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Abstract 

We esplain how the Elliptic Curve Primality Proving algorithm can be im- 
plemented in a distributed way. Applications are given to the certification of 
large primes (more than 500 digits). As a result, we describe the successful at- 
tempt at proving the primality of the lOG5-digit (2ss3g+ l)/3, the first ordinary 
Titanic prime. 

1 Introduction 

For cryptographical purposes [7], it is desirable to generate large primes as fast as 
possible. This can be done via ad hoc techniques [30, 12, 14, 41 or by means of a 
general purpose primality testing algorithm such as that described in [l, 11, 10,6] or 
the Elliptic Curve Primality Proving (ECPP) algorithm due to Atkin [2, 26, 241 (For 
a survey of primality testing, see [IS]). 

Another point is to certify large primes, such as the Cunningham numbers [S], 
which sometimes have more than 400 digits. The purpose of this paper is to explain 
how the ECPP algorithm has been implemented on a network of workstations and 
used to test some numbers with more than 500 digits for primality. In particular, 
it is now routine to test SOO-digit numbers and it is not too hard to test lOOO-digit 
numbers. 

We first begin by a short introduction to ECPP and then, we explain the dis- 
tributed process g la Lenstra-Manasse [19]. Th ese ideas are exemplified by the cer- 
tification of large primes and we also give the history of the primality of the record 
breaking ~Vasss = (2ss3g + 1)/3, which has 1065 digits. 
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2 A brief description of ECPP 

2.1 Elliptic curves 

Let K be a field of characteristic prime to 6 .  An elliptic curve E over K is a non 
singular algebraic projective curve of genus 1. It can be shown [9, 341 that E is 
isomorphic to a curve with equation: 

y2z = x3 + UXE' + bz3, (1) 

with a and b in K. The discriminant of E is A = -16(4a3 + 27b2) and the invariant 
. is 

j = 3 3  a 3 a3 
4a3 + 27b2 * 

We write E(K) for the set of points with coordinates (z : y : z )  which satisfy (1) 
with z = 1, together with the point at infinity: OE = (0 : 1 : 0). We will use the 
well-known tangent-and-chord addition law on a cubic [16] over a finite field Z / p Z  as 
well as over a ring Z / N Z  with N composite (see [21] for a justification). 

T -  

Figure 1: An elliptic curve over R 

In order to add two points Jrl, = ( q , y , )  and ll.12 = ( 2 2 , ~ ~ ~ )  on B resulting in 
M3 = ( t ~ ,  ys), the equations are 

where 
(yz - n)(zz - XI)-' if 22 # 5 1  

(35: + u)(2y1)-' otherwise. 
A = {  

We can compute X-P using the binary method (171 (see also [lo]) or addition- 
subtraction chains [29]. 
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2.2 Primality proving 
Let us recall one of the converses of Fermat’s theorem. 

Theorem 1 ([31]) Let s be a divisor o f i v  - 1. Let a be an integer prime to 1 SUC 

that 
uN-l = 1 mod N andgcd(a(N-l)’q - 1 , N )  = 1, 

for each prime divisor q of s. Then euch prime divisor p of N satisfies p EE 1 mod S .  

Corollary 1 I f s  > fi - 1 then N is prime. 

A similar theorem can be statcd for elliptic curves. 

Theorem 2 ([13, 201) Let N be an integer greater than 1 and pr ime  to 6. Let 
E be an elliptic curve over Z / N Z ,  m and s two integers such that s I m. Suppose 
we have found a point P on E that satisfies m P = OE, and that for each pr ime  
factor q of s, we have verified that Y P  # OE. Then i f  p is a prime divisor of N ,  
# E ( Z / p Z )  0 mod s. 

Corollary 2 I f s  > (m+ I)’, then N is prime. 

In order to use the preceding theorem, we need to compute the number of points m. 
This process is far from trivial in general (see [32]) .  From a practical point of view, 
it is desirable to  use deep properties of clliptic curves over finite fields. This involves 
the theory of complex multiplication and class fields and requires a lot of theory [26]. 
We can summarize the principal properties. 

