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Abstract: 

In this pa.per, we present Key-Updating Schemes in identity-based (identifi- 

cation or signature) systems, and consider the security of the schemes. We ’ 

propose two kinds of key-updating schemes, i.e., one is sequential type and 

the other is parallel type, and show that both schemes are equivalent to each 

other in a polynomial time sense, i.e., there elrists a deterministic polynomial 

time algorithm that transforms the sequential key-updating scheme to the par- 

allel one, and vice versa. We also show that even if any polynomially many 

entities conspire to find a secret-key of any other entities, both key-updating 

schemes are provably secure against polynomially many times key-updating if 

_ decrypting RSX is hard. 
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1 Introduction 

In identity-based systems, each entity i has his(her) own identity number ID,, and a 

trusted center needs to  generate a pair of a public information P (known to d entities) 

and a secret information S (known to only the trusted center), and a pair of public-key 

PK, and secret-key SK, for entity i .  Lek a probabilistic polynomial time algorithm CKG 

be a center-key generator that, on input lk, outputs a pair of the public information 

P (IF'! = O(k') for same constant c > 0) and the secret information S (IS1 = O(kd) for 

some constant d > 0), i.e., C K G ( l k )  = (P, S ) ,  and let a probabilistic polynomial time 

algorithm EKG be a entity-key generator that, on input lk, P, S, and ID,, outputs 

a pair of public-key PK, and secret-key SK, for entity i, i.e., EKG(( lk ,  P, S , ID, ) )  = 

(Ph',, SK,).  Note that k is the security parameter. 

When a foolish entity j carelessly loses his secret-key SK, or reveals it and asks the 

trusted center again to generate a new pair of public-key PK; and secret-key SK; for 

him, what should the trusted center do? If the system is provably secure (see, e.g., [FS], 
[FFS], [GQ], [OO].), i.e., there exist no efficient algorithms for entity j to derive the 

secret information S from P, ID,, and a single pair of (PK,, SK,), then (presumably) 

the simplest and secure way to update the secret-key SK, to SK: is to make the trusted 

center run CKG on input l k  in order to regenerate a new pair of public information I" 
and secret information S' and to make the trusted center regenerate a new pair of public- 

key PK; and secret-key SK; for the entity j by running EKG on input l k ,  P, s', and 
IDJ (or SK,). This scheme, however, imposes cumbersome procedures on the trusted 

center and all entities, because the trusted center must regenerate not only a new pair of 

public-key PK; and secret-key SK; for the foolish entity j but a new pair of public-key 

PK: and secret-key SK: for every entity i (f j). 

Another way to  update the secret-key SK, to SK; is to make the trusted center run 

only EICG on input l k ,  P,  S, and ID, (or SK,) and to regenerate a new pair of public-key 

PK; and secret-key Sh;' only for the foolish entity j, while those for the other entities 

i (# j )  are unchanged. This scheme is much simpler than before, but unfortunately there 

might be a possibility that the entity j can derive the secret information S efficiently from 

P,  ID,, PK,, SK,, PK:, and SK;. 
Thus this provokes us t o  construct efficient and provably secure key-updating schemes 

in identity-based systems in the above sense. To do this, we take the extended Fiat- 

Shamir scheme [GQ], [OO] as an identity-based system, and apply two kinds of key- 

updating schemes, one is sequential and the other is parallel, to the extended Fiat-Shamir 

scheme. (The details will be discussed in Section 2.) We also show that our key-updating 
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schemes are provably secure against polynomially many times key-updating even if any 

polynomially many entities conspire to find a secret-key of any other entities. 

The organization of this paper is as follows: Section 2 presents a brief description of 

keygeneration and key-distribution in the extended Fiat-Shamir scheme [GQ], [OO], and 

proposes two kinds of key-updating schemes, sequential one and parallel one; Section 3 
shows that both schemes are equivalent to each other in a polynomial time sense, i.e., 

there exists a polynomial time algorithm that transforms the sequential key-updating 

scheme to the parallel one, and vise versa; Section 4 gives a main result that both key- 

updating schemes are provably secure against polynomially many times key-updating, i.e., 

any polynomially many conspiring entities can not find a secret-key of any other entities 

under the assumption that decrypting RSA is hard; and Section 5 finally gives conclusion 

and remarks, and refers to extensions of our results to more general settings and the 

security of the schemes against conspiracy of entities. 

