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Abstract. The role of non-deterministic authentication coding (coding with 

splitting) is discussed; a new substitution attack is put forward which is argued 

to be more relevant than usual substitution for codes with splitting. A 

reduction theorem is proved which allows to extend “abstract” bounds for 

impersonation (including the new JS-bound, which is shown to hold on the 

large class of “abstract” authentication codes) to the new substitution attack. 

INTRODUCTION 

In Simmons’ model an authentication code is a finite random triple XYZ 

(random message, random codeword, random key; according to the original 

terminology: random source state, random authenticated message and random 

encoding rule). Further, the following is required: X and Z are independent; X 

= g(Y,Z> (decoding has to be deterministic). Instead, Y = f(X,Z) 

(deterministic encoding) is not required. If this happens the code is called 

deterministic, or without splitting . Below, as an example, we show an 

encoding matrix , the corresponding decoding matrix, and the binary matrix 

specifying key-codeword admissibility; this is obtained from the decoding 
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matrix by writing ones instead of messages and zeroes instead of blanks, and 

tells which codewords are authenticated by which keys. 

x l  x2 x3 Y l  Y2 Y3 Y4 

y l  Y2 Y3 zl x l  x2 x3 

y3 Y4 Y l  22 x3 xl x2 

2 1 1  

2 2 1  

1 1  0 

0 1 1  

To describe a code one may give the encoding matrix and specify the 

statistics of X and Z; however, in case of splitting many "homophones" can 

occupy the same entry; then one has also to specify the random selection rule 

of the homophones given the key and the message (for convenience, we rule 

out one-dimensional "objects", be they messages or keys, with zero probability; 

we assume 1x122). Decoding being deterministic, the same codeword appears ut 

most once in each row of the encoding matrix. 

Given a code X Y Z  we shall find it convenient to deal with the marginal 

couple YZ, forgetting about the random message X. We shall say that YZ is 

the abstract code derived from the operational code XYZ; actually we shall 

need all the abstract codes (random couples) YZ, even those which are not 

derivable from operational codes. In a way, we have the following inclusion: 

deterministic codes c operational codes c abstract codes. 
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THE JS-BOUND 

So far our code might be a secrecy code, codewords being cryptograms, 

or even a source code, when only one key is there; we go now to authentication 

theory for good; cf /1,2/. In the impersonation attack a clever opponent, who 

ignores the key, chooses a codeword and sends it to the legal receiver in the 

hope that it will be accepted; the codeword is chosen so as to maximize the 
probability of fraud, PI: 

PI = maxy Prob(Z E Ay), with Ay = { z: Prob(Y=y,Z=z)&} 

Ay is the set of keys which authenticate y and corresponds to the ones 

below y in the binary matrix (similarly, one defines A,, the set of codewords 

authenticated by z, which corresponds to the ones on the right of 2). 

For PI several lower bounds are known (below I(Y;Z)=H(Y)+H(Z)- 

H(Y2) denotes mutual information in bits; H(.) is Shannon entropy; bars 

denote size): 

Simmons bound Abstract PI 2 2 -I( Y ; Z) 

combinatorial bound Universal 
1x1 
IYI PI 2 - 

The first is abtract, that is it holds over the larger class of abstract codes; 

the second is universal, that is it is independent of (robust w.r.t.) source 

statistics. Actually the combinatorial bound can be easily generalized to 

min, IAJ 
IY I , which is both abstract and universal. PI 2 
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For deterministic codes a standard manipulation of information 
quantities (cf /I/) shows that Simmons bound becomes: PI 2 2H(X)-H(Y); of 

course the combinatorial bound can be always written as PI - 

Typically IYI>>IXI, so Simmons bound is better; however, for this silly binary 

code below the combinatorial bound is better: H(Xk 0, H(Z)=l, Y=X@3Z (then 

H(Y)=l). Simmons bound gives approximately 2, the combinatorial bound 

gives correctly 1. Recently, Johannesson and this author /3/ have put forward a 

new bound, which is a sort of "universal strengthening" of Simmons bound; it 

improves also on the combinatorial bound. Below we shortly rederive the JS- 

bound, so as to show that it holds over the large class of abstract codes. 
which is defined 

through joint probabilities codeword-key which differ from zero: it doesn't 
matter how much they differ from zero! Actually PI depends on2y on 

distr(Z) and on the binary matrix for key-codeword admissibility, and so, in 
particular, PI is itself "universal". (There is more to it, since PI does not even 

depend on the possible correlation between X and Z; cf /3/). 