Theorem 3 Let p be an odd prime. Every elliptic curve E mod p has complex mul- 
tiplication b y  an order of an imagirrary quadratic field IT = Q(m). 
From a very down-to-earth point of vicw, this comes down to saying 

0 p splits completely in Ii‘ as (11) = ( T )  (T’) in I<; 

0 E I D ( ~ ( E ) )  3 O mod p for a fixcd polynomial l,rO(X) in Z[X]; 

0 rn = # E ( Z / p Z )  = (T - 1 ) ( ~ ’  - 1) = p + 1 - t ,  where It1 5 2 f i  (I-Iasse’s 
thcorcm) . 

The computation of the polynomials IID is dealt with in [2G] and [27]. 

2.3 Outline of ECPP 
We now explain how the preceding theorems are used in a factor and conquer alp- 
rithm similar to the DOWNRUN process of [371. The first phase of the algorithm 
consists in finding a sequence No = N > Nl > - 4 -  > Nk of probable primes such 
that N;+1 prime Ni prime. The second then proves that each number is prime, 
starting from N k .  

1 



113 

Procedure SearchN 

1. i := 0; No := N ;  

2. find a fundamental discriminant -D such that (N;)  splits as the product of two 
principal ideals in Q ( G ) ;  

3. for each solution of (N;)  = (n)(r’), find all factors of m, = (r - l)(r’- 1) less 
than a given bound B and let N ,  be the corresponding cofactor; 

4. if one of the N ,  is a probable prime then set N,+l := N,, store {N;, D ,  R ,  m,} 
set i := i + 1, and go to step 2 else go to step 3. 

5. end. 

The second phase consists in proving that the numbers N; are indeed primes. This 
is done as follows. 

Procedure Proof 

for i = E..O 

1. compute a root j of H D ~ ( X ’ )  mod N; as described in [27, 283; 

2. find an equation of the curve E; whose invariant is j and cardinality mi; 

3. verify the condition of theorem (2). 

end. 
For more details, the reader is referred to [2]. 

3 Large primes 

The author used ECPP to test about fifty numbers from the Cunningham tables [S] 
and some others, namely S, = ((1 + fi)p + (1 - &)p)/2 for p E (1493,1901) with 
respectively 572 and 72s digits, in 30 and 40 days on a single SUN 3/GO. Indeed, a 
simple extrapolation shows that testing a 1000-digit number would require about 6 
month (at least). We must do something clse to increase the bound on the largest 
number ECPP can test. 

4 Distributed computations 

From the preceding description, it is easy to see that this algorithm is very well 
suited for distributed computations. We can do the first phase in parallel and then 
the sccond one too. Let us see how I did this. 
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First of all, I implemented ECPP usiiig the Le-Lisp language and the multipreci- 
sion described in [15]. Then the computations were done using a star network B la 
Caron-Silverman [33]. There arc a master (m) and an indefinite number of worksta- 
tions, called slaves (6). 

The idea is that when dealing with vcry large numbers, the crucial part of ECPP 
is the first one, because i t  requires the factorization of very large numbers. There are 
basically two ways of doing that. The first one is to try to factor a single number using 
all the stations. The second is to let each station work on a different number. Actually, 
I use the latter scheme, because the first one would require more communications and 
also because it is not the right philosophy of the test: The less factoring power we 
use, the better. 

We now describe the conditions rcquircd to do an optimal job. 

4.1 Constraints 

We want to use the idle time of a network of workstations. We do this in a way similar 
to that of [19]. We start a process on a machine in such a way that a legitimate user 
is not (too much) disturbed: If a user typcs on a console (in UNIX words, he changes 
the date of one of the tty’s), then the program is stopped (by means of a k i l l  -STOP) 
and restarted 10 minutes after the last action of the user (with a k i l l  -CONT). The 
process is also stopped whenever the load climbs up some prescribed value (typically 
1.5) and is subjected to the same restart conditions. All this is done with the shell 
scripts distributed by Mark Manasse for integer factorization. Another important 
feature of t h e e  programs is the ability to restart themselves after a small crash such 
as a Connection timed out from a server. Also, they do not depend on a particular 
machine (at least running UNIX or ULTRJX) or a particular language. I t  is possible 
to use a C program on a DEC station and a Le-Lisp program on a SUN. 