2 Key-Updating Schemes 

2.1 Extended Fiat-Shamir Scheme 

This subsection presents a brief description of key-generation and key-distribution in 

the extended Fiat-Shamir scheme [GQ], [OO]. The extended Fiat-Shamir scheme is an 

extension of the Fiat-Shamir scheme [FS], [FFS], and is shown, under the assumption 

that factoring is hard, t o  be zereknowledge in the sequential execution (of the protocol) 

and to be non-transferable in the parallel execution (of the protocol). This scheme is 
an identity-based system, and thus the trusted center needs to generate a pair of public 

information P (known to all entities) and secret information S (known to only trusted 
center) and to distribute a pair of public-key PK, and secret-key SK;  for each entity i 
with his identity number ID;, in the following way: 

The trusted center has two probabilistic polynomial time algorithms, i.e., center-key 

generator CKG and entity-key generator EKG; On input Ik, the center-key generator 

CXG outputs a pair of public information n (= p -  q)  and secret information (p, q), where 

ply  E OF’ and IpI = lyl  = k, and on input lk, n, ( p , q ) ,  and ID,, the entity-key generator 

EKG outputs a pair of public-key e; and secret-key S; for entity i such that xi IDi 
(mod n). Note that OF denotes a set of odd primes and la1 denotes the length of binary 

encoding of a. For details of identification and signature protocols in the extended Fiat- 
Shamir scheme, see [GQ], [OO]. 
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2.2 Key-Updating Schemes 

In this subsection, we propose two kinds of key-updating schemes, sequential one [FT] 

and parallel one, in the extended Fiat-Shamir scheme. Consider the case where some 

entity i asks the trusted center to issue a new pair of public-key e: and secret-key S: for 

the entity i in some reason, e.g., losing or revealing his original secret-key S,. 

Informally, our key-updating schemes are as follows: (1) Sequential Key-Updating 

Scheme (SKU) is a key-updating scheme iu which the trusted center runs the entity-key 

generator EKG on input lk, n, ( p , q ) ,  el, and S, (instead of ID,), and generates a new 

pair of (e:,S:) such that S:' S, (mod n) and e, # e:, and (2) Parallel Key-Updating 

Scheme (PKU) is a key-updating scheme in which the trusted center runs the entity-key 

generator EKG on input lk, n, (p, q ) ,  el, and ID,, and generates a new pair of (e:, S:) 
such that S$ ID, (mod n)  and e, # e:. Note that for entity i, a pair of public-key 
and secret-key will be (e,e:, S:) in SKU, while will be (e:, S:) in PKU. 
This formulation, however, does not necessarily match our desire, because a malicious 

entity j might ask the trusted center to issue new pairs of (e;, Sl) many times for compro- 

mising the secret information (p, q). Then we formally define our key-updating schemes 

in more general settings. 

Let V(ln1) be any fixed polynomial in Inl, and let OP(t )  denote a set of odd primes 

less than t .  Here we assume that each entity i is allowed to ask the trusted center to issue 

new pairs of (e:,S:) at must U(ln1) times. 

Sequential Key-Updating Scheme (SKU): 

Initial Key-Setting Stage: 

distributes a pair of his public-key elo) and his secret-key go' such that ID, 
(mod n), where e r )  E OP( Lfi/4]), $'$ID, (mod n), and ID:$l (mod n). 

Key-Updating Stage: 
- the trusted center distributes a new pair of (e~rl)l$r')) such that $'-'I = 

(mod n), where e!r') E oP( LJ;;I4J), e!J) # e r * )  (0 5 j < r,), grD)$1D, (mod n), and 
$)+grJ (mod n) (0 5 j < r,). 

Remark 2.1: In the r,-th key-updating of SKU, a pair of the public-key and the 
secret-key will be (e?)e!'). . . e!"), gr*)). The condition *'$ID, (mod n) (0 5 j 5 1;) 
shows that the trusted center avoids distributing trivial secret-key $), and the condition 

@)$gr*) (mod n) (0 5 j < r,) implies that the trusted center does not distribute the 
same secret-key gr') again, because old secret-keys might be known to someone else. The 

trusted center does not care about collisions of secret-keys among entities. 

For each entity i (with ID, E Zz), the trusted center 
w 

[ 

For entity i in the r,-th (1 5 r, 5 V(ln1)) key-updating, 
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Parallel Key-Updating Scheme (PKU): 

Initial Key-Setting Stage: 

distributes a pair of his public-key f!’) and his secret-key ?? such that ID; 
(mod n), where f) E OP( Lfi/4J), ~ ” f l D ;  (mod n),.and ID?fl (mod n). 

