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Abstract 

In this paper we first introduce the notion of essentially e-fold secure authen- 

tication systems; these are authentication systems in which the Bad Guy’s chance to 

cheat after having observed e messages is - up to a constant - best possible. Then 

we shall construct classes of essentially P-fold secure authentication systems; these 

systems are based on finite geometries, in particular spreads and quadrics in finite 

projective spaces. 

1. Introduction 

An authentication system A consists of an set 5 of source states, a set K of keys, 
and a set M of authenticated messages along with a mapping e: 5 x K + M. The 

mapping e together with the keys defines a set E of different encoding rules. 

For a subset M’ of M we denote by E(M’) the set of encoding rules which have all 
m c M’ as possible messages. 

In the authentication systems which we are going to deal with every message 
uniquely determines its source state. These authentication systems offer no secrecy. 

They were first studied by Gilbert, MacWilliams and Sloane [S]. 

In this paper we investigate the security of authentication system with respect to 

spoofing attacks of order e. This means that a Bad Guy has observed e messages 
authenticated with the same key. He is looking for the maximum probability in 
order to substitute another message. 
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We define p to be the maximum of the probabilities po, ..., pt, where pi i s  the pro- 
bability of success when the Bad Guy has observed i different messages. Further- 
more, we define the real number n by n = l/p. We call n the P-order of the 
authentication system A. 

We assume throughout that the source states and the keys are equally distributed 
and independent. 

FAk [51 has proved the following result. Let A be an authentication system without 
secrecy, in which the source states are uniformly distributed. If P messages are ob- 
served, then 

> E -1/([+1) . P : = max{pO, -.., p e l  = I 1 , 
equality holds if and only if 

IE(M')I = lEl(f+ 1-1)/(1+ 1) 

for any M' c M, IM'I = i, i = 0, .... 4 + 1, where the m E M' belong to different 
source states. 

Definition. The authentication system A is called t-fold secure if equality holds in 
the above result. A 1-fold secure system is also called perfect according to Simmons 
[8] (see also [41). 

In an t'-fold secure authentication system one has p = lEl-l/(c+l) and so i ts  P-order 
can be computed as n = lEll'(e+ l ) .  Moreover, it follows that n is an integer. (In fact, 
n = (EI'/(c+ ') = IE(M')I for any P-subset M' of M.) 

Definition. Let A be an authentication system and m be a fixed message. Then the 
derivation Am of A with respect to m is defined as: 
The set Sm of source states of Am consists of the source states of A except for the 
source state belonging to  m. The set Em of encoding rules consists of the encoding 
rules of A under which m is a possible message, i.e. Em = E(m). The set M m  of mes- 
sages consists of the messages of A which are possible under an encoding rule of 
Em and a source state of Sm. 

1.1 Lemma. If m is a message in an t-fold secure authentication system A, then Am 
is an ( t - I ) - fold secure authentication system. 

The proof is a direct consequence of the definition.0 

1.2 Lemma. The number o of  source states in a [-fold secure authentication system 
o f  {-order n is at most n + C. 
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Proof. In 121 it was proved that the number of source states in a l - fo ld  secure 
authentication system is at most l /d lE l+  1 = n + 1. Thus, the assertion follows in 
view of  Lemma 1 .o 
For P = 1 and P = 2 there exist examples satisfying ,o = n +P. We shall show that 
equality in the case 4 = 2 implies that n is an even integer. Consequently, if in an 
P-fold secure authentication system one has u = n + P and P 2 2, then n must be 
an even integer. For f? > 2 one can construct examples with D = n + 1. Recently 
Mitchell, Walker and Wild [7] have investigated P-fold secure authentication 
systems with maximum number of source states. 

P-fold secure authentication systems have two disadvantages: They have very few 
source states compared t o  the number of keys. Also they seem to be very rare. For 
this reasons we introduce the notion of an essentially P-fold authentication system. 

Definition. Let C be a class of infinitely many authentication systems such that any 
two members of C have a different number of keys. Thus we can use the number 
of keys as index for the elements of C :  

C = {Ak I k = number of keys in Ak}. 