4.2 The first phase 

4.2.1 Role of t h e  master 

On 
things for each Ni of the first phase 

(typically the author’s own workstation), the program used does the following 

1. put in the file WHICHN the number to be tested; 

2. find all fundamental discriminants D (from a finite subset D) for which Ni is 
reprcscntcd by a form of Go and put them in the file DSET; 

3. initialize the rank of the nest D to bc examined to 1 in the file DRANK; 

4. start finding a suitable D. 

4.2.2 Role of t h e  slaves 

On 6, the program looks like 
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1. read the number to be tested from WHICHN and call it N ;  

2. while N is equal to the content of WHICHN, select a new D in DSET, update 
DRANK and try to factor any of the m,. 

4.2.3 

Each machine does the following 

Tasks performed by every machine 

1. find a D such that ( N )  splits complctely in Q ( a ) ;  

2. try to factor each m, using first trial division, then Pollard’s p method, and 
finally the p - 1 method. 

Inside each factoring algorithm, the program periodically tests whether something 
has happened. When this is so, it givcs up on N; and begins a new work on Ni+i. 
When using the p method [23], the test is done at each gcd (for our purposes, there 
are lo4 iterations and a gcd each 1000 iterations). During p - 1, only once. 

4.2.4 

The files DSET, DRANK and WHICHN have just been described. All this SUP- 

poses the use of a distributed file system: Here it is NFS that does all the job. Special 
code has been written to handle the problems arising when one machine wants to 
read a file while another tries to writc in i t  or to test whether the file can be accessed 
through NFS. 

Cominunications between 3x and B 

4.3 The second phase 
For each N;,  it remains to check the primality conditions. Using a file containing the 
next number to be certified, each station takes the useful data and does its job. It 
should be noted that this phase can be started even if the fist one is not complete. 

4.4 Problems encountered 

One of the major problem is the reliability of the NFS protocols, especially when using 
machines not depending from tlie same file server. The program is very well suited 
for testing the reliability of the network. Each time there is a connection problem, 
the process simply crashes. 

Also, using a Le-Lisp executable requires a lot of memory and, sometimes, this 
resulted in a swap problem and also a crash. 

5 Establishing a new frontier: the history of N3539 
Last year, the 100-digit line was crossed for the first time for integer factorization [19]. 
In 1953, Yates [3S] introduced the concept of Titanic primes, that is primes with at 
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least 1000 decimal digits. This sccmcd to make a distinction between the real world 
of small primes and that OF large primes. The frontier for primality testing was thus 
1000 digits. The aim of this section is to dcscribe how we went far beyond the line, 
thus making thc testing of 1000-digit numbers a routinc. 

5.1 Entomology of a Record 

The first thing to do was finding a good candidate. It had to be greater than the 
repunit B1,31, whose primality was proven by Williams and Dubner [36]. During their 
setting of the new Mersenne’s conjecture [3], Bateman, Selfridge and Wagstaff tested 
some numbers of the form Np = (2P + 1)/3 for primality. They found that Np was a 
probable prime for p E (1709,2617,3539). 

During EUROCRYPT ’59 (April 10-13, 19S9), it appeared that both ECPP and 
the Jacobi Sums test [ll, 10, 61 were able to attack numbers as large as 1000 digits. 
This was the very start of a stimulating competition with W. Bosma and M.-P. van 
der Hulst. 

Indeed, the first of these numbers ( p  = 1709, Nb with 514 digits) was the fist 
number proven prime using ECPP in its distributed version. This was done on April 
19, 1959 with three SUN’S and four days of CPU. 

