
DISTRIBUTED PRIMALITY PROVING
AND

THE PRIMALITY OF (2353g + 1)/3

Fransois Morain *t

morain@inria.inria.fr

Abstract

We esplain how the Elliptic Curve Primality Proving algorithm can be im-
plemented in a distributed way. Applications are given to the certification of
large primes (more than 500 digits). As a result, we describe the successful at-
tempt at proving the primality of the lOG5-digit (2ss3g+ l)/3, the first ordinary
Titanic prime.

1 Introduction

For cryptographical purposes [7], it is desirable to generate large primes as fast as
possible. This can be done via ad hoc techniques [30, 12, 14, 41 or by means of a
general purpose primality testing algorithm such as that described in [l, 11, 10,6] or
the Elliptic Curve Primality Proving (ECPP) algorithm due to Atkin [2, 26, 241 (For
a survey of primality testing, see [IS]).

Another point is to certify large primes, such as the Cunningham numbers [S],
which sometimes have more than 400 digits. The purpose of this paper is to explain
how the ECPP algorithm has been implemented on a network of workstations and
used to test some numbers with more than 500 digits for primality. In particular,
it is now routine to test SOO-digit numbers and it is not too hard to test lOOO-digit
numbers.

We first begin by a short introduction to ECPP and then, we explain the dis-
tributed process g la Lenstra-Manasse [19]. Th ese ideas are exemplified by the cer-
tification of large primes and we also give the history of the primality of the record
breaking ~Vasss = (2ss3g + 1)/3, which has 1065 digits.

l Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine de
Voluceau, B. P. 105 78153 LE CIIESNAY CEDEX (r trance) / DBpartement ‘de Mathkmatiques,
Universitd Claude Bernard, 69G22 Villeurbanne CEDEX (France).

ton leave from the French Department of Defense, D61Cgation GCnkrale pour I’Armement.

I.B. Damgard (Ed.): Advances in Cryptology - EUROCRYPT ‘90, LNCS 473, pp. 110-123, 1991.
0 Springer-Verlag Berlin Heidelberg 1991

111

2 A brief description of ECPP

2.1 Elliptic curves

Let K be a field of characteristic prime to 6 . An elliptic curve E over K is a non
singular algebraic projective curve of genus 1. It can be shown [9, 341 that E is
isomorphic to a curve with equation:

y2z = x3 + UXE' + bz3, (1)

with a and b in K. The discriminant of E is A = -16(4a3 + 27b2) and the invariant
. is

j = 3 3 a 3 a3
4a3 + 27b2 *

We write E(K) for the set of points with coordinates (z : y : z) which satisfy (1)
with z = 1, together with the point at infinity: OE = (0 : 1 : 0). We will use the
well-known tangent-and-chord addition law on a cubic [16] over a finite field Z / p Z as
well as over a ring Z / N Z with N composite (see [21] for a justification).

T -

Figure 1: An elliptic curve over R

In order to add two points Jrl, = (q , y ,) and ll.12 = (2 2 , ~ ~ ~) on B resulting in
M3 = (t ~ , ys), the equations are

where
(yz - n)(zz - XI)-' if 22 # 5 1

(35: + u)(2y1)-' otherwise.
A = {

We can compute X-P using the binary method (171 (see also [lo]) or addition-
subtraction chains [29].

112

2.2 Primality proving
Let us recall one of the converses of Fermat’s theorem.

Theorem 1 ([31]) Let s be a divisor o f i v - 1. Let a be an integer prime to 1 SUC

that
uN-l = 1 mod N andgcd(a(N-l)’q - 1 , N) = 1,

for each prime divisor q of s. Then euch prime divisor p of N satisfies p EE 1 mod S .

Corollary 1 I f s > fi - 1 then N is prime.

A similar theorem can be statcd for elliptic curves.

Theorem 2 ([13, 201) Let N be an integer greater than 1 and pr ime to 6. Let
E be an elliptic curve over Z / N Z , m and s two integers such that s I m. Suppose
we have found a point P on E that satisfies m P = OE, and that for each pr ime
factor q of s, we have verified that Y P # OE. Then i f p is a prime divisor of N ,
E (Z / p Z) 0 mod s.

Corollary 2 I f s > (m+ I)’, then N is prime.

In order to use the preceding theorem, we need to compute the number of points m.
This process is far from trivial in general (see [32]) . From a practical point of view,
it is desirable to use deep properties of clliptic curves over finite fields. This involves
the theory of complex multiplication and class fields and requires a lot of theory [26].
We can summarize the principal properties.