We say that C consists of  essentially P-fold secure authentication systems, if there 
is a constant c such that 

p c.k-lU+l) 

for any authentication system Ak in C. We shall call a single authentication system 
essentially t - fo ld secure if it is  clear from the context in which essentially P-fold 
secure class it is contained. 

We believe that the above definition is  quite useful, since it covers classes of 
authentication systems which are still unconditional secure, but for which there is a 
much larger flexiblity t o  construct them than t-fold secure authentication systems 
in the strong sense. 

Note, that we use the  term “essentially secure” in a strongersense as in [1,2,31. 

3.1 Lemma. Let  C = (Aq I q some index} be a class of  essentially P-fold secure 
authentication systems with p 5 c*.l/q for any authentication system Aq. Then 
for each Aq we have for the number of  keys k 

k 2 a.qf+l 

with a constant a independent from q and k. 

Proof. By Fak [51 the probability of  deception p is largerthan k-l’(f+l)  Hence 
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We present three classes o f  examples for essentially secure authentication systems. 
These examples are based o n  partial spreads and 'quadrics in finite projective 
spaces. Finally w e  shall deal with implementational aspects. 

2. The maximum number o f  source states in a 2-fold secure authentication system 

2.1 Theorem. Let A be a 2-fold secure authentication system, denote by D i ts 
number of source states. Then D S n + 2. if o = n + 2, then n must be even. 

Sketch o f  the proof. It is easy to see that u f n + 2. Suppose therefore tha t  o = 
n + 2. One f i rst  shows certain regularity conditions: Every source state is o n  exactly 
n messages, every message is o n  exactly n2 keys, etc.. Then it is  possible to prove 
that any t w o  keys share either 0 or  exactly 2 messages. Using this, it follows that  n 
must be even. 

Example of a 2-fold secure authentication system with n + 2 messages (cf. [21). Fix a 
point Po in a 3-dimensional projective space P of  even order n. Since n is even, 
there is  a set S of n + 2  lines through P, such that no three of  which are in a 
common plane. Define S to be the source states, where the keys are the n3 planes 
no t  through Po and the messages are the points f Po on the lines of  S. This yields 
a 2-fold secure authentication system. 

Remark. If, in the above example, w e  choose all lines through Po as source states, 
then the resulting authentication system is not  essentially 2-fold secure. Indeed, if 
the Bad Guy has observed two messages P, Q (belonging t o  the source states POP 
and PoQ), he knows tha t  the key is a plane through the line PQ. Thus he is able to 

authenticate any source state L which is  a line through PO intersecting PQ in a 
point R ;t P, 0. Then R is the message belonging to  the source state L. 

3. Some classes of essentially t-fold secure authentication systems 

Example 1 (cf. [2]). Consider a hyperbolic quadric Q (ruled quadric) in P = PG(3,q), 
the 3-dimensional projective space of odd order q. The following facts are wel l  
known (cf. [6]): 

0 Q is covered by two sets R and R ', each consisting of q + 1 skew lines. The set 
R is called a regulus. 
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0 Every plane of P intersects Q either in two lines or in an oval (that is a set of 
q + 1 points no three of which are collinear). 

a There are sets S of  q2-q skew lines such that S U R i s  a spread that is a set of 
skew lines covering all points of  P. 

We shall construct an authentication system A(q) for any prime power q. Denote 
by S U R a spread in P = PG(3,q). where R is a regulus. The source 5tates are the 
lines of S, the keys are the points on the lines of R, and the messages are the 
planes through the source states. 

3.1 Theorem. Let A(q) be the above defined authentication system. 
(a) A(q) has q2-q source states and (q + 1)2 keys. 
fb) PO = l/(q + I ) ,  p i  = 2/(q+1). 
(c) A(q) is essentially 1 -fold secure. 

Proof. (b) Since each of the q + 1 planer through a source state contains the same 
number q + 1 of keys, we have po = l / (q + 1). Assume that the Bad Guy knows a 
message m, that  is a plane through a source state Sm. This plane intersects the set 
of keys in an oval, and the actual key is one point of the oval. Assume now that the 
Bad Guy wants t o  authenticate a source state S* # Sm. The line S* intersects m in 
a point X. For the Bad Guy it is  sufficient to  find a line L through X in m con- 
taining the actual key. (Then <S*,L> is the message.) Since any line of m through 
X contains at most two keys, his chance p1 of  success is  a t  most 2/(q + 1). 