Then, I decided to skip p = 2617 and try JV&,. As shown by in the following 
figure, the factorization of N353, - 1 is not complete (up to now). 

21769 + 1 

I 
3 x 59 x 3539 x 39232583 

/ 2176i - 
\ 

I I 
220 - 1 

233 x 1103 x 20S4 

@IG80(2) 26’ - 1 
~7GS614336401564651 x Csoz 

pi9 

10199969089 x 

Using ECPP, I first launch the process on April 20, 19SD. The set 23 mentioned 
above consisted of all D’s with h( -D)  5 20, sorted according to (h/g,  h ,  0). Follow- 
ing [2], the difficulty of tcsting N may be deiincd as 

log N Q ( N )  = edY- 
M ( N )  

where 7 is Euler’s constant and M ( N )  is defined as follows. Put 

where the summation is on all D for which N can be represented by a form of the 
principal genus of quadratic forms of discriminant -D, g(-D) = 2*-l with t the 
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number of prime factors of D and h(-D)  the class number. As a matter of fact, 
Q ( N )  yields the value (logB) of the upper bound on the largest factor OF a number 
of points m we must factor in order to find a good candidate. 

Coming back to N&,s, I found that n/r(N,39) = 55 yielding log,,B = 11. This 
implied in turn that the only way to achieve this was using ECM. At that time, I 
hadn’t implemented this and so thc program started using only Pollard p and the 
p - 1 method *. This first attempt lasted till May 13, without any result: I couldn’t 
even find a good N I .  There was something to be done. Moreover, some problems 
scemed to arise in the p -  1 method, where the routine seemed to loop forever in some 
Cases. 

When looking a t  
log B = @ ( N ) ,  (2) 

there are two distinct ways of solving the problem. The first one is to  use sophisticated 
factoring routines, the other one is to incrcase the value of M ( N ) .  I used the second 
and decided to enlarge P with all D less than 215 f .  This increased M ( N )  to the value 
of 174, yielding log,,B = 3.44. This clearly said that ECM was no more necessary 
and that p was enough. After fixing some stupid bug in my p routine, I re-started 
the program on June 5 and it lasted till July 10, yet without any result. 

Clearly, there was a problem. Using induction, it seemed clear that there was, 
somewhere, a deep bug that only appcared when dealing with large numbers, but not 
with small ones. So I decided to stop working on J V ~ ~ ~ ~ ,  and began to reassure myself 
with a smaller one, namely JV&,~ (7SS digits). Although this number could have been 
done by simply factoring &17- 1 (as remarked by Atkin), this attempt was designed 
to find this bug. So, the process started on July 21 and ended on August 19, proving 
the number to be prime, but without rcvcaling any bug. 

At this point, I decided to implement ECM, just to see if something would happen 
to change. I had problems with this, since it was only possible to use the first phase 
of the algorithm, all the second phases requiring too much memory (they all need 
about (log N ) 2  storage, making it infeasible for 1000-digit numbers). Moreover, I 
could only use 20 curves or so, again because the storage was making it prohibitive 
to USC on workstations with not too much memory, such as a standard SUN 3/50 (4 
Mo). This was quite a disappointment. The third attempt on N3,,, was then started 
on September 12 and took two weeks. Nothing observable happened. 

I decided then to replace a11 these D’s less than 215 with all D’s with h / g  small, 
irrcspective of the size of D as soon as D fitted in a 32-bit word. More precisely, I 
computed and stored all D with h(-D)  5 50 (plus some with h = 64) and ordered 
them according to ( h / g ,  h, 0). This yiclded M ( N 3 5 3 9 )  = 291 and log,, B = 2.05. 
What would appear as the last attempt then began on September 29. 

