gL classes corresponding to all the initial states of the LFSR. 
Given an observed segment { z ~ } ~ = ~  , an optimal decision strategy 

(yielding the minimum probability of decission error) is to decide 
on the initial state with maximum posterior probability. When the 
LFSR is regularly clocked, as in [ 2 ] .  i t  is optimal to decide on 

N 
{ =n)n= 1 

N 
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A 

the initial state Xo such that the Hamming distance between 

is minimum (a sufficient statistics). 

However, when the LFSR i s  clocked irregularly i t  is not clear how 

to find an optimum decision rule. Anyway, given an appropriate 

distance measure, we can define a minimum distance decision 

procedure which may be close to optimal. 

N * N  
{Zn}n=l and {Xnln=1 

Let { q n = 1  * be an LFSR sequence corresponding to the initial 

state Xo (typically. M Z 3N/2). Let d be the distance between 

{Xn}n= * I and {zn}n=l . Two cases-hypotheses are possible: 

A 

N 

Ho : the observed sequence { z ~ } ~ = ~  is produced by xo * ; 
A N HI : the observed sequence { z ~ } ~ = ~  is not produced by Xo . 

Consequently, d is a realization of a random variable D with 

two possible probability distributions (averaged over the ensemble 

of all the initial states): {Pr(DIHO)} and {Pr(DIH1)} . How to 
determine or estimate these distributions will be discussed in the 

next Section. Suppose that they are known. Note that they depend on 
N , assuming that W = M(N) . First determine the threshold t and 

length N so  as to achieve the given probabilities of "the  missing 

event" Pm and "the false alarm" Pf . As in [a], Pm is chosen 

close to zero (f .e.. and Pf is picked very close to zero, 

Pf 3 2-L , s o  that the expected number of false alarms is very 

small ( Z  1 ) .  Then. the decision procedure goes through the ,. 
following steps, f o r  every possible initial state xo : 

Step 2: calculate the distance d between { x ~ } ~ = ~  and bn)n=l' 

A M  Step 1: generate { x ~ } ~ = ~  , 

A M  N 

H1 . Step 3: according to the threshold t accept Ho or 

The output of the procedure is the set of  the most probable 

candidates f o r  the true initial state. The computational complexity 

is proportional to the number of possible initial states (for 

example. zL). 

3 .  A DISTANCE MEASURE AND RELEVANT PROBABILITY DISTRIBUTIONS 

A distance measure should be defined s o  that i t  enables statistical 
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and 

are picked at random, uniformly and independently. and 

second, when ( z ~ } ~ = ~  is obtained from ( x ~ ) ~ = ~  , according to the 

model in Fig.1. that is. by the deletion of some bits subject to 
the decimation constraints and by the complementation of the 
remaining ones, with probability p . This problem is a special 
case of the comparison problem between two sequences when one 
sequence is obtained from the other by symbol substitution, 
deletion. and insertion, which is extensively studied in the 
literature. For example. the sequence matching problem is 

considered in coding theory (see [3] ,  f o r  example) and text 
processing (see 151, for example). A review of the sequence 
matching techniques and applications is presented in [ 4 ] .  

. - M  discrimination between the two cases: first. when ( x ~ ) ~ = ~  
N 

{Zn}n= 1 
" H  

According to [ 4 ] .  one of the widely used distances is the 
Levenshtein distance 131.  Let the edit operations that transform 
one sequence into another be substitution, deletion, and insertion. 
Then, the Levenshtein distance between two sequences is defined as 
the minimum number of edit operations required to transform one 
sequence into the other. The various extensions of the basic 
Levenshtein distance are proposed in the literature. For our 
problem. the Constrained Levenshtein Distance (CLD) concept [7] is 

relevant. because the constraints are inherent to the decimation 
function (see relation ( 1 ) ) .  In [5]. [6], an efficient algorithm 
f o r  the constrained Levenshtein distance computation is proposed 

when the constraints relate to the total number of deletions. 
insertions, and substitutions. respectively. 

We define CLD* . the distance measure between {Xn)n= A 1 and 

as the minimum number of deletions and complementations (Zn)n= 1 

required to obtain { z ~ } ~ = ~  from { q n = 1  ' subject to the assumed 

constraint o n  the number of consecutive deletions. Whether this 
distance is a sufficient statistic5 remains an open question. but 
i t  is reasonable to believe that this is approximately the case. 

With the CLD* s o  defined, a problem is to determine the 
probability distributions {Pr(DIHO)} and {Pr(DIH1)}. According 

to the literature the problem appears very difficult. One approach 
is a nonparametric estimation . 

Another problem is to define a procedure for efficient 
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computation of the defined distance measure. Following the main 
ideas from [73. a novel dynamic programming algorithm can be 
derived that computes the desired-distance measure CLD in the 
following way. 

* 

X 
The Constrained Leuenshtetn Distance (CLD ) Computation Procedure: 

1.  Input: binary sequences 

2. Initialization: d(k.0) = k kz0.1. . . . .  M-N. 
. 

* 
d(0.e) = d(0.e-1) + (xe B ze) , e=1.2. ....N 

3. Recursive calculation for M > N : 
* * 

d(k,e) = min{ d(k-l.e-l)+(xk+e-l @Ze)+I d(k,e-I)+[xk+e@ze) 1 * 

t=1.2. . . . .  N . k=max{l. M-2N+e}, . . . .  M-N. 
4. Output: the CLD* between { x ~ } ~ = ~  : d* = d(M-N,N). 

The computational complexity of the procedure is quadratic 
O(N(M-N). 

Note that an arbitrary number of initial deletions is allowed. 
since the length M of { x ~ } ~ = ~  ,. that actually produced {zn}n=l N 

is not known (thereFore. one can assume that H = 2N+1). 
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