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Abstract 

Recently, formal compledty-theoretic treatment of cryptographic hash func- 
tions was suggested. Two primitives of Collision-free hash functions and Uni- 
versal one-way hash function families have been defined. The primitives have 
numerous applications in secure information compression, since their security : 
implies that finding collisions is computationally hard. Most notably, Naor and 
Yung have shown that the most secure signature scheme can be reduced to the ’ 
existence of universal one-way hash (this, in turn, gives the first trapdoor-less 
provably secure signature scheme). 

In this work, we first present reductions from various one-way function fam- 
ilies to universal one-way hash functions. Our reductions are general and quite 
efficient and show how to base universal one-way hash functions on any of the 
known concrete candidates for one-way functions. We then show equivalences 
among various definitions of harduess for collision-free hash functions. 

1 Introduction 

Cryptographic Hash Functions arc important tools in secure information com- 
pression and as building blocks for other cryptographic procedures. A hash 
function is cryptographically strong if collision finding is computationally hard. 

The usefulness of cryptographic hashing was used and known in practice 
[Ml, Gi, MZ] (and is already mentioned in the original DifIie-Hellman paper 
which introduced the notions of trapdoor and one-way functions and their ap- 
plications). Nevertheless, only recently two formal complexity-theoretic defi- 
nitions of cryptographic hash functions were given and implementations based . 
on one-way functions were suggested. 
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The first functioii family, suggested by Damgbrd, is the Collision-Free Hash 
Functions (CFIIF) ID], which is based on Claw-Free functions of Goldwasser, 
Micah and Rivest [GMRi]. The  second function family, suggested by Naor and 
Yung [NY], is the Uniuersaf One- Way Uash Function family (UOWHF). In a 
CFHF family, tlie function is given and tlien finding a colliding pair is hard, 
while in UOWMF definitioii is weaker: first an adversary chooses an input to 
compress and then the function is drawn a t  random; (the weaker definition may 
imply implementations based on weaker assumptions). 

CFHF family can be based on any one-way homomorphism. Its applicability 
was shown as this family when having also a trapdoor property was used to 
implement a secure signature scheme [GMRi, D]; it was also shown to  give 
efficient zero-knowledge proof-systems (NY]. On the other hand, [NY] showed 
that a secure signature scheme is reduces to tlie existence of UOWHF, and 
they show how to achieve UOWIIF based on 1-1 one-way functions, giving the 
first provably secure signature scheme which is trapdoor-less (unlike all previous 
secure signature schemes which liad followed the Diilie-Hellman model of basing 
signatures on a trapdoor propcrty). 

I t  is theoretically important to base Cryptographic primitives and basic tools 
on reduced complexity assumptions, it is also practically important to give ef- 
ficient implementations of such tools. In tliis work we investigate implcmenta- 
tions of cryptographic hash functions on reduced complexity assumptions and 
investigate reductions among various definitions of hardness of collision finding. 
We would like the reductions to be eficient as well. 

We first give a reduction from a 1-1 one-way function to a UOWHF (our 
proof is easier and the reduction is more efficient than the original construction 
in [NY]). We then show tlial a UOWIIZ: can be based on a one-way func- 
tion with the propcrty thal the cspectcd size of tlie preimage of an element 
in the range is small (i.e., when an element in the domain is randomly c h e  
sen). We call this function smull expccled preimap-size function. We then 
show how to  construct such a function i f  a regular function [GKL] is avail- 
able; this function family includes a large number of concrete examples (see 
[GKL]). Even more generally, we show how to reduce a very general one-way 
function family to a small expected preimage-size family. The general property 
requirement is that: given an element in the range, an estimate on the size 
of the preimage set is almost always easily computable (where the estimate 
should only be polyriomially close to the r e d  size). We call such a function an 
almost-known yrcinmge-size fundion.  This requirement is a mild one since i t  
implies some structurc of tlie domain-range rela.tionship which all concrete can- 
didates for one-way functions (based on number theory, algebra, coding theory 
or combinatorics (subset-sum)) have. Then, we investigate various definitions 
of hardness of hash functions and we show reductions and equivalences among 
the various dcfinitioiis; sucli relations may lead to finding CFHF based on re- 
duced complexity assumptions or on concrete functions which are assumed to 
be one-way. 

Recently, Rompel 11% come u p  with a construction of generating a UOWHF 
based on any one-way function [no]. This general construction does not rely 
on the approximate knowledge of the preimage size (the property mentioned 
above) and it is niucti iiiore involvcd tliaii ours. It is iiigeiiious and thcoretically 
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optimal, as i t  shows that the Nmr-Yung approach leads to a signature based 
on any one-way function (which is necessary by the work of Impagliazzo and 
Luby [IL]). However i t  is much less practical than the work presented here for 
all known concrete candidates for one-way functions. 

The rest of the paper is organized as following. Section 2 present b d -  
ground on one-way functions, univcrsal hash functions, UOWIIF, and signature 
schemes. T h c  reader familiar with these notions can skip this section. Section 3 
gives the construction based on any 1-1 one-way function, while Section 4 gives 
the construction bascd o n  s i i i a i l  cxpcckd prciniage-size, regular, and the most 
general almost-known preirnagc-six families. In section 5 we present reductions 
among different notions of difbculty of cryptographic hash functions. 

2 Notations and background 
Let z be a string, then 1.1 is the length of 5. Let z and y be two strings, 
then I o y is the concatenation of 2 and y. By the symbol "0" we mean the 
composition of functions. Thus, let f and g be functions, y = f o g(z) is the 

Probability ensembles: A probability ensemble D is the set (D, 1 n E N+) 
where D, is a distribution probability on (0, I}". For z E {0,1}", D[z]  is the 
probability assigned t o  z by D,. For X (0, l}", D [ X ]  is the sum C z E X  D[z].  
By the notation I ER 0, we mean that z has been chosen from the set B under 
the uniform distribution (i.e. each element i n  B has the same probability 1/181 
of being selected). 

Accessible ensembles: An ensemble D is accessible if there exists a prob- 
abilistic polynomial time algorithm G, sucli that on input n, the probability 
distribution induced by the output of C (depending on its internal coin-flips) 
is D,. 

Functions: A function j is a collection {jIL: {0,1}" {O,l}'(") I n E N+} 
where f ( n )  is the output Icngth. Ilcrcaftcr, for sake of brevity we often omit the 
subscript i n  J,. All functions considered will be polynomial time computable, 
i.e. given an input n and a n  argurIieiit 2, the value fn(z) can be computed in 
time polynomial in n. 

Definition 1 [One-way function.] j is one-way iffor euery polynomial time 
algorithm A ,  for all polynomials p and all siificiently large n, the probability 
that A on input f(z), wlrcn z ER (0, I}", outputs a y sucli that f (y)  = f(z) is 

value f ( S ( l ) ) .  

P r [ / ( l )  = J ( A ( j ( . r ) ) )  I I' E R  {0,1)"] < l/P(n). 

We remark that the above definition is or a slrung one-way function which 
is implied by the existence of the weaker somewhat one-way function using 
Yao's amplification technique [Y] .  A somewhat oirc-way functiorl has the same 
definition as above, but the hardness of inversion is smaller, i.e. its probabiIity 
is inverse polynomially away from 1. (In the above definition the probability is 
a t  most 1 - l /q(n)  for a given polynomial (instead of l / p ( n )  for any polynomial 
above) 1. 
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Unless stated otlierwisc, f will have input Icngth n and output length l(n). 
The requirement that the range of f has a uniform length is without loss of 
generality, as we may use a variable to fixed length encoding. For instance, i f f  
has output length less than or equal to ni, then we can construct a function f' 
with output length a t  most 27n (or ni + 2rlogml + 2) by employing a suitably 
prefix encoding [E] explained below. 