(c) follows with c = 2. 

Note, that in A(q) the number of source states has the same order of magnitude as 
the number of keys. 

Now we change roles. Let Q be as above. Define A'(q) as follows. The source states 
are the lines of R ,  the keys are the points outside R, and the messages are the 
planes containing a l ine of  Q- 

3.2 Theorem. Let A'(q) be the above defined authentication system. 
(a) A'(q) has q + 1 source states and q3-q keys. 
(b) PO = l / (q  + 11, PI = l/q, p2 = l/(q-l). 
(c) A'(q) is  essentially 2-fold secure. 

Proof. (b) The fact that  po = l / (q  + 1) follows as above. Assume now that the Bad 
Guy knows a message m, that is  a plane through a line Sm of R. This plane inter- 
sects the points of the lines of R in two lines Sm and T. The line T contains exactly 
one point of any source state. Suppose that the Bad Guy wants to  authenticate S* 
i Sm, which intersects m in a point X + Sm n T of T. Observe, that T contains no 
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key, but any o f  the q lines # T through X contains exactly q-1 keys. Thus, p i  = 
l lq.  

Finally, assume that the Bad Guy has observed two messages m and m' wi th 
source states Sm and Sm*- The planes m and m' intersect in a line L. Since the 
actual key is a point o f  L, L must contain a t  least one, hence exactly q-1 keys. The 
remaining two points of  L are points of Sm and Sm', respectively. It follows that 
any other source state S* is a line skew to L. Thus, in order to  authenticate S*, the 
Bad Guy has t o  choose one of  the q-1 keys on L, which gives q-1 distinct planes 
through S*. Hence p2 = l/(q-l)- 

(c) For c 2 6113 it follows 

l/(q-1) i c .(q3-q)-1/3 

for any q 2 2 . 0  

Remark. We have not only proved that A'(q) is essentially 2-fold secure; it satisfies 
the following stronger condition: Given any two messages, the Bad Guy has only a 
chance of l/(q-1) t o  authenticate any third source state. (Note that "essentially 2- 
fold secure" only means, that, given a randomly chosen pair of messages, the Bad 
Guy has a certain chance t o  cheat.) 

We will review the examples constructed in [3] using quadrics. It will turn out that 
these examples are essentially P-fold secure authentication systems with large P. 

Example 2 (cf. [3]). Consider the quadrics Q in P=PG(d,q), q even, wi th the 
following properties: 
- 
- 

Q does not contain the point N = (1,0 ,..., 0), 
any line through N intersects Q in exactly one point. 

It is easy to  check that these are exactly those quadrics satisfying an equation of  the 
following type 

t 7 x ) = x o +  2 2 a .  X '  x = o  
'1 I 1 

I S i s j S d  

with aij € GF(q). 

Now we can define an authentication system Ad(q) as follows. The source states 
are all lines through N and the keys are al l  quadrics of the above defined form. The 
message belonging t o  a source state 5 and a key K is the unique point of inter- 
section of the line 5 with the quadric K. This authentication system contains 
qd(d + 1112 keys and qd-1 + qd-2 + .__ + q + 1 source states; it is essentially [d(d + 1112- 
11-fold secure. We shall first deal with the case d = 2 .  
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3.3 Theorem. Let A2(q) be the above defined authentication system for d = 2. 
Then A2(q) has q + 1 source states and k = 43 keys. It is 2-fold secure. 

Proof. Since d = 2 these quadrics have the equation 

f(x) = xo2 + a1 1 . ~ 1 2  + a22.x22 + a12-xl.x2 = 0, where aij € GF(q). 