Key-Updating Stage: 

trusted center distributes a new pair of (dr’),Tjr’)) such that ID; = (T(’i)} 

(mod n) (0 5 j < r,), and ID, 

Remark 2.2: In the  r;-th key-updating of PKU, a pair of the public-key and the 

secret-key will be er’)). The meaning of conditions *’$ID; (mod n) (0 5 j 5 ri) 
and T(’)fZ$ri) (mod n) (0 _< j < r;)  is similar to the one in the Remark 2.1. The trusted 

center does not care about collisions of secret-keys among entities. 

For each entity i (with ID; E 2:), the trusted center 
p 

{T,!”} 

For entity i in the ri-th (1 5 r; 5 V (  In[)) key-updating, the 

(mod n), 
fy’) 

where f r i ’  E OP(Lfi/44J), f;(J) # f/“) (0 5 j < ri), p i ’ $ I D i  (mod n), 1 f fi) 
dj)...firi) 

$ID, (mod n) (0 5 j < r;). 

3 Transforms Between SKU and PKU 

This section shows that  key-updating schemes SKU and PKU are equivalent to each 

other in a polynomial time sense, i.e., there exists a deterministic polynomial time algo- 

rithm that transforms SKU to PKU, and vice versa. 

Let sck denote a set of strong composites with the security parameter k, i.e., 

sck = {n I f z  = p .  q, P # 9, = 141 = 

p = 2 p ’ + 1 ,  q = 2 q f + 1 ,  p,q,pl ,q’EOP}.  

To prove that for n E s c k ,  key-updating schemes SKU and PKU are deterministic 

polynomial time transformable to each other, we need to show the following lemmas: 

Lemma 3.1: 

gcd(e, A(n)) = 1, where A(n) is the Carmichael function [Kr] of n. 

Proof: 

Let n E sck. Then for any odd e less than [&/4J, e < min{#,q’) and 

From the definition of sck, it follows that 

A(n) = Icm(p - 1, Q - 1) = Icm(2p’, 2q’) = 2p‘q’. 

Note that n E SCk,  i.e., lpl = 191 = k ,  then 2 .  min{p,q} > max{p, q} .  Hence, 

[6/4] 5 l m a x b ,  q}/4J 

I lm;n{p, q)/2J 

= L(2 - min{p’, q’ }  + l)/2J 

= tmin{p‘, q‘) + 1/2J = min{p‘, q’}, 
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and thus e < min{p',p'}. It immediately follows, from the fact that X(n) = 2p'q', that 

gcd(e, A(.)) = gcd(e, 2p'q') = 1, because e < min{p', q'}, e is odd, and p', q' E OP. 0 

Lemma 3.2: 
numbers ul and a2, zO'-"'fl (mod n), where alra2 < LJrr/4J. 

Let n E SCh, and z E 2; such that s 2 f l  (mod n). For any distinct odd 

Proof: By Contradiction. Without loss of generality, we mume that a1 < a2. Assume 

that z"'-O1 z 1 (mod n). This implies that the order of 2 modulo n divides both A(n) 
and a2 - u1. Since n E S C k ,  X(n) = 2p'q' and 0 < a2 - al <min{p', q'} (see Lemma 3.1.), 
and thus the order of z modulo n is equal to either 1 or 2. This, however, contradicts the 

assumption that z2f l  (mod n). Hence z"'-''1$1 (mod n). 0 

Lemma 3.3: 

(0 5 z 5 r ) ,  and e( i )  f OP(LJ;;/4J) (0 5 i 5 r )  satisfy the relation that I D  

(mod n), .S('-') 

(0 5 
j 5 ,.) j f f I D e ' q - d J '  $10 (mod n) (0 5 i < j _< r) .  