A prefix sct of strings is a set S with  tlic property that if any two strings 
x, y E S are such that I = y o  w (where w is a string) then I = y (and 20 is the 

to  R where R is a prefis set. 
In our case, the set is the range of a one-way function f (where f = f,,), we 

employ the followitig encoding f'(x) = O~'(z)~-lolof(x). This has the property 
that i t  is easy to compute f ' ( x )  given f(x) and vice-versa, even without knowing 
x. Since the range o f f '  is a prefix set, we can add dummy zeroes to make the 
range of the same length m. That  is f"(x) = f ' ( x )  o Om-~l ' (z)~.  

empty string). A prefix encoding from a set S to a set R is a bijection from s 

2.1 Collision-Free Hash Functions 
Let {nl,} and {no,}  be two increasing sequences such that for all i no, 5 ni,, 
but 3g ,  a polynomial such that 9(7t0,) 2 nl, (we say that these sequences are 
polynomially related). Let I I k  bc a collection of functions such that for all 
h E f z k ,  h: (0, l}"'~ - (0, and let U = Uk Hk.  Let A be a probabilistic 
polynomial time algorithm ( A  is a collihion adversary) that given a random 
h E E l k  attempts to  find 5 ,  y E { O , l } " l k  such that h ( z )  = h(y) but z # y. In 
other words, after getting a hash function it tries to find a collision pair. 

Definit ion 2 Such a U is culler1 u family of Collision-Free Hash Functions 
(CFHF) if  for all polynomials p ,  for (111 polynomial lime probalrilistic algorithm 
A ,  and all sufficiently large k the following holds: 

1. Pr[A(h)  = (x ,y) ,h(z)  = h ( y ) , y  # x] < l /p (n lk )  where the pro6a6ility is 

2. Vh E H k  there is a description of h of length polynomial in n l k r  such that 

taken ouer all /L E I Ik  and the ruridom choices of A .  

given h 's description and x, h( x) is compzita6le in polynomial time. 

generates uniformly ut random u description of h E I r k .  
3. EIk is irccessilrle : there exists [in al~oritlim G sucli that G on input 

Based on the existence of claw-free pcrmutations (as dcfined in [GMK]) 
one can construct a CFIIF [D]; also, based on any one-way function which is 
homomorphism, one can construct CFIIF. 

2.2 Universal Hash Functions 
The following defiliition is froni Cartcr and Wcgnmi [CW]. 

Definit ion 3 [Uiiiversalz hash  function.] Let G Ire a family of functions from 
C to B .  W e  say thrt C is u universaI2 if for any pair of inputs ( a l , ~ )  and 
any pair of outputs ( I r l , b z ) ,  the nuiiaber of functions that map a1 to bl and 5 2  

to 62 is IGI/IB12. 
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Let x E C, S 5 G - {x}, g E C and hy(x,S) be the number of y E s such 
that g(z) = g(y). Then by [CW], tlic expccted value 1.1 of bg(z,S), for each 
fixed I and S arid when 9 is tinifonidy chosen from C, is p = IS\/\BI. Markov's 
inequality tells us that wlicn 9 is randonily chosen from G tlieii for any t > 1: 

Pr[Sg(x,S) > t . p]  < l / t .  

Definition 4 [NY] (extended): 11 strongly universal2 fumily G has the collision 
accessibility properly if, given a requirement g(s) = a1 and g(y) = az, it is 
possible to generate in polynoniial time u funclion uniformly among all functions 
in G that o6ey h e  requirement. 

The above is an estendcd property which is necessary for our construction. 
A simple example of such a family (which wc will use from now on, just for 
clarity) is the set G,,,, = {go,b I fJah.b(Z) = chop(ax + b),a,b E GF(2")}, where 
all computations are in GF(2") and chop : (0, -+ {O,l}'" returns the first 
rn bits of its n-bit argument, We will dcnote by G, the set G,,,-1. An inter- 
esting property of the family G,,,,,, is that  each function is a 2'+,-1 function; 
i.e. exactly 2"-" elements in  the domain have the samc value in the range. In 
particular, when n = m + 1 tlic functions are 2-1; and when m = IZ, G,,, is a 
permu tation. 

From now on, all the strong universal2 families we consider are supposed to 
have the collision accessibility property. 

The following simple Icnima statcs that the composition of two universal2 
functions is still universa.12. 

Lemma 1 [Composition.] Let GI and G2 be two universal2 families from Ci 
to Cz and from Cz to C3, respectivelg. Then the set G = {g = g2 0 91 1 91 E 
G1,g~ E GZ} is a universal2 family from C1 to C3. 

2.3 Universal One-way Hash Functions 
In this subsection wc review tlic definition and the important properties of 
universal one-way has11 functions (UOWlIF) ,  as introduced and discussed in 

Let (71.1,) and {no,} be two increasing sequences such that for all i no, 5 nl,, 
but 3q, a polynomial such that ~ ( 7 1 0 , )  2 n1, (we say that these sequences are 
polynomially related). Let I I k  bc a collcction of functions such that for ail 
h E E l k ,  h: {O, l}" lk  ++ {O,l}nak and let U = Uk . I l k .  Let A be a probabilistic 
polynomial time algorithm ( A  is a collision adversary) that on input I ;  outputs 
I E (0, I}n'* which we call a n  initial uulue, then given a random h E Hk 
attempts to  find y E (0 ,  l } n ' k  such that / I ( . )  = h(y) but 2 # y. In other 
words, after getting a hash furiction it tries to find a. collision with the initial 
value. 

"YI. 

Definition 5 Such a U is cullcd u family of univcrsal one-way hash functions 
if for all polynomials p ,  /or  u11 polynoiniul h i e  protrutrilislic algorithms A,  and 
for all suficientlg large k the following holds: 
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I. If x E (0, l}"', is 11's irritial ualue, then P r [ A ( h , x )  = y, h(2) = h(y),y # 
x] < 1/p(n lk)  where Llce probability is tuken over all h E Elk and the 
randoin choices of A .  

2. Vh E I l k  llrere is u descriptioii of h of length polynomial in nIk,  such that 
given h's description and  x, l i ( x )  is conzputable in polynomiul time. 

3. Hk is acccssible : there exisls an  algorithm G such that G on input k 
generates uniformly at randoin a description of h E f z k .  

Notice that I l k  is actually a collection of descriptions of functions; two 
different descriptions might corrcspontl to the same function. 

In this definition the collision sdvcrsary cl is a (uniform) algorithm. We 
can altcrnativcly define UOWIIl: whcrc i l  is a polynomial sized circuit ( the 
non-uniform case). In this casc, all our results still hold, but we require the 
one-way fucctioiis Jha t  we use to be one-way in the non-uniform setting as well. 

An important properly is tlic composition lernrna: composing families of 
UOWHF yields a family of UOWIIF. Because of this lemniait will be enough to 
prove the existence of UOWHF that compress one bit. Invoking the composition 
lemma allows us to construct a family for any input and output size that are 
polynomially related. 