Each o f  the aij could be any of the q elements of GF(q), so the number of keys 
(which are all possible quadrics of  the above form) is  93. The message, belonging to  
a source state 5, could be any of the q points r+ N on 5. This is also true, if one 
message, that is a point # N of  P, is known. Thus, po = l /q  and p i  = I/q. Sup- 
pose, two messages P and Q, belonging to  the source states SP and Sq, are 
known. If S* is an arbitrary source state different from Sp and SQ, then there 
exists exactly one quadric through each point # N of S*, which yields p2 = l/q. 

We have p : = max{pr~,pl,p2} = l/q = k-113, so A2(q) i s  2-fold secure in the strong 
sense. 

3.4 Theorem. Let Ad(@ be the above defined authentication system. 
(a) Ad(q) has qd-1 + qd-2 + __. + q + 1 source states and q(d + 1)d/2 keys. 
(b) Ad(q) is essentially [d(d + 1)/2-l]-fo/d secure. 

Proof. (a) Each set o f  different aij's, 1 5 i 5 j _I d, yields different quadrics of the 

t Y  Pe 

Ox) = x;+ \~ a,: x . .  x. = 0 
'1 I 1 - 

1 Si 5 J S d  

Since the number of points i,j with 1 I i 5 j 2 d is (d + l)d/2 and each aij can 
take q different values, the number of keys of &(q) is  q(d + lW2. 

In P = PG(d,q) there are qd-1 + qd-2 + _ _ "  + q  + 1 lines through a point, so the 
number of source states is qd-1 + qd-2 + .__ + q + 1 . 

(b) As for A2(q) it follows that po = l/q, p1 = l /q  and p2 = l/q. Let us first 
compute p3. 

Suppose that two  messages P and Q belonging to the source states Sp and SQ 
are known. Denote by E the plane through Sp and SQ. It intersects Q in a quadric 
Q'. Since in E the quadric Q' has similar properties as Q in P, Q' is determined by  
any three of i t s  points. If the Bad Guy happens to observe three messages P, 0 and 
R, where the associated source states are in one plane, he can authenticate each of 
the other q-2 other source states in this plane. 

To calculate p3, we have to  look at the definition of pi. The probability pi is  
defined as the probability that the Bad Guy succeeds in substituting a message be- 
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longing to a source state, which wasn't sent, given that he has observed i different 
messages. Thus 

p, = 2 p(M'). payofT(M'), 
M'C M,JM'I = I  

where M is the set of messages, M' a subset of order i, and payoff(M') the pro- 
bability that the Bad Guy succeeds given that he has observed the messages in M'. 

The probabilty to observe a set of messag.es depends only on the probability of the 
set of source states. Also payoff(M') i s  constant for all M' that belong to  the same 
set of source states S'. Hence in Ad(q), 

p, = p(s') .  payotr(S'). 

With this, we can calculate p3. If the Bad Guy observes the messages P, Q, and R, 
where the corresponding source states are in a common plane, he can cheat with 
probability 1. In al l  other cases, his probability of success is only l/q. Thus 

sc_sJel=l 

p3 = p(sR E <sP,SQ>).l + p(sR <sP,sQ>).l/q 
- - (q-1) / (@I + ... + 9-1) + (qd-1 + ... + q-I-(q-I)) /($-I + _._ +q-l).l/q 

= (qd-2 + ... + 2q-1) / (qd-1 + ... + 9-1) 
5 2-l/q. 

Now we proceed to the general case and show that pi 5 c-l/q for i 5 d(d + 1)/2- 

If the Bad Guy can determine the intersection of the key (quadric) Q with some 
subspace U of PG(d,q), then each point of the quadric QflU is a valid authen- 
ticator. If QnU contains a t  least one message not already observed he can cheat 
with probability 1 ~ In al l  other case the probability of cheating is  l/q. 

Hence, if p* denotes the probability that the Bad Guy cannot determine the inter- 
section of the key with some subspace containing unobserved messages, then 

pi = (1 -p*).I + p**I/q 5 (I-p*) + l/q. 

It remains to show that 
n- 1 

q"+ bi q' 
i = O  

(*I n-1 
qn+ 1: ai qi  

p* z 

i = O  

for ai, bi € No, n € N, al l  independent from q. 