> 2loglXI-loglYI 

1 

The starting point is this: PI is defined through A Y' 

Given an abstract code YZ consider the stochastic matrix W=YIZ of the 

conditional probabilities codeword-given-key . Observe that if one "binarizes" 

W by writing ones instead of its non-zero entries one re-obtains the binary 

matrix! Take Y*Z* s.t. Z* has the same distribution as Z, W*=Y*IZ* has the 
same zeroes as W. Then A =A *. Then PI=PI*. So, the following chain 

holds: 
Y Y  

forany W*-W 

PI 2 2 -inf I(Y*,Z*) 

PI 2 2 -min I(Y*,Z*) 

inf w.r.t. all W*-W 

min w.r.t. all W*IW 
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(W*-W means that the stochastic matrix W* has exactly the same zeroes as W, 

W*5W means that W* has at least the same zeroes as W; in the last line we 

simply closed the open minimization set: there are examples where the 

minimizing W* has more zeroes than W, and so lies on the boundary; cf /3/). 
Observe that the minimum in the exponent of the JS-bound can be interpreted 

as a suitable rate-distortion function evaluated at zero: so, the very efficient 

algorithm available for the latter can be used to compute it. (An intriguing 

question: why did a rate-distortion function show up in this authentication- 

theoretic context?) 

For W*-W with uniform rows: 

I(Y*,Z*) = H(Y*) - EZlog l A ~ l  I loglYl - min log IA,I 

and one re-obtains the (abstract) combinatorial bound. 

A GENERALIZED ATTACK 

After this preliminary material on impersonation, we still have to pause 

on a boring insert devoted to a new "formal" attack: conditional-constrained 

impersonation . Let E and F be non-void sets of codewords and set: 

PI(E,F) = maxyE F Prob{ 2 E AylY E E) 

The opposer is constrained to choose his codeword inside F and can use the 

information YE E: this attack generalizes both impersonation and substitution 

of codeword c; in the latter case F={y:y;tc), E={c). We shall prove a 

"reduction theorem": from YZ a new abstract code Y*Z* will be constructed, 

such that, under mild regularity assumptions: 
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Once one is able to "reduce" the fraud probability for the new attack to the 

fraud probability in an impersonation attack, all the (abstract) lower bounds 

obtained for impersonation are usable for the new attack! The construction of 

the new code follows. For Z* take ZIYE E (throw away zero-probability keys); 

Y* takes its values in F; to obtain Y*IZ*=z pump up the probabilities for 

Y12rz so as to make them sum to 1 (provided this pumping is feasible: this is 

the regularity assumption, which however will turn out to be trivially met 

when we shall need it ). In symbols 

Pr{Z*=z} = Pr(Z=zlYEE}, Z E U ~ ~ E A , ,  

with a = a(F) = zyE F Pr{Y=ylZ=z} 

The regularity condition is simply that a should be strictly positive for all z's 

in the range of Z*; in other terms, any key which authenticates at least a 

codeword in E should authenticate at least a codeword in F. Since this 

reduction theorem is an unimaginative generalization of a result given in /4/ 

for the case of substitution attacks details of the proof are omitted. 

CODES WITH SPLITTING 

Let's turn to (operational) codes with splitting. In a pure impersonation 

model they are useless (if one throws away homophones, that is ones in the 
binary matrix, PI does not increase). However, authentication codes with 

splitting cannot be disposed of for very serious reasons, two of which follow. 

First: homophony (splitting) is a brilliant idea for secrecy ciphers and so 

splitting can be good in a mixed authentication-secrecy model, even if 

authentication is restricted to impersonation. Second: as shown by Simmons, 
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splitting is essential in the mixed impersonation-substitution model which he 

has proposed, where the opposer is free to play either impersonation or 

substitution, according to which one pays better. Even so, however, a difficulty 

arises: we shall argue below that usual substitution is not a relevant attack to 

mount in the case of codes with splitting. 

We shall make a distinction between two attacks: codeword substitution 

(substitution as defined usually) versus message substitution. These are 

genuinely different attacks when there is splitting. The point is the following. 

If the opposer substitutes the legal codeword by one of its homophones the 

system is safe: so, why declare his substitution successful? In the attack of 

message substitution we demand not only that the codeword is successfully 

substituted, but also that it is decoded to a message different from the legal 

message, so that havoc is brought about in the system. The probability of 

success is then: 

Prob(2 E Ay - H I Y=c), with H ={z: g(y,z)=g(c,z)} Y(f4 Y,C Y,C 
PMS(C) = max 

By averaging with respect to Pr{Y=c] one has the overall probability of 
message substitution PMS=I: Pr( Y=c) PMS (c); (the probabilities of 

codeword substitution are defined similarly, only omitting the conditions 
2% Hy,c; observe that, unlike codeword substitution, message substitution does 

not make sense for abstract codes, since it explicitly involves messages). 