Let HI, I I z ,  ..., IIl be familics of functions such that V i  and Vh; E H i ,  
hi: {0,1}"1 c-) {0, l } n z - j  and n, < n;+l. We call II = { h  I h = hlohzo ... o h [ }  an 
1-compositioriof IZI, IIZ, ..., If[. II is a niultisct; I f h l o h z o  ... ohl = h i o h k o  ... oh; 
for different (h l ,  hz,  -. . , h i )  and (IL;, hi,. . . ,h i ) ,  both instances are membcrs of 
I . .  (In other words, we use the sct of concatenated functions and sample a n  
element by sampling eaclt I I ;  indcpciideiitly and uniforinly). 

Lemma 2 [NY] Let II be a n  1-decompositioii a s  h u e .  If there exists a n  a l p  
rithna A that produces a n  i n i t i d  value x and when given a uniformly rundom 
h E II Pr[A(h ,x)  = y,h(x) = h(y ) ,y  # x] > E ,  then there ezists an  1 5 i 5 1 
and an algorithm A' such that 

A' produces a n  in i t i d  ualiie xi E (0, l}"~  

then on input fi;  E I I ,  trics to j i r i r l  (1 y; that collides with 2;. 

Pr[A'(h; ,z , )  = y l , / ~ ( x , )  = / r ( y ; ) , g z  # x;] > c / l  whew the probabilities are 
taken ouer / i ;  E I f ;  and A' 's r.ciridorii choices. 

The running Lime of A' is siinilai- to that o j .4 .  

We rcinark tha t  an equivdent definition to the above is when the initial 
input x is chosen ( i r i  a more spccific way) a t  random. For a given h E II and 
z chosen by an  arbitrary way by A, one can come up with another UOWHF 
family H' = Gn,,, o II where G,,,,, is a uniuersalz permutation family, which 
randomizes the initial value. 

UOWIIF can be successfully applied to solve various authentications prob- 
lems. Signature schemes and public fiiigcrprintings for files among the others 
[NY]. Next we briefly describe sigiiature schemcs, and how to base a trapdoor- 
less secure signature scheiiie on UOWIIF. 
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2.4 Signature Schemes 
In this subsectioii wc review thc dcfinilion of a signature scheme, its security 
and the relation of I.raptloor-less signature schemes and UOWIIF. For a more 
complete treatment, the reader is eiicouraged to consult the original paper (NY]. 

Digital signature is a primitive suggested riglit a t  the birth of modern 
(public-key) cryptography by Dine and Hellman [DII]. The first implemen- 
tations of their idea providcd digital signature as well [MII, RSA, R]; these 
proposed signature scliemes were based on trapdoor one-way functions, but 
lacked a precise notion of security. Following [DII], signature systems design 
has become an extensive field of research (sce [GMRi]); we concentrate here 
only on provably secure systems. 

The first scheme to deal formally with the notion of security of signature 
scheme was suggested by Goldwasscr, Micali slid Yao [GMY] who also pointed 
out flaws in the Diflie-IIellnian schcme. They based their probabilistic scheme 
on the problem of factoring. Tlien, the strongest known definition of security 
was formalized by C:oldwasser, Micali, and Rivest [GMRi]; they defined what 
i t  means for a systein to be ezislcnliuffy unjorgeuble under an adaptive chosen 
plaintezt attack (which we call “secure” i n  the rest of the paper). This is an 
attack by an adversary (forger) who initially computes a plaintext and re&ives 
from the Signature algorithm a corresponding valid signatures; this is repeated 
in an adaptive fashion, polyuoinially marly times. Then, the forger has to 
produce, without thc cooperation of the signature algorithm, an extra signature 
for a message that was not previously signed. A secure system was designed 
under the assumption that Factoring is Iiard, or a more general assumption 
that claw-free trapdoor perniulations exist. Bellare and M i C a l i  [BeM] have 
shown how to construct secure signature system based on the assumption that 
trapdoor one-way perinutations exist; this matches the original saggestion of 
Diffie and Hellman, but this time the system had a proof of security. 

Naor and Yung [NY] were the first to conceive that the trapdoor property is 
not necessary for secure signature, (even one robust against the adaptive chosen 
plaintest attack). Thcy proved that a one-way permutation is sufficient and 
invented the primitive of universid one-way hash family (UOWIIF) to  achieve 
(among other things) a sccurc signature. 

2.4.1 

A signature scheme includes the following components: 

Definition of a Signature Scheme and its Security 

1. A securily pomnzeler. /i wliich detcrinincs tlic size of kcys, rncssagcs and 

2 .  A rnessuge space hil S, wc allow all messages of a givcn size polynomial in 

3. A key conzporxnl which inclutlcs ;L key space I < S ( k )  a family from which 
keys are bciiig drawii aiid ;L gcnciulion algo7.ilhtn I i A L  which cliooses 
random keys. 

4. A signallire 6011r2d S B ,  a polynoniid rcprcsenting a bound on the number 
of messages signed; s n y  polynomial should work. 

other resources; ail sizes and i~lgorithms are polynomial in  k. 

k. 
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5. A systein s t a k  Y wliicli represents the state of the system; there is an 

6. A signing n f g o t i h n  S A L  which  is given a message, a system state, and a 

7. A uerijica~iorr afgorillrni V A L  which is given a message, a signature and 

A signature system is a distributed system in which each user is apolynomial- 
time machine which initiates its instance of thc signature scheme. 

Next we dcscribe attacks on signature schemes. The most general attack on 
a signature scheme ([GMRi]) has two phases. First, it allows a polynomial-time 
adversary F (a jorger) to use the signa.ture algorithm in an adaptive fashion, 
getting signatures t o  polyiiomially many plaintests of its choice. Next, the 
attack has aii existential nature, ix., tlie forger itself has to come with a valid 
signature of a new message of its clroice, i n  which case we say that i t  was 
successful. A scheme is p-forgcabfe if for a polynomial p there is a forger F 
which for infinitely many k's, succeeds in the attack with probability larger 
than l/p(k), where the probability is taken over tlic random choices of keys by 
K A L ,  the choices of t1;c signatures by S A L ,  and tlie coin flips of F itself. We 
say that a system is secure if i t  is not 11-forgeable for any polynonlial p .  

initial state aiid esccutioii states. 

key, generates a signaturc aiid updates tlie system's state. 

a systeni's state, checks thc validity of the signature. 

2.4.2 

Here we review the new approach to signature scheme as dcveloped in [NY]. 
We briefly describe thcir reduction of signature to UOWIIF. 

Consider the Difie-lam port tagging system [La]. It consists of making pub- 
lic a one-way function 1 i L n d  a ~umdozo, which is an ordered pairLof values 
< J(z0 ) , f ( z1 )  >, for randomly chose11 zO, xl  in  thc function domain. The 
user, then, is committed to tlie window and later on when it  sends a bit b, it is 
done by publishing a tag x b ,  an operation we call opening haZJa window. We 
say that the other half of tlic window remains unused. The construction can 
be extended to tag a mcssage of length rn-bits, by initially publishing (com- 
mitting) t o  a row o~winr fows  [< j ( x ; ) , J ( x ; )  > , i  = 1, ... ,n] and then opening 
the halves corresponding to the bits of the message. Since f is one-way, only 
the committed user can opcii a tag, aiitl 110 one else can t'ag a different message 
unless it can invert a randoiii value of 1, furthermore, anyone can verify tags; 
in this sense the system reseniblcs a signature scheme. 