Let r be any positive integer and let n E S C k .  Let ID E Z;, 9') E 2; 
e w  

{Sfi)}'(' (mod n) (1 5 i _< r ) ,  where I D 2 f l  (mod n) and e(') # &) 

< j 5 r ) .  Then I D f S ( ' )  (mod n) (0 5 i 5 r) and S(')-fS(j) (mod n) (0 5 i < 

( S ( O ) }  

Proof: Since n E SCI, and ID (E 2;) satisfies I P f l  (mod n), it follows, from Lemma 

3.2, that for e(') E OP( Lfi/4J) (0 ,< i 5 r), ID""-'fl (mod n) (0 _< i 5 r ) ,  and hence 

ID"'$ID (mod n) ( 0  5 i 5 r).  Note that ze G y' (mod n) iff z y (mod n) for e 

such that gcd(e, A(n)) = 1. (see Lemma 3.1.) Then for all i (0 5 i 5 r ) ,  

{set)) eW...e(' 
I D  = - 9') IDe(')-e(q - - - (mod n) 

=ID (mod n). * I D e ( o ) . . . e ( ~  

Hence I D f S ( ' )  (mod n) (0 5 i 5 r) and S(')fS()) (0 5 i < j < - r )  iff IDJ'...e(J)$ID 
(mod n) (0 5 i < j 5 r).  C1 

Lemma 3.4: Let r be any positive integer and let n E SCk. Let I D  E q, fi') E 2; 
P 

(0 5 i 5 r) ,  and f") E OP( [fi/4J) (0 5 i 5 r )  satisfy the relation that ID 
(mod n) (0 5 i I: r ) ,  where ID2$]  (mod n), and f") # fct) (0 5 i < j 5 r). Then 

ID$T(') (mod n) (0 5 i 5 r )  and T(')fT(J)  (mod n) (0 5 i < j 5 r). 

(@'I} 
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Proof: Since n E SCk and ID(€ 2;) satisfies I D 2 f l  (mod n), it follows, from Lemma 

3.2, that for f‘l) E OP(Lfi/4J) (0 5 i 5 r ) ,  IDf””f“$fl (mod n) (0 < - i < j 5 r) and 

IDf”-’fl (mod n) (0 5 i 5 r ) .  Then for all i (0 5 i 5 r ) ,  we have 

r’” ID fi’) (mod n) IDf“ f (T’t)) (mod n) 

ID’‘” f ID (mod n) 

*  ID^'"' = 1 (mod n). 

On the other hand, for any i , j  (0 5 i < j 5 r), we also have 

f ( J )  fij) f‘g 
T(’) E @) (mod n) { {fii)}’(9} E {{@I} } (mod n) 

 ID^'" 3 ID’”’ (mod n) - IDfiJ)-’(g 3 1 (mod n), 

hence I D f f l i )  (mod n) (0 5 i 5 r) and T(’)fT’(j) (mod n) (0 5 i < j 5 r) . 0 

Let V(ln1) be any fixed polynomial in 1.1 and let r be any positive integer not greater 

than U(ln1). Here we define Csm to be a set of tuples (n , ID ,  S(r),e(r)) that satisfy 

ID = (s’”’)~‘’’ (mod n); 

$8-1) (mod n) (1 5 i 5 r); 
ID’ f 1 (mod n); 

e(*) E OF( [fi/4]) (0 5 i 5 r); 
e(*) # &) (0 5 i < j 5 r ) ;  

ID” Q - - e ( J )  f I D  (mod n) (0 < i < j 5 r), 

in the r-th key-updating of SKU (see Lemma 3.3.), where n E SCk, I D  E Z:, S“) = 
(S’’), s”), . . . , Sf’)), and e(?) = (e(O), e(l), . . . , dr)). In a way similar to the above, we 
define CPKU to be a set of tuples (n, ID, T“), f“)) that satisfy 

’(9 
I D  = (fi)} 

ID2  f 1 (modn); 

f‘” E OP( L./;;/4]) (0 5 i 5 r); 
f’) # f ( ~ )  (0 5 i < j 5 r); 

(mod n) (0 5 i 5 r); 

 ID^<" fl” f r D  (mod n) (0 5 i < j 5 r), 
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in the r-th key-updating of PKU (see Lemma 3.4.), where n E S C k ,  ID E Z:, $" = 
(@'I, T"), . . . , fir)), and f") = ( f (O) ,  f"), . . . , f")). 

We use ASKU+PKIJ to  denote any algorithm that, on input (n, ID, S(r), e(r)) E CSKU, 
outputs (n, ID, T'", f'") f CPKU, and APKU-SKU to denote any algorithm that, on input 

(n , ID,  *'I, f'") E CPKU, outputs (n, ID, dr), ecr)) E CSKU. Then we have the following 

theorems on deterministic polynomial time transformabdity between SKU and PKU. 

Theorem 3.5: There exists a deterministic polynomial time algorithm A S K U ~ P K U .  