Y 
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C1 

ExamDles. Beside the case of impersonation arid codeword or message 

substitution, below we consider also two probabilities of deception : 
Pd=max(PI,PCS), as defined by Massey /2/, and Pg=max(PI,PMs), which is a 

natural analogue of Pd in the case of message substitution. In general P@d; 

equality holds for deterministic codes (and for some probabilistic codes). 

(Deception as defined by Simmons is a more complicated game-theoretic 
notion; in his case the maximum is only a lower bound to Pd). The following 

examples /5/ show that, unlike in the case of pure impersonation, deleting 

homophones can be detrimental to the performance of the code in the case of 

substitution or deception. 
Consider the three codes C1, C2 and C3 specified by the encoding 

matrices below. The message is a fair coin, while the key probabilities are 7 , 
3 1 7 and 7, top to bottom. C2 and C3 are obtained from C1 by adding a 

codeword (by adding a one in the admissibility matrix). The homophones are 

equiprobable. 

3 

PI pcs pd PMS P6 
32 52 52 52 52 

c1 c 2  c3 

Y l  Y2 YLY4 Y2 Y l  Y2 

Y3 Y4 Y3 Y4 Y37Y5 Y4 

Y5 Y3 Y5 Y3 Y5 Y3 

c 2  

c3 

In the table below results are given in 56-ths to help comparisons; the easy 

computations are omitted. 

48 51 51 51 51 

32 56 56 48 48 
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In the case of C2 splitting helps whenever substitution is involved, but it 

is harmful for impersonation; there is no practical difference between 
codeword and message substitution. In the case of C3 the proposed splitting is 

catastrophic for codeword substitution; however the same splitting is 

advantageous for message substitution; it does no harm even to impersonation 
taken by itself, and so C3 should be definitely preferred to both C1 and C2. 

These examples show that deterministic coding can be "pointwise" 

improved by splitting, but they do not answer a deeper question: are there 

cases when (asymptotically) optimal encoding is necessarily probabilistic? 

Actually, at the moment such a question is not even well-defined, since a 

Shannon-theoretic framework for authentication theory is still in the make (cf 

/SO. 

A REDUCTION THEOREM FOR MESSAGE SUBSTITUTION 

Now we prove a reduction theorem for message substitution, which 

reduces it to abstract impersonation. From XYZ construct a new operational 

code XY'Z (only the random codeword changes) with an extra codeword d 

which takes the place of the homophones of c in the encoding matrix. Set 

E={c}, F={y: y#c,d}. Then: 

where Y,Zc is obtained from Y'Z in the same way as Y*Z* was obtained from 

YZ in the boring insert. 

Proof. The first equality follows from the following obvious facts: Y'=c iff 

Y=c, ZE A'y iff ZE Ay-Hy,c. The second follows from the insert; 1x122 



292 

ensures that the regularity assumption is met (recall that d is a homophone of c 

and so occupies the same entry of the encoding matrix). 

Consequently, abstract lower bounds for impersonation can be recycled 

to bounds for message substitution. From each of them, one learns (necessary 

but not sufficient) conditions a code should meet to be a good code. Simmons 

bound recycled tells that Y and 2 should be strongly correlated given c, but 

correlation due to homophones does not count. The JS-bound recycled 

improves on this and tells that only "deterministic" correlation (as measured by 

the infimum mutual information) matters: 

PMS(C) 2 2- inf I(Y*;Z,) 

where Y*Zc is constrained to have the same admissibility matrix as Y S c .  

The abstract combinatorial bound yields instead: 

1x1-1 1x1-1 
'MdC) m' and therefore P ~ s 2  m. - 

Proof. Going from X Y Z  to X Y Z  the number of codewords increases at most 
by 1; going from Y'Z to YcZ, it decreases at least by 2; so IY,IIIYI-l. Assume 

that c decodes to x under key z in XYZ, or XY'Z; at least 1x1-1 more 

codewords are needed for key z to decode to the remaining 1x1-1 messages; 
none of these can be equal to d, since g(d,z)=g(c,z). So IAC,IIIXI-l for any z. 

A similar combinatorial bound was well-known for codeword 
substitution; it does not implies ours, though, as P&c) can be strictly greater 

pMS(C) - 
We think that the foregoing vindicates the role of abstract codes in 

Simmons theory of authentication. 
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