The  drawback of the above systcm is that the size of the initial commitment 
limits the number of bits which can be tagged; to climinate it (and transform i t  
into a signature scheme) [NY] s u a e s t s  to use UOWHF. The general strategy of 
their system is to estend the tagging system, enhancing it with the capability 
of "regenerating rows of windows". The systeni is represented as a linked fist, 
a systeni's state is a list consisting of nodes. Each nodc is associated with a 
message, i.c., it tags that messagc. The node is also connected to its successor 
in the list, i.c., it tags the succebbor liotle t b  well. 

The nodc N ,  cont&ns thrcc data fields: h, a UOWHF, and two rows of 
windows rnz, and r ~ , ,  the fiist will i ~ g  ihc ticxt nicssage M,+l while the second 

A Signature Scheme based on UOWHF 
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one will tag the successor node in  tlic list, Nj+l .  The UOWIIF family is publicly 
known, or is otherwise produccd by each user. 

Next we skctch thc algorithms and the dynamic behavior of the system. 
The system h a s  ail initial statc (slate 0) in which a user deposits an initial 
(root) node No in the public directory. 

In a typical situation tile sysleiu is i n  stale S;-l wlicre there is a list of 
i - 1 nodes and the lust-node N ; - I  is rrnuscd. The connection between nodes 
will be explained in thc following skctch of the sigiiaturc and the verification 
algorithms. 

SAL: Each message signing changes the state of tlie system, the list is grown 
by a node which becomes the new last-node. At state s;-1 the user sends a 
message hfi and tags it using thc row I ’ T I Z i - 1 ,  furthermorc a new node Ni is 
generated by algorithm K A L :  AT; =< h;, rnzj,rs; > where its components are 
chosen at random: h; is a r;Lndom clcinent of the UOWHIF family based on f, 
and the rows are encryptioii by J or raiidorn tag values. 

In order to link the new node inlo the list, Llie user has to tag the new node 
by its prcdeccssor. Noticc thal tlic IICW node as a string or random bits is larger 
than the tagging capabilitics of the row T S ; - ~  which was  given this tagging task! 
Here is whcrc the UOWHF hash is needed i n  a non-trivial way. The algorithm 
first computes the hash value of the new node by evaluating ni = h ; - ~ ( N i ) ,  
then the snialler string ni is bcing tagged by opening the corresponding half- 
windows in rs;-1. This defines a signature on Mi and a new valid state of the 
system sj .  

VAL: A verification of a validity of a message can bc done by checking the 
tagging of the message M; by rmi-1 a d  testing the validity of tlic system’s 
s ta te  by checking that  the tagging of u j  = h j - I (N j )  is a valid one, namely, it 
was done by a proper  opening of rsj-1 Tor all j = 1,. . . ,i - 1. This is done all 
the way to the root niid if dl checks arc valid the user accepts the signature. 

Since a UOM’IIF iinplics the esislciicc of a one-way function [NY], we can 
state that: 

Theorem 1 [IVY] I/  U O W I I F  exist, Ihen the signalure schcme described above 
is secure. 

It is also possiblc lo iniprovc tlic cficieiicy of the above scheme [Go, NY]. 

3 UOWHF Based on 1-1 One-way Func- 
t ions 

Naor and Yung [NY]  showed how to construct UOWIIF from any 1-1 one-way 
function. In this section wc dcscribc a construction diffcrcnt from them which 
is easier to prove and is more cconomicd in the numbcr of applications of one- 
way function used in the construction. Actually only a single application of a 
onc-way function is used. 

Lct f be a 1-1 one-way fuiiction (i.e. a 1-1 function that is also one-way), 
with input length 71 and output Icrigth f(n). 

Define 11, = { I t  -1 gn OQ,+~ o ... ogl(,,) o In 1 g, E GI}, wltere G, is a strongly 
universal2 family from i-hi1 strings lo ( z  - 1)-bit strings. 
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Theorem 2 U = U,, II,, ( b a s 4  on f-f one-way function) i s  a W O W I F  family. 

Proof. The proof is by contradiction. If thcrc is a polynornial time algorithm 
that can find collisions for a. ra.ndoiuly choscii h ,  then it call be used to  invcrt 
the one-way function j .  

Supposc thcrc is ao algoritlitii A ,  that 011 i n p u t  n produccs an 5 E {0,1}” 
and given a randonily chosen h fl,, outputs a y such that h(z )  = h(y) 
and 2 # y, with probability greater than 6 (hcrc the probability is taken over 
ER If,, and the random choices of A) .  Given z and gn, ..., gl(,), denote by 

C O L i ,  n 5 i 5 l(n) ,  the set of y such that g;og;+I o...og~(,)ofn(z) = giogi+10 

Let j, ~t 5 j 5 l ( n ) ,  bc a n  integer such that with probability a t  least 
t/(l(n) - n + 1) thc algorithm A,  on input 2: and h ER II,, gives a value 
A ( z , h )  E COLj .  Such a j niust csist by the pigeonhole principle (wlog now 
we assume it is known). 

Given I and g j + l ,  ..., gt(,&), Ict I/[’ bc the sct of gj E Gj such that lCOLjl 5 
4(l(n) - n f 1 ) / ~ ,  i.c. the sct of fiiiictioiis wliiclr have zero or more, but not too 
many, collisions ill C.’O L, . 

The probability Pr[il( .r ,h) E COLj]  that A on input z and h ER II, ,  
returns a valiic in COLj  can be wrilteii as 

P r [ A ( x , h )  E C O L j  I gj = g]Pr[g] t Pr[A(z ,h)  E C O L j  and gj 4 W ] ,  

* . * o ~ ~ ( n ) ~ f n n ( ~ )  and, for i < l (n) ,  g i + ~ ~ . . . o g ~ ( n ) ~ j n ( z )  # gi+1 o . . . o ~ I ( ~ ) o ~ ~ ( Y ) *  

g€w 

where Pr[g] is the probability or choosiiig g from Gj undcr the uniform dis- 
tribution. T h u s ,  for g E 14’ wc havc Pr[g]  = Pr[bV]/IIVI, where Pr[W]  = 
CgEw Pr[g],  and liciice P r [ A ( x , k )  E COLj]  is equal to 

l ‘ ~ [ A ( z , h )  E C O L ,  I y j  = g]Pr[l. l’]/[I .VlfPr[A(r,h) E COLj and g j  4 W]. 
g€w 

Let g E. W aud u be such that g o gj+1 o ... o fn(i) = g o gj+] o ... o fn(zL) and 
g j t l  0 ... 0 f n ( z )  + gj+1 o ... o fn(u) .  Sincc g is a 2-1 function, the number 
of elements in C O L j  is equal to thc numbcr of collisions the composition of 
the first l (n)  - ( j  + 1) + 1 universal2 functions (that is in turn a universal2 
function), makcs with u. Thc espcctcd numbcr of collisions for this con ips  
sition, 691+10...og~(,,)ol,,(11,{~ # u}), is cqud to (2’’ - 1) /2 j ,  wliich is lcss than 
2. Thus, froin the Markov’s iiiequa.lity it  follows that givcii z if wc randomly 
choose 9j+l ER G‘j+i ,  ..., g ~ ( , ~ )  E R  C,(r,) ,  and 9 in Gj, then the probability, 
1 - P r [ w ]  = Pr[ICOL,I > 4(/( n)  - 7 1  + I ) / ( ]  is lcss than ( 1 / 2 ) ~ / ( l ( ? z )  - n 4- 1). 
Since P r [ A ( z , h )  E COLj  a11d gJ @ I+’] 5 I-’r[ICOL;l > 4 ( 1 ( 7 ~ )  - n + I)/€] and 
bccausc P r [ A ( z , h )  E C‘OL,] 2 c / ( l ( 7 1 )  - n + I ) ,  i t  follows 

and thus 

Now, consider tlic algoritlim A’ t1i;i.l 011 input 2 = fn( tm) whcrc w E R  { O , l } n ,  
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1. runs A to produce z (if fn(z) = z stop successfully -this is, of course, 