Sketch of Proof: On input (n,ID,S(r),e(r)) E C S ~ u ,  the algorithm ASKU+PKU sets 

fl0) := S(O), f(') := e ( i )  (0 5 i 5 r), and computes T(') 3 , (mod n) 
(1 5 i 5 r). Then it out.puts (n, ID, 'Z"(r), f r ) ) ,  where $') = (T(O), fi'), . . . ,fir)), f'" = 

(f"), f'), . . . , f")). It is easy to  see that the algorithm ASKU+PKU runs in deterministic 

polynomial t.ime and (n, ID, T(r), f'") E CPKU. 0 

(s(i) le(V...e(i-l) 

Theorem 3.6: There exists a deterministic polynomial time algorithm APKU+SKU. 

Sketch of Proof: Let n be an odd composite. We assume here that z1 is the al-th 
root of y modulo n, and 22 is the a r t h  root of y modulo n, where gcd(a1,az) = 1 and 

y E 2;. Then we can compute z, the ala2-th root of y modulo n, by algorithm E 
(see below.) in deterministic polynomial time without knowing prime factors of n. On 
input n,y,zl ,al ,22,  and a2, the algorithm E computes two integers s and t such that 

ta1+ sa2 = 1 by Euclidean algorithm, and outputs z 2 ; .  z: (mod n). I t  is easy to see 
that the algorithm E runs in deterministic polynomial time and z is the alaz-th root of 

y modulo n. The algorithm APKU-SKU runs in the following way: 

On input (n,ID,T(r),f(r)) E CPKU,  the algorithm APKU-SKU sets T(') := go), 
f0) := do), and computes z; (1 5 i 5 r )  by running the deterministic polynomial 

time algorithm E on input (n, ID, S(I-'), e(O)e(l) - - + Ji-'),Pi), f")). Then the algorithm 

APKU+SKU substitutes z; to S(') and f(') to e(i) (1 5 i 5 r), and outputs (n, ID, S(r), e(r)), 
where S(') = (S(O), s"), . . . , S('1) and e(') = (e (O) ,  e(l), . . . , e(r)). 

time and (n, ID, S(r), e(r)) E C S K U .  0 

It is not difficult to see that the algorithm APKU-SKU runs in deterministic polynomial 

4 SKU and PKU are Provably Secure 

This section shows that key-updating schemes SKU and PKU are provably secure against 

polynomially many times key-updating under the assumption that decrypting RSA is hard 
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for n E SCk,  i.e., even if any polynomially many entities conspire, they can not find a 

secret-key of any other entity in polynomidly many times key-updating. 

To show this, we provide several lemmas in the following: 

Lemma 4.1: Let n E SCk and let U(1nl) be any fixed polynomial in 1.1. Let r be any 

positive integer not greater fban U(ln1) and Jet e(i) < [ 6 / 4 J  (0 5 i <_ r - 1) be distinct 

r odd primes. Then the probability P that for any d < 1 6 / 4 1 ,  d E OP( [fi/4J) and 

d # e(i) (0 5 i 5 r - 1) is greater than C/ 1.1 for some C > O and sufficiently large n. 

Proof: 
number theorem [HW], it follows that 

Let ~ ( z )  denote the number of primes not greater than 2 (2 1 2). From prime 

2 
T ( Z )  > Co- 

log2 2 ' 
for some constant Co. Then the probability P is 

thus P > C/ 1.1 for some constant C and sufficiently large n. 0 

Lemma 4.2: Let n E Sck and let U (  1.1) be any fixed polynomial in In!. Let f be any 

positive infeger not greater tban V(ln1) and let dr-l) = (e('), &),.. . , e(r-l)), where e ( i )  < 
[ 4 / 4 J  (0 5 i 5 r - 1) are distinct r odd primes. Define gcr) = (t?'), $1,. . . , ?('I) to be 

i$r) = (e('), e(l), . . . , e(r-l), d) for any d E OP( 1 6 / 4 1 )  such that d # e(i) (0 5 i 5 r - 1). 

Then for any g E 2; such that g2f l  (mod n), gd17...d'' f g  (mod n) (0 5 i < j 2 r )  iff 
gel'' -.e(') fg (mod n) (0 5 s < t 5 r - 1) and (fli:: e")} - d f l  (mod L) (0 5 i 5 r - l), 
where L is the order of g modulo n. 