A feeling of deep personal gratification came over me when, on October 5,  19S9, 
I finally confirmed my initial impression that a part of the program was irretrievably 

‘As suggested by Atkin, p - 1 is worth using whcn dealing with Cunningham numbers, because 

tTliis limitation comes from the language I used, Le-Lisp, which does not accept 32-bit integers. 

they have non-trivial arithmetic propertics. 
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bug ridden. This occurrcd when I thoroughly checked my factoring routines. I had 
simply forgotten to  reduce the parsmcters of p, p -  1,. . . after a factor was discovered 
! The program was thus asymptotically Bugged When dealing with small numbers, 
I nccd maybe one large factor, but with largc numbcrs, maybe two or more. This 
explained also the above mentioned problem with p - 1 (because of the way the 
exponentiation routine was programmed, it wanted to find the first 1 in the binary 
expansion of a zero word). 

And (not surprisingly ?), it began to work. The breakthrough occurred on October 
6, when Nl was reached, using D = 97507 (with h = 36,g = 2). After that, this wa.~ 
quite a quiet work, except that thcre happened to be a difficult client a t  one stage 
(namely N I ~ ) ,  requiring a D with IL = 56 and g = 2. The building of the tower of 
primes was finally completed on November S at 530 pm (INRIA-Paris time). 

Meantime, I had used one workstation for the sccond part of the process, proving 
the numbers to be primes. One mceli before the end of the first phase, I also used 
one of the SUN’S on this Iz/g = 2s business, that is finding a root of a polynomial 
of degree 25 over a finite field with about logg1 elements. For that, I chose the most 
resistant SUN I could find. By this, I mcan a station that was able to resist all 
network problems that could appear. Actually, this was a period of time where there 
was quite a lot of those. This computation look one week. 

When the first phase ended, about 40 proving steps were done and I was able to 
launch the worlcstations on the remaining cases. On November 11, it was over, even 
the 25 degrce stuff. I t  was it, I had sunk the Titanic, this time with an ordinary 
prime (as opposed to  the Elliptic Mersenne Primes of [25]): The problem of testing 
1000-digit numbers for primality was solved. Looking at the whole story, it took only 
one month and a half to do that. Morcovcr, it took only one week to come down from 
700 digits to 10: This means that one can routinely test such numbers for primality. 
Some further experiments confirmed this 121. 

The final result is a file of 500 kbytes consisting of the certificate of primality 
for N3539.  This file can be sent to anyone who wants to check it using the protocols 
described in [26]. 

5.2 Technical details 

In ordcr to prove the primality of N3539, I uscd 12 SUN workstations, among which 
four 3/50, seven 3/60 and one 3/160 with a special chip designed for 512-bit multi- 
plication [5]. Using the full power of the chip \ v a  done by using Montgomery’s ideas 
on modular multiplications [22] :  Thcse ideas were only used for Pollard p, p - 1 and 
pseudopriinality tests. The specdup for a modular exponentiation of 110 words of 32 
bits is about S. 

The first phase took approsimatcly 2SS days of CPU (only one month and a half 
in real timc). The second one 31 days of CPU. The total time is thus less than one 
year of CPU. The tower of primes consists of 162 numbers. In Figure 2, we print the 
number of digits of Ni versus the real timc from the start of the job. The distribution 
of the gains, that is the number of digits we win in finding the following member is 
displayed in Figure 3: The mean value is G.5, with minimum 0 and maximum 34. In 
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Figure 2: Number of digits reached vs. real time 

Figure 4, we put the distribution of the values of h / g ,  the mean value being 3.49. 

6 Conclusions 

We see that ECPP in its distributed implementation is a very powerful tool to test 
arbitrary large numbers for primality. It should be able to deal with somewhat larger 
numbers (maybe with 1200 digits or so). Thc problem that is bound to arise is that 
there is a point where we necd powcrful factoring routines such as ECM. However, 
this would slow down the running time of thc whole process. So it seems not possible 
to deal with 2000-digit numbers. 

It should be noted that van dcr IIulst and Bosma finally succeeded in proving 
the same numbcr to be prime (hopefully!). It took them [35] about three weeks and 
a half on a DEC 3100 (about five times fastcr than a SUN). They have made some 
improvcincnts and now, it should just rccluirc one week and a half to do that size of 
number. 
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