2. for i = 71, ..., j - l , j  + 1, ..., 1(7i), randomly chooses gi En Gi; 
3. randomly chooses gj 

4. gets y by runiiiiig cl oii i i ipu t  /i = gn o ... ogr(,,) o /, and 2; 

5. outputs y. 

negligible) ; 

Gj such that 9, o gj+1 o ... o Y~(,)-,,+~ o fn(z) = 
g j  0 Q ~ + I  0 ... 0 g~(n)-n+l(z); 

Notice that tlie probability that gj+i o ... o gI(,,) o fn(z) = gj+l o ... 0 g+,)(z) 
is 1/23, which is negligible; in this c u e  we say that A’ fails and we can stop 
it. Otherwise, with probability ys = 1 - 1 / P ,  f - ’ ( z )  belongs to COLj (by the 
forced collision). Nest we compute the probability of inversion of z when A‘ 
does not stop. For the rest of the calculation ps will be a multiplicative factor 
of the successful event. 

Denote by D the distribution on G j ,  according to which gj is chosen a t  
step 3. This is not a n  unirorm distribution, n o t  even among the functions in 
G, that have at least one collision g, o c ~ j + ~  o ... o g[(,) o jn(z) = 9, o gj+l 0 

... o gl(n) o jn(y), 9 # z. Indccd, fool. a.oy two functions g’,g’’ we have = 
(ICOr;j(s’)l/lCOLj”’’)l)~~’’I, whcrc COLj(g)  is the set COL, when gj = 9. 
Tha t  is the probability D [ g ]  o f a  lunction g to be choseii at step 3 is proportional 
to the number of collisions thcre arc in COLj(g),  thus it is dependent on the 
previous choices of gj+1, ...,qn). 

The number of elements i n  COLj  is given by 6g,+lo...og,(,)o~,(f-1(z), {Y # 
f-’(z)}), and its expected value when h lras been chosen according to A‘% dg* 
rithni, is equal to (P- 1)/2J, which is lcss than 2. Thus, from Markov’s inequd- 
i ty  i t  follows that D [ W ]  is greater than or equal to pJ(1-(1/2)c/(l(n)-n+1)}. 
Let 0’ and g” be two functions i n  14‘. Froin Db‘] = ( I C O L ~ ( S ’ ) ~ ” C O ~ ~ ( ~ ’ ’ ) ~ ) ~ ~ ] ,  
it follows that Db’] 2 ~ , ~ ( l / l I / ~ l ) ( c / { ~ I ( I ( ~ ~ ) -  n+ I)}){ 1- ( I / Z ) c / ( f ( n ) - n + I ) } .  

The probability Pr[ t l ’ ( z , / r )  E C‘OLj] Litat A‘ on input z and h chosen by 
A’ in W,, returns a value in COLj  is at least 

C P ~ A ( I , / ~ )  E COLj I gj = s I ~ [ s I ,  
S E W  

which is greater than or equal to 

Making use of ( t ) ,  it Collows t l i i L i  Pr[A‘(z, / i .)  E COLj] is greater t h a n  

The probability lhat g, E TY wlicn it is chosen accordingly to At’s algorithm 
is D [ W ]  2 ps  { 1 - (1/2)( c/ (  I (  n )  - n + 1))). When A’ at step 5 returns an element 
Y E COL, that  collides with x ,  tlicll tlic probability that j ( y )  = z is l/lCOLjl 
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(since 2 is not a n  input to A) .  IIcnce the probability that y = A’(z ,h)  satisfies 
f(y)  = t is a t  least 

C E 

2 l( ’71) - 7& -k 1 

which is polynoiiiially relatctl to E (uolicc tliat, say, ps > 1/4). c i  

4 Further Reducing Complexity Assump- 
t ions 
Next ,  we show how to construct UOWIIF using one-way functions that are 
more general. First, we show that a function with a small preimage size gives 
us a UOWHF as well. This will be followcd by a more gcncral result: a function 
with the propcrty that  tlie cspccted size (wlicn an element in the domain is 
randomly chosen) of tlic prcimage of an clcment in the range is small gives us a 
UOWHF. We show also I I O W  to coiislruct such a function if a reguiar function 
[GKL] is available, or evcn wlicn a fllI~ct.ion wliere given an element in the range 
an estimatc (wit11 polynomial unccrta.inly) on the sizc of tlic preimage sct is 
easily computable. 

4.1 
Expected Preimage Size 

UOWHF Based on One-way Functions with Small 

Here we describe how to construct a UOWIIF if a one-way function that  has 
a t  most only polynornially many collisions on the average is available. We 
first dcfinc formally what we mean by small preimage size and then by small 
expected preimage size. Roughly spcaking, thc latter is a function f with the 
property that for a randomly clioscii z, tlic cspccted size of the preimage of f(z) 
is small. Then, wc discuss wliy the previous sclicme docs not work with such 
functions. We dcscribc a sclic~rle lor llicse runctions and prove its correctness. 
In the next subsection we show how to construct such a function when it  is 
only required that tlicrc is a feeasihle algorithm that when given an element z 
in the range, it gives a rclativcly good estimate on the sizc of the preimage set 

The  propcrty or A small preimage sizc is shared by ,211 1-1 one-way func- 
tions, but also include for csainplc, one-way functions bnscd on tlie gcncralized 
factoring assumptioii of composite with two or niore primes, such as moduIar 
squaring (whose inversc is cstrscting squarc roots) (sce [GIiL]). 

Defini t ion 6 Let T ( . )  be a JuncLion J1-0171 N+ to N + .  A one-wuy Junction hus 
u r(n)-preirnuge six i j jor  each I E {O, i}’, 

f-l(z). 

l r - l ( m ) l  5 r(n>* 

Definit ion 7 Lel r( .) be (1 junction Jrom N +  LO Nf. A one-wuy junction has 
an ezpccted r(n)-preiniuge-six iJ when I is runclomly chosen in (0, l}n the 
ezpected size o.ff-’(f(s)) is ut niosl r ( n ) .  
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Defin i t ion  8 A om:-wry jiinclion j h i i s  (1 smull expected preimuge-size if there 
is a polynoiiiial p siich t h d  J hub U I I  c ~ p c c h l  7~(ii)-yreirnugc-si~ee.  

Let j be a one-way function wi th  espccted p(n)-preirnage-size. Denote by 
b , ( z , { y  # z}) the numbcr of clcincnts such that /(y) = f(z), then Markov's 
inequalityimplies that  f-'r[b,(z, {I/ # x}) > ~ . p ( n ) ]  < 1 / f ,  where the probability 
is over the choiccs of z €13 (0, l}?. Tlic Markov's inequality essentially states 
that there is only a negligible probability that there are more than polynomially 
many collisions. This is an important property for the proof of our scheme for 
UOWIIF. 