Proof: Let L denote the order of g modulo n. Then it is clear that 

t 

g")...")fg (mod n) n e(')$l (mod L),  
f = r  

for all s , t  (0 5 s < t 5 r - l),  and 
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for all i , j  (0 5 i < j <_ r ) .  Thus i t  suffices to show that 

i 
n Z ( ' ) f l  (mod L )  (0 5 i < j 5 r )  
f = i  

t n e ( ' ) f l  (mod L )  (0 5 s < t 5 r - 1 )  
f = J  

{ e ( f ) }  . d f l  (mod L )  (0 5 i 5 r - 1). 

When j < r ,  njzi i( ')$1 (mod L )  (0 5 i < j 5 r - 1) iff ni=, e ( ' ) f I  (mod L )  (0  5 s < 
t 5 r - l),  and when j = r ,  nj=, i ( ' ) f l  (mod L) (0 5 i 5 r - 1 )  iff (nii: d')} - d f l  

(mod L )  (0 5 i 5 r - 1 ) .  Thus i t  is immediate to see that g"'i'..."J)fg (mod n)  (0 5 
i < j < - f )  iff ge(c)- . .e( ' )  f g  (mod n) (0 5 s < t 5 r - 1) and (n;:! do) d f l  (mod L )  
( O s i s r - I ) .  

For n E S C k  and e( ' )  E U P (  Lfi/4J) (0 5 i 5 r - 1 )  such that e ( i )  # e(3) (0 5 i < j 5 
r - l ) ,  we define Dr+l to  be a set of ( r  + 1 )  distinct d, E OP( [fi/4J) (1 5 j 5 r + 1) 

such that d ,  # e(t) (I 5 j 5 r + 1 ,  0 5 i 5 r - 1 ) .  

Lemma 4.3: Let n E sck and Jet V(ln1) be any fixed polynomial in 1.1. Let f be 

any positive integer not greater than V(ln1) and let e(r-l) = ( e ( O ) ,  e(l), . . . , e ( r - l ) ) ,  where 

.di) < [fi/4J (0 5 i 5 r - 1 )  are distinct r odd primes. Then for any g E 2: such that 

g 2 f l  (mod n) ,  there exists at least one d E such that (n;=l d f ) }  . d f l  (mod L )  
for any i (0 5 i 5 r - l), where L is  the order of g modulo n. 

Proof: Let L denot,e the order of g modulo n. Since n E sck and g (E  Z i )  satisfies g 2 f l  

(mod n) ,  L 1 min{p', 9'). From Lemma 3.1, it follows that Lfi/4] 5 min{p', q'} ,  and 

thus for any d < Lfi/4J, d < L .  For some i (0 5 i 5 r - 1), there exist at most r distinct 

d, < If i /4J that satisfy { l-Ii:! e( ' ) }  - d, = 1 (mod L ) ,  hence at least one d E Dr+l must 

satisfy (n;:,' dl)) . d f l  (mod L )  for any i (0 5 i 5 T - 1). 

For simplicity, we assume that  every entity i is numbered as 1,2 ,  . . .. Let E(In1) and 

V(ln1) be any fixed polynomials in Inl. When rn (< E(In1)) entit.ies, each of which is in 

the r,-th (1 5 r,  5 V(ln1)) key-updating, conspire to find a secret-key of any other entity 

u (> n), they can use the following information in SKU. 
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where Sr’) = (go), $‘I,. . . , gr’)), e;”) = (ef’), e!’), . . . , e!”)) (1 5 i 5 m). Let R be m 

tuple of integers, R = (rl, r2,. . . , rm), and each r ,  (1 5 i 5 m) is not greater than V(ln1). 
Then we use INV&’GR) to  denote any algorithm that, on input 

outputs Y E Zt, such that z 3 ye (mod n) for a non-negligible fraction of z E 2:, and 

we use INV,‘T$’ to  denote any algorithm that, on input 

outputs y E 2: such that z yf (mod TI) for a non-negligible fraction of z f Z:, where 
T = (e’),~:’), . . . ,erl)), fir" = (f:’),f:’),.. . , f:*J) (1 I i I m). In addition, we use 

I N V  to  denote any algorithm that, on input n E S C k ,  e E OF( Lfi/41), and z E 2:, 

outputs y E 2; such that  z 

From technical reasons, we assume, throughout the rest of this paper, that each ID, 
such that I D 1 2 f l  (mod n) is randomly chosen (by the trusted center) with uniform prob- 

ability over Z:, but once assigned it is unchanged forever. 