Theorem 3 Let p be an odd prime. Every elliptic curve E mod p has complex mul-
tiplication b y an order of an imagirrary quadratic field IT = Q(m).
From a very down-to-earth point of vicw, this comes down to saying

0 p splits completely in Ii‘ as (11) = (T) (T’) in I<;

0 E I D (~ (E)) 3 O mod p for a fixcd polynomial l,rO(X) in Z[X];

0 rn = # E (Z / p Z) = (T - 1) (~ ’ - 1) = p + 1 - t , where It1 5 2 f i (I-Iasse’s
thcorcm) .

The computation of the polynomials IID is dealt with in [2G] and [27].

2.3 Outline of ECPP
We now explain how the preceding theorems are used in a factor and conquer alp-
rithm similar to the DOWNRUN process of [371. The first phase of the algorithm
consists in finding a sequence No = N > Nl > - 4 - > Nk of probable primes such
that N;+1 prime Ni prime. The second then proves that each number is prime,
starting from N k .

1

113

Procedure SearchN

1. i := 0; No := N ;

2. find a fundamental discriminant -D such that (N;) splits as the product of two
principal ideals in Q (G) ;

3. for each solution of (N;) = (n)(r’), find all factors of m, = (r - l)(r’- 1) less
than a given bound B and let N , be the corresponding cofactor;

4. if one of the N , is a probable prime then set N,+l := N,, store {N;, D , R , m,}
set i := i + 1, and go to step 2 else go to step 3.

5. end.

The second phase consists in proving that the numbers N; are indeed primes. This
is done as follows.

Procedure Proof

for i = E..O

1. compute a root j of H D ~ (X ’) mod N; as described in [27, 283;

2. find an equation of the curve E; whose invariant is j and cardinality mi;

3. verify the condition of theorem (2).

end.
For more details, the reader is referred to [2].

3 Large primes

The author used ECPP to test about fifty numbers from the Cunningham tables [S]
and some others, namely S, = ((1 + fi)p + (1 - &)p)/2 for p E (1493,1901) with
respectively 572 and 72s digits, in 30 and 40 days on a single SUN 3/GO. Indeed, a
simple extrapolation shows that testing a 1000-digit number would require about 6
month (at least). We must do something clse to increase the bound on the largest
number ECPP can test.

4 Distributed computations

From the preceding description, it is easy to see that this algorithm is very well
suited for distributed computations. We can do the first phase in parallel and then
the sccond one too. Let us see how I did this.

114

First of all, I implemented ECPP usiiig the Le-Lisp language and the multipreci-
sion described in [15]. Then the computations were done using a star network B la
Caron-Silverman [33]. There arc a master (m) and an indefinite number of worksta-
tions, called slaves (6).

The idea is that when dealing with vcry large numbers, the crucial part of ECPP
is the first one, because i t requires the factorization of very large numbers. There are
basically two ways of doing that. The first one is to try to factor a single number using
all the stations. The second is to let each station work on a different number. Actually,
I use the latter scheme, because the first one would require more communications and
also because it is not the right philosophy of the test: The less factoring power we
use, the better.

We now describe the conditions rcquircd to do an optimal job.

4.1 Constraints

We want to use the idle time of a network of workstations. We do this in a way similar
to that of [19]. We start a process on a machine in such a way that a legitimate user
is not (too much) disturbed: If a user typcs on a console (in UNIX words, he changes
the date of one of the tty’s), then the program is stopped (by means of a k i l l -STOP)
and restarted 10 minutes after the last action of the user (with a k i l l -CONT). The
process is also stopped whenever the load climbs up some prescribed value (typically
1.5) and is subjected to the same restart conditions. All this is done with the shell
scripts distributed by Mark Manasse for integer factorization. Another important
feature of t h e e programs is the ability to restart themselves after a small crash such
as a Connection timed out from a server. Also, they do not depend on a particular
machine (at least running UNIX or ULTRJX) or a particular language. I t is possible
to use a C program on a DEC station and a Le-Lisp program on a SUN.

4.2 The first phase

4.2.1 Role of t h e master

On
things for each Ni of the first phase

(typically the author’s own workstation), the program used does the following

1. put in the file WHICHN the number to be tested;

2. find all fundamental discriminants D (from a finite subset D) for which Ni is
reprcscntcd by a form of Go and put them in the file DSET;

3. initialize the rank of the nest D to bc examined to 1 in the file DRANK;

4. start finding a suitable D.

4.2.2 Role of t h e slaves

On 6, the program looks like

115

1. read the number to be tested from WHICHN and call it N ;

2. while N is equal to the content of WHICHN, select a new D in DSET, update
DRANK and try to factor any of the m,.

4.2.3

Each machine does the following

Tasks performed by every machine

1. find a D such that (N) splits complctely in Q (a) ;

2. try to factor each m, using first trial division, then Pollard’s p method, and
finally the p - 1 method.