Why the previous sclrcnae docs not work with small preinauge size functions 
Suppose we use tlic same scheine tlcscribcd earlier to construct UOWHF based 
on 1-1 functions, but wc plug in ap(n)-preimage size function as the underlying 
one-way function. So, h is constructcd as gn og,+1 o ... og+,) o fn, where each gi 
is a hash function that shrinks tlic input by onc bit. To prove its correctness we 
should derive a contradictioii with the dilliculty of inverting f ;  i.e. the ability 
to easily find a collision for tlic h would imply the ability to invert the f .  It is 
immediate that  this approarli is doomed LO failure. Indeed, suppose that there 
is a poly-timc aIgoritIim t i ia l  OII i i i p u l  :c outputs y such that f(z) = f ( y )  and 
y # z (this is not i n  contrarliction \v i l l i  the difficulty of inverting /). Then, 
this latter algorithm can bc used to find a collisioii for h. Squaring modulo a 
compositc is such a fuliction J ,  so is any oiic-way function which is independent 
of part of its input and j u s t  applies to the rcst of the argument. . 

A provably secure sclicme 
We just saw the  problcm in dealing with lunctions that arc not 1-1, as the 
difficulty of inverting docs not  rulc out the possibility of easily finding collisions 
for thc one-way fuiiction and may 11ius jcopardizc the security of the h function 
tha t  is bascd on i t .  IIcrc ivc show how to deal with this problem. 

{0,1)" -t {O,l} ' (n)  I rr E Nt) be 
a one-way function with the output Iciigth l ( n )  and cspcctcd p(n)-preimage- 
size, wherc p ( - )  is a polynomial. R.ccall that G, ,~~lo ,n~~+6J  and G; are families 

of universal2 functions from {0,1)'& to {0,1)L('~gn)'+'J and from {0,1)' to 
(0, l};-I, respectivcly. For a positive iiitegcr k, let fi, bc the set of functions 
hk: (0, I } ~  -, (0, lJk-' rIcfincd ;is 

Let 6 > 0 be a consta.nt. Lcl j = 

% p (  111) = I / k  0 ,qk+] 0 ... 0 g l ( k )  0 j p ( w )  

wherc g; E C ; ,  i = k, ..., I ( k ) .  Lei. I / , ,  bc tlic set of IuIictions h: {0, l}" -+ 

{O,I}'+I defincd as 

h ( r )  = ~[~)o(~',-~~,"~~,)It~j 0 ... ox . , , oh ' ( s ) )  

A -  

where 9 E G,,~(logn)1+6J, h, E lli, i = n - L ( l o g ~ i ) I + ~ J ,  ..., n, and h' E Gn,n  is a 
universal2 permutation. 

To randomly choose an elcmcnt in  U,, we first randomly select g ER 
G , : L ( ~ ~ , ~ ) I + ~ J ,  thcn h' ER G,,,, and fiiially h; ER IIi, i = n - [(logn)l+sJ,...,n, 
uniformly and iiidcpcndcntly horn cacli othcr. 

- 
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In the above sclicnic to compress c bits one ncctls to apply onc-way functions 
only [(log n)'+'J + c times. 

Theorem 3 U = U,, H,,, based on sninll ezpecled preiniage funclions as above, 
is a UOkVHF fumily. 

Proof. Suppose tlrcrc is an algorithm A ,  that on input n produces an 2 E 
(0 , l )"  and giveii a, rantlonily clroscn h E R  / I ,  outputs a y such that h ( z )  = h ( y )  
and z # g, with proliability greater tlian E .  As for the previous proof of 
Theorem 2, we will describe ii proliabilislic poly-time algorithm A' that on input 
z = j ( w ) ,  where w has been raiitlornly cliosen, finds a u such that J ( u )  = J ( w ) ,  
with probability polynoinially related LO c. 

It is unlikely tliat A on input x and / i  ~n I., returns a value y,= A(z,h) 
such that y # z, g(y) = g(x) and hn(y) = x,(z). Indeed, when h, ER fin, 
h' ER G,,,, and g G,,l(logn)1+61, tlie probability that there exists a y 
such that f,,(h'(z)) # j n ( / ~ ' ( y ) ) ,  g(y) = g(2) and Ih,(y) = Ihn(t) is a t  most 
2n/2n-1+L(10g7L)'+dJ, which is ncgligible. Moreover, when h' ER G,,n, and 
g ER G,,l(log,1)1+6~, the probability that thcrc exists a y such that J,(h'(z)) = 
J,(h'(y)) and g(y) = g(x), is a t  niost p ( ~ i ) / 2 L ( ' ~ g ~ ) ' + ~ J  (by hilarkov's inequality) 
which is negligible. (This is iiitlcctl thc rcason why, i n  the definition, \(log n)"'] 
of the output bits of h(z )  have becii chosen to be an hashed value of I through 
tlie universal2 g.) Thus, we wsiirnc this is not the case (we can assume that 
for all sufficicntly largc 71, this will Irappen with probability a t  lcast 1/2, t o  be 
generous). 

Given z and h,  denote by COL; ,  71 - 1(logn)'+'j 5 i < n, the set - of y such 
that g(z) = g(y), h.io ... o h , , ( x )  = / i ;o  ... o/n,(y) ant1 h,+lo ... oL,,(z) # hi+lo ... 0 

h,(y). Fix an  integer j ,  t i  - L ( l o g ~ ) ' + ~ J  5 j < A, such that with probability 
a t  least (1/2)c/(L(Iogn)'+'J + 1) tIie aIgoritIim A ,  on input I and h E R  H,,  
returns a value A ( x ,  1 1 )  E COL,. Such a . j  must exist by the  pigeonhole principle 
(wlog we a~suiire iiow thal j is ki iuwii) .  

Let /zj Lc tlic conipositioii ol g j  o g,+] o ... o g r ( j )  o /j, and let s = hj+l 0 
... o x,, o f,(z). Denote by Ci, I: = j ,  ..., l ( j ) ,  the set of y E COL,, such that  
9; 0 gi+1 0 ... o qi(j) o f j ( ~ )  = 9; o g'+l o ... o gr(j) o f j (y)  and, for i 4 l ( j ) ,  
gi+1 o ... o g"j) o fj(s) # g;+1 o ... o gl(j) o Jj(y). And denote by C I ( ~ ) + ~  the set 
of y E COL, such that J j ( s )  = /j(y). Fis mi iiitcgcr k ,  j 5 k 5 l ( j )  + 1, 
such that with probability at least (1/2)c/(( [(log n)'+'J f l)(l(j) - j + 2)) the  
algorithm A ,  on input z and / I  En /I,,, returns a. va.lue A ( r , h )  E ck. Such a k 
must exist by the pigcoiihoIc priiicipIe (wlog we assume now that k is known). 
Wc distinguish two cases: k 5 I ( j )  ;i.ii(I 1; = f ( j )  + 1. 

Suppose k 5 f(j). Consider 1.1ic ;i.lgori1.iiiii A' tliiit on iiiput i = j j ( i u ) ,  where 

* A 

* 

A 

w ER (0, I}': 

1. runs A to prodlice x; 

2. randomly C~IOOSCS g El i  C',r,~(lugn)~+~j; 

3. for i = 71 - [ ( I o ~ ~ L ) ~ + ' J ,  ..., j - l , j  + 1, ..., 72, randomly chooses hi ER H i ;  

4. for i = j ,  ...,I; - 1, k + 1, ..., I ( j ) ,  randomly chooses gt ER G;; 

- - 
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,. .. 
5. computes s = hj+l o ... o 11, o J n ( x ) ,  and rantloiiily cl~ooscs gk ER G'k such 

that gk o g k + l  o ... o gl(j) o J , ( s )  = gk o yk+l o ... o ~ ~ ( ~ ) ( t ) ;  
1 

6. constructs h, = gj o gj+I o ... o gk o _.. 0 gi(1) 0 1,; 
7. Constructs h as the pair g ,zud tlic composition /r,-l(log,,)l+~J o ... oh,  

8. gets u by running A on input I and h; 

.. - 

9. outputs y = Iz,,,, 0 1.. 0 h I Z ( U ) .  