(Then 
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n-1 n - 1  

q n +  bl q' 2 (al-b, ) q '  

q n +  2 a,  q1 q n +  2 a ,  q' 

I = o  I = o  1 
p* 1 2 1 -  21-c. - 

9 n-1 n - I  

i =a i = O  . 

for a suitable c independent o f  q. 50 pi 5 (1- p*) + l /q  5 (c + l ) - l /q.)  

We have to  calculate the probability p* that the Bad Guy cannot determine the 
intersection of the quadric Q with some subspace U of PG(d,q) containing at  
least one unobserved message. 

The Bad Guy knows i different messages mi, 1 2 j 5 i, i.e. points of the quadric Q. 
In a t-dimensional subspace U, t 2 1, of <m1, ...,mi > he can determine the qua- 
dric QnU if he knows at  least nu messages contained in U, where nu = (t + 2)- 
( t  + 1112-1 if N fl U and nu = ( t  + l)V2 if N € U. For this he needs at least (t + 2)- 
( t  + 1112-1 source states in a (t + 1)-dimensional subspace or (t + l)V2 source states 
in a t-dimensional subspace. For cheating with probability 1 the quadric Q n U  
must contain at least one unobserved message, in pa,rticular we must have t 2 2. 

Thus, 

p*  = prob (Bad Guy cannot determine the intersection of the quadric Q with some 
subspace U of  PG(d,q) such that QnU contains a t  least one unob- 
served message ) 

2 prob (no ( t  + l ) t /2 source states are in a t-dimensional and no (t + 2)(t + 1)/1- 

1 source states are in a (t + 1)-dimensional subspace of PG(d,q), t 2 2 ) 

= prob (among i points of PG(d-1,q) there are no (t + l)V2 in a (t-1)-dimen- 
sional and no ( t  + 2)(t + 1)/2-1 in a t-dimensional subspace for all t, 2 5 
t < d) 

2 prob(among i points of  PG(d-1,q) there are no (t + 1) in a (t-1)-dimen- 
sional subspace for al l  t, 2 5 t 5 d) 

= : p' 

because t + 1 % ( t  + l ) t /2  and t + 2 5 (t + 2)(t + l ) / 2 - l  for t z 2. 

Denote by s the minimum of d-1 and i.Then 

p' = n prob ( lhe 0' + I )- t h  point isnot contained in thc subspace generated by the first j points)  
S 

J = 2  

i - 1  , .  
( d i l  ) 1-1 p r o b ( t h e  ~ + l ) - t h p o i n t i s n o t m n t a i n e d  inanyofthe 

j = s + l  

(d -2)-dimensional  subspacesgenerated by the first j points) 
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#points in PG(d - 1 ,q) - #points in  B j-dirnenional5pace 
#pointsin PG(d - 1,q) - j j=2 

,- 1 #poinLs in PG(d - 1 ,q) - #pointson the ( I ) (d - 2)- dimensional subspace n  point^ in PG(d - 1 ,q) j = s + l  

i - I #points in PG(d - 1 ,q) - ( di, )#pointsinPG(d-Z,q) 
2 r - 1  

I I  
j = 2  

i - 1  qd-l+qd-*+ ...+ I -( j )(qd-2+qd-3+ ...+ 1) 
d-1  = ri 

I 1  
j = 2  qd-'+qd-2+ ... + 1 

Because i is  independent of  q, w e  have shown (*) 

So, Ad(@ is essentially [d(d + 1)/2-l]-fold secure. 0 

Example 3 (cf. [3]). Consider the quadrics Q in P = PG(d,q), with the following 
properties: 
- 
- 

Q contains the point N = (1,O ,..., 0). 
XI = 0 is tangential hyperplane in N. 

It is easy to  verify that  these are exactly those quadrics satisfying an equation of  the 
following type 

R x ) = x .  x + a .  X '  x = o  
0 1  IJ 1 1 

I SI S J l d  

with a,j € GF(q). 

Now we can define the authentication system A'd(q) as follows. The source stares 
are all lines through N not in the hyperplane x1 = 0 and the keys are all quadrics 
of the above defined form. The message belonging to a source state 5 and a key K 
is  the unique point of  intersection of the line S with the quadric K different from 
N. 