Theorem 4.4: 

an expecfed polynomial time algorithm I N V  using INV&’f) as an oracle. 

ye (mod n )  for a non-negligible fraction of z E 3:. 

Given an expected polynomial time algorithm INV$:G~), there exists 

Proof: It suffices to show that, given n E S C k ,  e = ebei .. . e :” ,  and 5 f 2; such 

that z 2 f l  (mod n),  there exists an expected polynomial time I N V  (INVJg,’jR’) using an 

expected polynomial time algorithm I N V J F f )  as an oracle. 

Let E(In1) and V(ln1) be any fixed polynomials in 1.1. Let m < E(In1) and let 

R = ( 7 - 1 , ~ ~ .  .., r,,,), where r, 5 U ( l n l )  (1 5 i 5 m). Note that for (n, ID,,S~r’),e:r’)) 
( 1  5 i 5 m ) ,  the oracle INV$FGR) returns a correct answer if (n, ID,, S!r’), f CSKU 
for dl i (1 5 i 5 m);  it might return garbage or something otherwise. 

Algori thm I N V  ( I N V ~ ~ ~ R ) ) :  
Input. n E s c k ;  e = ebel, . . . e:”, where e: E OP( Lfi/4J) (0 5 i 5 r,,); 

I E Zz such that z 2 f l  (mod n). 

Set R := 4 and i := 1. 

Set S,  := 4 and !, = r, and choose SI(r’) E 2: such that (.’$r’)} $1 (mod n). 

Choose ( r ,  -el+ 1) distinct d, E OP(\J;;/4]) such that d,#S,, using primality 
testing. (see, e.g., [AH], [Ra], [SS].) 

Step 1. 

Step 2. 
Step 3. 

2 
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Step 4. For each d,$!S, (1 5 j 5 r, - I ,  + l), compute $"-') G [$'Dl}d' (mod n) 

until $'*-')&') (mod n) for all I ( I ,  5 I 5 r , ) .  

Set e!") := d, and S, := S, U e:"). 

If !, > 0, then !, := I ,  - 1 and go to Step 3. 

Set ID, := $-'). 

Step 5. 
Step 6. 

Step 7. 
Step 7-1. If ID, E 72, then go to  Step 2; otherwise set S!r') = (S,'", $'I,. . . , S,'rl)) 

and e, - ( e ,  , e ,  ,. . . , e ,  

If i < rn, then 72 := 72 U ID,, i := i + 1 and go to Step 2. 

( rd  - (0) (1) (4). 

Step 7-2. 

Step 8. Run the algorithm (or oracle) INV&f) on input n E Sck, e = eLei - - - e : " ,  

E 2; such that z2f l  (mod n), and (n, ID,,  Sir'), I ? ! ~ * ) )  ( 1  5 i 5 m). 

Output. y E ZE such that z ye (mod n). 

Trivially, Step 1 (resp. Step 2) runs in deterministic (resp. expected) polynomial 

time. From Lemma 4.1 and the facts that deciding primality is in 2PP (see [AH], [Ra], 

[SS].) and ( P ,  - I ,  + 1) 5 V(ln1) + 1, it follows that Step 3 runs in expected polynomial 

time. From Lemmas 4.2 and 4.3, there must exist at least one d,#Sl such that for all 1 
( I ,  5 I 5 r t ) ,  $"-')$$') (mod n), thus Step 4 runs in deterministic polynomial time. 

Since Step 5 runs in deterministic polynomial time and the iteration times of a loop from 

Step 3 to 6 is r, + 1 5 V(ln1) + 1, then the total running cost of the loop from Step 3 
to 6 is expected polynomial time. 

In Step 7-1, the probability t.hat ID, E R is negligibly small, because possible candi- 

dates of ID, is erponentially many, while ll'Rl1 is polynomially bounded, i.e., 117211 5 m < 
E(InI), and then the expected iteration times from Step 2 to 7-1 or 7-2 is O(E(In1)). 
Hence the algorithm IA'V ( I N V i r c R ) )  runs in expected polynomial time and outputs 

y E 2; such that y G ze (mod n) for a non-negligible fraction of z E 2:. (7 

Informally, Theorem 4.4 shows that when any polynomially many entities conspire in 

SKU even in polynomially many times key-updating, they can not invert z E 2: for a 

non-negligible fraction of z f 2;. From the definition of soundness [FFS], [TW], this 

implies that in SKU any polynomially many conspiring entities can not misrepresent 

themselves for a non-negligible fraction of (possible) other entities, even in polynomidly 

many times key-updating. A result similar to t h s  holds for PKU. 