Notice that thcrc is a negligible probability that fj(s) = z ,  in which case 
we invert z. Thus, assume tliis is not tlie case. 

Every hash function ( b u t  gk a.t step 5 )  is randomly chosen by A'. Let us 
denote by D the distributioii untlcr \vliich such gk is chosen by A'. If D were 
the uniform distribution aiitl wcr'e iiidcpcttdciil Irom the choices of the other 
hash functions, then the prol)iLbility of A' returning a colliding u in the set ck 
would be the same as for A.  Tlic cspcctetl number of f values whose inputs are 
from (0,131 t ha t  collide untlcr the universal2 hash  function gk o ... o gib) is at 
most 2j/2"-' 5 2; and thus it is unlikely that there are more tliaii polyiiomially 
many collisions (from t h e  M;irko_v's incrluality). Thus, when A gives a collision 
'U E Ck, the value f o Kj+i o ... oh,,( 11)  is onc of the j colliding values, and there 
is a non-negligible probability 1lia.t Lhis is exactly z = f ( w )  (in which case we 
invert 2). Unfortuni~lely, D is not the uniform distribution but, as in the A% 
algorithm of Theorem 2, i t  is close etiougli (for our purposes) to it. The  proof 
of this case is essentially ~ l i c  Same of Tllcorenl '2 and, thus, is omitted here. 

NOW, suppose k = l ( j )  + 1. IIcrc, the liypotlicsis is that rl on input 2 and 
h E R  EI, returns, with probability a t  least L (1/2)c/(( [(log - n)1+6] -+ l)(l(j) - 
j + 2)), a y # 2 sucli that  fj o A j + l  o ... o A, , (x)  = f j  o hj+, o ... o h,(y) and 
hj+l o ... o h,(z) # h j + l  o ... o hn(y). Now, we construct an algorithm A' that, 
by first running A ,  compiitcs a pi~ir of colliding atid difTerent eleincnts in Ck. 
And then, by running algor'ithiii il again, esploits the compnted collision to try 
to invert an J value. More roriiially, llic a.lgoritlrin A' on input z = fj+l(w), 
where w E/< (0, I}'+': 

-. A .. 

1. runs A to produce a11 i i i i t i i i l  .t'; 

2. "computes a colliding paif 111 # 112 such t11a.t JJ(pl)  = fj(p2)" 

(a) randomly cliooscs g E J ~  c;'n,L(,og ,,)1+6J; 

(b) for i = n - L ( l o g 7 ~ ) ~ ~ ~ ] ,  ..., 7 1 ,  randoiuly chooses hi E n  H i ;  

(c) constructs Ii as the pair 9 a.nd tlic coml>osition h , , - ~ ( l o g n ) l + 6 j  o...oh,; 
(d) gets u by running il on input 2 and h;  
(e) computes lhc pair p I r p 2  a s  p1 = hj+l o ... o h I t ( z )  and pz = / i j + l  o ... o 

A - 
- 

- A A - 
hn(u); 

3. for 2 = j + 2, ..., f ( j  + l ) ,  r~l.lidonlly cllooscs 9; El{ c,; - 
4. randomly cliooscs g1+l C,+I sucli that gj+l ~ . . . o g , ( ~ + ~ ) o f j + ~  o h j + 2 0  - 

+.. 0 /hn(ZJ = IJ1 alld gj+1 0 ... 0 ~ ' J r ( j + l ) ( Z )  = 112; - 
5. coiistructs h j + l  = gj+l o gj+2 o ... o ~ l ( j + ~ )  o jj+1; 

6.  constructs h a.. tlic pair. g and tlic composition h, , -L( logn) l+6]  o ... oh,; 
A 
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7. gets u by running .$I 011 iriput .I‘ ,uid h; - - 
8. outputs I/ = Ill+> o ... o / I , , (  u). 

The probability that thc pair 1 ~ 1  , p Z ,  compiited at  step 2, is such that p1 # pz 
and f 1 ( p l )  = J l ( p l )  is a t  least (1/2)c/(( L(logn)’+‘] + l ) ( l ( j )  - j + 2)) (this is 
a bound on the probability of A outputting an dement in Ck). Assume such 
a pair is successfully obtained a t  stcp 2 .  Let us  denote by D the distribution 
under which gk is chosen by A’ a t  stcp 4. All other hash functions (but gk) 
are randomly chosen by A’. As for the previous case, if D were the uniform 
distribution and were indcpendcnt from the choices of the other hash functions, 
then the probability of A‘ returning a colliding u in the set Ck would be the 
same as for A .  The expcctctl numbcr ol Jl+l values that collide under the 
universal2 hash function yJ+l o ... o grO+l)  is a t  most 23+’/2-’ = 2, and thus 
i t  is unlikely tha t  tlicrc arc more than polynoniially many collisions (from the  
Markov’s inequality). Thus, a t  stcp 7 when A returns a collision u E ck, the 
value f3+l o It1+* o ... o / in( . )  is one of the JJtl colliding values, and there is a 
non-ncgligiblc probability that tliis is exactly 2 = fl+l(w) (in which case we 
invert 2). Unfortunately, D is not the iuniforni distribution but, as in the A”s 
algorithm or Theoreni 2 and i i i  the previous casc, it is close enough (for our 
purposes) to it.  Thv formrd proor of tliis case, b;tscd on similar techniques as 

c t  

* .-. 

i n  the previous proof, will lw givcii i t i  t h r  f i i i d  papcr. 

4.2 
size 

One-way functions with almost-known preimage- 

In this subsection we show how to construct a small expected preimage-size 
function if there is a function whicli has a feasible algorithm that when given 
an element z in the rangc, gives a. good cstiinate on the size of the prcimage 
set f-’( z).  

Defin i t ion  9 A orre-way Jzriiclion lins 11 alinosl-knoturr preiinagc-size if there is 
4 polynorniul p und (1 poly-limc dcIct’iiriirislic olgorilhin P R E S I Z E  such that, 
on input z = j ( z ) ,  re111nu u vnltrc 

for 411 x E (0, I}”, ezccpl u negligible jrrrction of Uieiii .  