3.5 Theorem. Let A'd(q) be the above defined authentication system. 
(a) A'd(q) has qd-1 source states and q(d + 1)d12 keys. 
(b) A'd(q) is essentially [d(d + 1)/2-l]-fold secure. 

The proof is similar t o  the proof of  Theorem 3.4. 

This example can be generalized in the following way. 

In PG(d,q) the equation 

where @n i s  a homogeneous polynomial of degree n, represents a hypersurface T. 

Rxt = x . x "-'+r$'"x ,'"" x,)= 0 ,  
0 1  
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T has multiplicity n-1 at N = (1,0, ..., 0). The tangent cone in N has the equation 
XI"-1 = 0, and the number of undetermined coefficients of the above equation is 

( d + ; - '  ). 
Now the authentication system can be defined as follows. The source states are the 
qd-1 lines of PG(d,q) through N, which do not lie on the hyperplane XI = 0. The 
keys are the hypersurfaces with an equation of the above form. The message 
belonging to a source state 5 and a key K is the unique point of intersection 
different from N of the line 5 with the hypersurface K. 

The authentication system is essentially P-fold secure with e = ( 
For n = 2 the hypersurfaces are the quadrics of Theorem 3.5. 

d + n - I  
)- 1 

4. Implementation 

We discuss a possible implementation of the example 1 in section 3. 

We represent a point of P = PG(3,q) by i ts homogeneous coordinates (xo,x1,x2,x3) 
# (O,O,O,O), where the x i  are in GF(q), the field with q elements. Two such 4-tuples 
(xo,x1,x2,x3), (yo,yl,y2,y3) represent the same point if there exists an h € CF(q) with 

( X ~ , X ~ . X ~ , X ~ )  = h.(y,,y 1,~2,~3)- 

The planes are the sets of all points (xo,xl,x2,x3) satisfying an equation 

ao.xO + al-xl + a2-x2 + a3-x3 = 0 (ai E GF(q), not all ai = 0). 

Thus, we can represent any plane by a 4-tuple [ao,al,a2,a3], this 4-tuple being 
unique up to a factor k * 0. 
The lines of P through the distinct points (xo,x1,x2,x3) and (yo,yl,y2,y3) consist of 
all the points with homogeneous coordinates 

a.(XOJlJ2J3) + ~-(Yo,YI,Y~,Y~), with a, b € GF(q); 

We represent this line by < ( X O , X ~ , X Z , X ~ ) ,  (YO,Y i,y2,y3)>. 

Given a line g through the points (ao,al,a2,a3) and (bo,bl,bz,b3), and a point P = 
(xo,x1,x2,x3) not on g,  then the plane m = [mo,m,,m2,m3] through g and P is 
obtained by solving the following system of linear equations: 

ao-mo + al-ml + a2.m2 + a3em3 = 0 
boemo + bt.ml + b2.m~ + b3-m3 = 0 
po.mo + pt-ml + p 2 - m ~  + p3em3 = 0 
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As the set S of source states w e  shall take a "regular spread" in PG(3,q) with q = 
3 mod 4. This has the advantage that the coding of the "real" source states into the 
lines of S is easily performed: 

Such a regular spread S can be described as follows. It consists of the lines 

gh,k= <(hk,l,O), (-k,htO,l)> h,k GF(q) 

and the line 

gm = <(1,0,0,0), (0,1,0,0)>. 

Moreover 

= 9-1 { gk,Ol GF(q) 1 
i s  a regulus contained in S. 

Now, if q is a prime, we can represent the source states by a tuple (h,k) of integers 
with 0 5 h < q, 0 < k c q. The tuple (h,k) is will be encoded by the source state 
9h.k. The keys are represented by a tuple (k1.k~) with 0 S kl, k2 S q, where k i  
identifies the line of R and k2 is a point of this line. A message is  represented by 
the homogeneous coordinates of the plane, i.e. a tuple (molml,rn2,m3) with 0 5 
mi < q, i = 0,...,3. 

To authenticate a source state with a key and to determine the source state from a 
message, one has only t o  solve a system of three linear equations. 
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