Inside each factoring algorithm, the program periodically tests whether something
has happened. When this is so, it givcs up on N; and begins a new work on Ni+i.
When using the p method [23], the test is done at each gcd (for our purposes, there
are lo4 iterations and a gcd each 1000 iterations). During p - 1, only once.

4.2.4

The files DSET, DRANK and WHICHN have just been described. All this SUP-

poses the use of a distributed file system: Here it is NFS that does all the job. Special
code has been written to handle the problems arising when one machine wants to
read a file while another tries to writc in i t or to test whether the file can be accessed
through NFS.

Cominunications between 3x and B

4.3 The second phase
For each N;, it remains to check the primality conditions. Using a file containing the
next number to be certified, each station takes the useful data and does its job. It
should be noted that this phase can be started even if the fist one is not complete.

4.4 Problems encountered

One of the major problem is the reliability of the NFS protocols, especially when using
machines not depending from tlie same file server. The program is very well suited
for testing the reliability of the network. Each time there is a connection problem,
the process simply crashes.

Also, using a Le-Lisp executable requires a lot of memory and, sometimes, this
resulted in a swap problem and also a crash.

5 Establishing a new frontier: the history of N3539
Last year, the 100-digit line was crossed for the first time for integer factorization [19].
In 1953, Yates [3S] introduced the concept of Titanic primes, that is primes with at

116

least 1000 decimal digits. This sccmcd to make a distinction between the real world
of small primes and that OF large primes. The frontier for primality testing was thus
1000 digits. The aim of this section is to dcscribe how we went far beyond the line,
thus making thc testing of 1000-digit numbers a routinc.

5.1 Entomology of a Record

The first thing to do was finding a good candidate. It had to be greater than the
repunit B1,31, whose primality was proven by Williams and Dubner [36]. During their
setting of the new Mersenne’s conjecture [3], Bateman, Selfridge and Wagstaff tested
some numbers of the form Np = (2P + 1)/3 for primality. They found that Np was a
probable prime for p E (1709,2617,3539).

During EUROCRYPT ’59 (April 10-13, 19S9), it appeared that both ECPP and
the Jacobi Sums test [ll, 10, 61 were able to attack numbers as large as 1000 digits.
This was the very start of a stimulating competition with W. Bosma and M.-P. van
der Hulst.

Indeed, the first of these numbers (p = 1709, Nb with 514 digits) was the fist
number proven prime using ECPP in its distributed version. This was done on April
19, 1959 with three SUN’S and four days of CPU.

Then, I decided to skip p = 2617 and try JV&,. As shown by in the following
figure, the factorization of N353, - 1 is not complete (up to now).

21769 + 1

I
3 x 59 x 3539 x 39232583

/ 2176i -
\

I I
220 - 1

233 x 1103 x 20S4

@IG80(2) 26’ - 1
~7GS614336401564651 x Csoz

pi9

10199969089 x

Using ECPP, I first launch the process on April 20, 19SD. The set 23 mentioned
above consisted of all D’s with h(-D) 5 20, sorted according to (h/g, h , 0). Follow-
ing [2], the difficulty of tcsting N may be deiincd as

log N Q (N) = edY-
M (N)

where 7 is Euler’s constant and M (N) is defined as follows. Put

where the summation is on all D for which N can be represented by a form of the
principal genus of quadratic forms of discriminant -D, g(-D) = 2*-l with t the

117

number of prime factors of D and h(-D) the class number. As a matter of fact,
Q (N) yields the value (logB) of the upper bound on the largest factor OF a number
of points m we must factor in order to find a good candidate.

Coming back to N&,s, I found that n/r(N,39) = 55 yielding log,,B = 11. This
implied in turn that the only way to achieve this was using ECM. At that time, I
hadn’t implemented this and so thc program started using only Pollard p and the
p - 1 method *. This first attempt lasted till May 13, without any result: I couldn’t
even find a good N I . There was something to be done. Moreover, some problems
scemed to arise in the p - 1 method, where the routine seemed to loop forever in some
Cases.

When looking a t
log B = @ (N) , (2)

there are two distinct ways of solving the problem. The first one is to use sophisticated
factoring routines, the other one is to incrcase the value of M (N) . I used the second
and decided to enlarge P with all D less than 215 f . This increased M (N) to the value
of 174, yielding log,,B = 3.44. This clearly said that ECM was no more necessary
and that p was enough. After fixing some stupid bug in my p routine, I re-started
the program on June 5 and it lasted till July 10, yet without any result.