A particular case of almost-knowii prcimagc-size one-way function is a reg- 
ular function [GKL]. This is a function where evcry ima.ge of an n-bit input 
has the same number of prcimagrs of Icngtii n, another such function is de- 
coding raudom linear codes (see [GKI,]). Subset sum [IN] is another example 
of this functioii. Also a p(n)-pr.cini;i.ge size function is a particular case of a 
almost-known preimage-size functioii. I n  [IN] the fuilction subset-sum is used 
directly as a UOWIIF, exploiting the iiistanccs of subset-sum which compress 
their argumeiit (froni 7 1  bits to 1(n) = (1 - c ) n ) .  On the other hand, the  most 
secure instance of subset-sum is shown to be Icngth-preserving instances (from 
n bits to I(n) = n bits or I(n) = n t O(1ogn)); all subset-sum instances are 
“almost-known prcimagc-size” and (if onc-way) can be used in our scheme. 
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Let f Le ;L alinost-knowii prciinagc-size one-way function, and P R E S I Z E  
be an algorithm that gives a i l  approxi~riatioir witliiri p ( i )  to the preimage size 
of f. Define i ( z )  = [log(P RK-Sf Zf<( f(x)) t p(1xl))1, and define f' as 

/ ' ~ Z O Y )  = j ( ~ ) ~ ~ o [ ~ ( r ) l i ( x )  

where z E (0, l}", g E G,,, and [yjk is the first k bits of y. 

possible to prove tlie follo~vil~g lcinma. 
Along the line of Lemma 5.1 o l  Impagliazzo, Levin, and Luby [ILL], i t  is 

Lemma 3 f' is u one-wuy fuizcLiou, wheii x ER {011}" and 9 ER G,,,*. 
Moreover, given rrindonily choscii r E R  (0, I}" urid 9 E R  G,,,, the expected 
number o j y ,  y # x, tlial collide j ' ( y )  = J ' ( T ) ,  is l J - ' ( J ( ~ ) ) 1 / 2 ~ ( ~ )  5 1. 

The range of f' may contain elements of different Icngths. But, as mentioned 
in Section 2, it  is an easy task to construct an equivalcnt function with the range 
of the same length. Thus,  as a corollary of Thcorem 3 wc have the following 
general result. 

Theorem 4 If there is. n cilinosl-known preiniage-six (or u regular) function 
then there is a UOWIIF, cind Ifitis ( I  sigiiaLiire schcnie. 

5 
tographic Hash 

On Various Notions of Security of Cryp- 

In this section wc give a nuiiibcr o l  tlcfinitions of hardness of one-way hash 
functions or one-way functions, with rcspcct to collision finding. Our motivation 
is to demonstrate an  cquivalcnce among a large set of possible dcfinitions SO 

that  any primitive wliicli satisfics OJW of tlie conditions will automatically satisfy 
the other definitions. This will denionstrate the robustness of thc definition of 
CFIIF, and may be suggesting a possiblc way to attack the problem of finding 
new and lcss restrictive irnI'lcnicliti~tions of CFIIF. 

Next we define a few classcs of furictioris according to tlie hardness propertics 
which they satisfy. 

We identify the foIlo\vi~lg fil';I,milic.s of functions; essciitia.lly the idea is to 
classify all possible ways a collisioii is generated by a faatnily o l  cryptographic 
hash functions. Wc assume tIia.t all the functions bclow arc accessible and  
computable in polyiiomid-ti me. 

71 is a Collision-free liasli family. 

F = {Fk} is a collcctioii of pil.irs or functions SUCII  that there is a poly- 
nomial p a n d  whcn ( J l , j 2 )  E l f  jr, f r [ l{(x,y)  : f l ( z )  = fZ(y))l > 01 > 
l/q(k). But, for all polyrioinials q ,  for a11 eficiciit algorithms A ,  and for 
all suficientiy Iargc I; ,  f ' r [ ~ ( j l , j J )  = ( .x ,y)  : j1(x) = /z(y)] < 1/q(k) 
when JI , h Fk. 
G = { G k }  is iL  collection of p;i.irs of ftllictioiis such that tlicre is a polyno- 
m i d  q and when (g l lg2)  € 1 2  yk f J r [ l { z  : g ~ ( z )  = g2(z)}) > 01 > 1 /q (k ) .  
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But, for all polynomials p ,  for all cfficicnt algorithms A,  and for all 
suficiently large k ,  P r [ A ( g , , g ? )  = x : gl (z)  = g2(x)] < I / p ( k )  when 
81,112 E l <  3 k .  

R is a collection of functions sucl~ that there is a polynomial q and when 
r ER R P r [  I{. : r ( x )  = O } l  > O] > I/q(lxl). But, for all polynomials p ,  
for all efficient algorithms A,  and for all suficiently large k ,  P r [ A ( r )  = 
z : r ( x )  = 0] < I / p ( k )  whcn r ER 7 2 ~ .  

Given a fixed polynomial-time computable function g', S is a collection 
of functions such that thcre is a polynomial q and when s ER S Pr[  I{. : 
s(z) = g'(z)}l > 0) > l / q ( l x I ) .  But,  for all polynomials p ,  for all eflicient 
algoritlirns A ,  a,nd for all siificiciitly large k ,  Pr[A(s,g')  = x : s(z) = 
g'(Z)] < I / I J ( k )  WllCll b El l  L?!,. 

The above functions dc~nons t ra~tc  va.rioiis ways of defining collisions of hash 
functions, assuming the above functions actually comprcss the size of their 
argument. As mcntioiicd is scctioii 2, we can assunic that lor a given function, 
range elements with prcimagcs or the same Icngth n, have the same length I(n). 

1-1 is the original CFHF family, which implies that on the same function 
finding a collision bctwccn two d i h c n t  arguments is hard. 3 is a family in 
which a collision betwccn two functions on two diKcrent arguments is hard 
to  find, while F is the fa.inily in which for two diffcrcnt functions a collision 
on the samc argurncwt is ha rd  to f i i i t l .  72 is a family in wliich non-negligible 
fraction belongs to tlic keriicl anti i t  is hard LO find an elemcnt in the preimage 
of the kernel (similarly it can dcfiiictl with rcspccl to any constant in range, the 
family S capturcs tlic hardness of finding an iwgumcnt colliding with a given 
fixed efficiently comput,zblc function. Below wc show that collision freeness is 
robust with respcct to  tlic exact notion oC collision. 

Theorem 5 The following relrrtioiu on the jiincfiorr families cl-isl: 

The fumilies 3, G, 72, S (ire irijormtitioii theoretically eqtiivalent. 

The funlilies 3, G ,  72, S w e  injorin(ition llieoirtically reducille to H. 

Proof. The lollowing rctluctioiis c.111 be obscrvcd. 3372, randomly draw a 
pair (11, f2)  and sct the fuiiction T ( . I : O Y )  = j1(x)39/2(y). GaR,  randomly draw 
apa i r  (g1,gZ) and set tlic fuiiLtioii r ( x )  = g,(x)@gl(z) .  I n  Iiotli reductions, thc 
probability of the kcrncl is polynoriiially rclatcd to the probability of the non- 
emptiness of the collision set. X a S ,  simply draw r En 72 and set s = r @ 8'- 
Similarly, S+R, simply draw A € 1 2  S and sct r = sag'. 7b3, draw a random 
T and set 11 = r and f2 = 0, and the same reduction 7 k - G .  The probability of 
the non-emptiness of the kcrncl i n  tlic ahovc ictluctions is polynomially related 
as well to  the probability of tlic rcspcctcd collision set. This concludes the proof 
of equivalcnce of 3 , G , ? 2 ,  and S. 

Next we S I ~ O W  t11ai X+R. I,ct 7~~ = { / I  : { o , I ) ~  --t {o,I}[(~)}. Let 
neq(z,u), wlicre t, y arc both /;-bit long striiigs (otherwise, tlie function is 
undefined), a functioii wliich givcs l [ ( L )  i f  ,x = g and O ' ( k )  olherwise. Given 
h E 'Hk, defiue T ( Z  o y) = h ( x )  @ h(?y) i i e q ( ~ ,  y). Notice tli<it tlic probability 
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t ha t  the kernel of r is not ctnpty is polytio~iiially related to tlie probability of 
collision i n  h. 

C I  

The above tlimrcin juslilics llic gcncrality of the dcfinition of collision-free 
functions as the hardcst cotitliliori among possiblc Ilrnction families. 
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