( m m  Theorem 4.5: 

a.n expected polynomial time algorithm I N V  using INVi;;6R) as an oracle. 
Given an expected polynomial time algorithm INVPKU , there exists 

Proof: It suffices to show that, given n E sck, f f OP( 16/41), and 2 E 2; such 
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that z2f l  (mod n),  there exists an expected polynomial time I N V  (INVJz$) using an 

expected polynomial time algorithm INV$;;GEL) as an oracle. 

Let E(lnI), V(lnl), m, and R = ( r l ,  T ; ! .  . . , rm) be defined in the same way as the proof 

of Theorem 4.4. I t  should be noted that for ( n , I D t , T ~ r l ) , f ! r ’ ) )  (1 5 i 5 m), the oracle 

I N V ~ E ?  returns a correct answer if (n ,  ID , ,  erl), f!r*)) E cPKU for all i (1 5 i 5 m); it 
might return garbage or something otherwise. 

Algori thm I N V  (1NV;;;bR)): 

Input. 

Step 1. 

Step 2. 

n E S C k ;  f E OP( Lfi/4]); z E 3: such that z a f l  (mod n). 

Run each Step from 1 to 7 in the algorithm INV ( INV$AR1) .  
Run the algorithm ASKU-PKU on input (n, ID,,  S!r*), etra)) E CSKU for each i 
(1 5 z 5 m), and output (n ,  ID, ,  T!rl), ftra) )  E C p ~ u .  

Run the algorithm (oracle) INV$E$) on input n E sck, f E OF( [fi/4]), 
z E 2; such that z2f l  (mod n) ,  and (n ,  ID, ,  T!r’), f!r*))  (1 2 i 

Output. y E 2; such that z ZE yf (mod n). 

Step 3. 

m). 

From t.he proof of Theorem 4.4, it follows that S t ep  1 runs in expected polynomial 

time. Since m < E(I.1) and Theorem 3.5 guarantees that the algorithm A ~ U - P K U  runs 
in deterministic polynomial time, Step 2 runs in deterministic polynomial time. 

Hence the algorithm I N V  ( I N V $ ~ G ~ ’ )  runs in expected polynomial time and out.puts 

y E 2; such that y zf (mod n)  for a non-negligible fraction of x E 2;. 0 

5 Conclusion and Remarks 

In this paper, we showed two kinds of secure key-updating schemes SKU and PKU in the 
extended Fiat-Shamir scheme. Here we define more general schemes SKU’ and PKU’: 

Let n E S C k  and let E(In1) and V(ln1) be any fixed polynomial in 1.1. Then the 

key-updating scheme SKU’ is completely the same as SKU except that for each entity 
(I ) i, e,  < [f i /4J (0 5 j 5 rr 5 V(ln1)) is an odd number and is not necessarily distinct 

from each other, and the key-updating scheme PKU’ is also completely the same as PKU 
except that for each entity i, f, (3) If, ( k )  (0 5 k < j 5 r t ) .  Using a technique similar to the 

proofs of Theorems 4.4 and 4.5, we can show that both SKU’ and PKU’ are provably 

secure if decrypting RSA is hard for n E S C k .  
Observing the results in this paper, we can say that SKU and PKU have the same 

security with each other in a polynomial time sense, and seemingly so do SKU’ and 

PKU’. The scheme PKU,  however, seems to be better one than SKU in the light of 
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efficiency, because in the r,-th ( 1  5 r, 5 V(ln1)) key-updating of PKU, a public-key of 

each entity i is only a prime f:“’, while in the r,-th (1 <_ r, 5 U(ln1)) key-updating of 

SKU, a public-key of each entity i is n;;o ey) .  This is also the case for PKU’ and SKU’. 
Our results can be generalized to more theoretical form - For any transitive trapdoor 

random self-reducible uniform relation (see [IST].), there exists a perfect zero-knowledge 

(identity-based) identificat,ion system with provably secure key-updating schemes, i.e., if 

any polynomially many entities conspire in polynomially many times key-updating, they 

can not find a secret-key of a non-negligible fraction of (possible) other entities, or they 

can not misrepresent themselves for a non-negligible fraction of (possible) other entities. 
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