Clearly, there was a problem. Using induction, it seemed clear that there was,
somewhere, a deep bug that only appcared when dealing with large numbers, but not
with small ones. So I decided to stop working on J V ~ ~ ~ ~ , and began to reassure myself
with a smaller one, namely JV&,~ (7SS digits). Although this number could have been
done by simply factoring &17- 1 (as remarked by Atkin), this attempt was designed
to find this bug. So, the process started on July 21 and ended on August 19, proving
the number to be prime, but without rcvcaling any bug.

At this point, I decided to implement ECM, just to see if something would happen
to change. I had problems with this, since it was only possible to use the first phase
of the algorithm, all the second phases requiring too much memory (they all need
about (log N) 2 storage, making it infeasible for 1000-digit numbers). Moreover, I
could only use 20 curves or so, again because the storage was making it prohibitive
to USC on workstations with not too much memory, such as a standard SUN 3/50 (4
Mo). This was quite a disappointment. The third attempt on N3,,, was then started
on September 12 and took two weeks. Nothing observable happened.

I decided then to replace a11 these D’s less than 215 with all D’s with h / g small,
irrcspective of the size of D as soon as D fitted in a 32-bit word. More precisely, I
computed and stored all D with h(-D) 5 50 (plus some with h = 64) and ordered
them according to (h / g , h, 0). This yiclded M (N 3 5 3 9) = 291 and log,, B = 2.05.
What would appear as the last attempt then began on September 29.

A feeling of deep personal gratification came over me when, on October 5, 19S9,
I finally confirmed my initial impression that a part of the program was irretrievably

‘As suggested by Atkin, p - 1 is worth using whcn dealing with Cunningham numbers, because

tTliis limitation comes from the language I used, Le-Lisp, which does not accept 32-bit integers.

they have non-trivial arithmetic propertics.

118

bug ridden. This occurrcd when I thoroughly checked my factoring routines. I had
simply forgotten to reduce the parsmcters of p, p - 1,. . . after a factor was discovered
! The program was thus asymptotically Bugged When dealing with small numbers,
I nccd maybe one large factor, but with largc numbcrs, maybe two or more. This
explained also the above mentioned problem with p - 1 (because of the way the
exponentiation routine was programmed, it wanted to find the first 1 in the binary
expansion of a zero word).

And (not surprisingly ?), it began to work. The breakthrough occurred on October
6, when Nl was reached, using D = 97507 (with h = 36,g = 2). After that, this wa.~
quite a quiet work, except that thcre happened to be a difficult client a t one stage
(namely N I ~) , requiring a D with IL = 56 and g = 2. The building of the tower of
primes was finally completed on November S at 530 pm (INRIA-Paris time).

Meantime, I had used one workstation for the sccond part of the process, proving
the numbers to be primes. One mceli before the end of the first phase, I also used
one of the SUN’S on this Iz/g = 2s business, that is finding a root of a polynomial
of degree 25 over a finite field with about logg1 elements. For that, I chose the most
resistant SUN I could find. By this, I mcan a station that was able to resist all
network problems that could appear. Actually, this was a period of time where there
was quite a lot of those. This computation look one week.

When the first phase ended, about 40 proving steps were done and I was able to
launch the worlcstations on the remaining cases. On November 11, it was over, even
the 25 degrce stuff. I t was it, I had sunk the Titanic, this time with an ordinary
prime (as opposed to the Elliptic Mersenne Primes of [25]): The problem of testing
1000-digit numbers for primality was solved. Looking at the whole story, it took only
one month and a half to do that. Morcovcr, it took only one week to come down from
700 digits to 10: This means that one can routinely test such numbers for primality.
Some further experiments confirmed this 121.

The final result is a file of 500 kbytes consisting of the certificate of primality
for N3539. This file can be sent to anyone who wants to check it using the protocols
described in [26].

5.2 Technical details

In ordcr to prove the primality of N3539, I uscd 12 SUN workstations, among which
four 3/50, seven 3/60 and one 3/160 with a special chip designed for 512-bit multi-
plication [5]. Using the full power of the chip \ v a done by using Montgomery’s ideas
on modular multiplications [22] : Thcse ideas were only used for Pollard p, p - 1 and
pseudopriinality tests. The specdup for a modular exponentiation of 110 words of 32
bits is about S.

The first phase took approsimatcly 2SS days of CPU (only one month and a half
in real timc). The second one 31 days of CPU. The total time is thus less than one
year of CPU. The tower of primes consists of 162 numbers. In Figure 2, we print the
number of digits of Ni versus the real timc from the start of the job. The distribution
of the gains, that is the number of digits we win in finding the following member is
displayed in Figure 3: The mean value is G.5, with minimum 0 and maximum 34. In

119

I I I I I I
.... -_. L-.

........... --.-.I..-.........

1100 -
1000 -

i, ... -
I...”... . 1.

L- I..
900 - -...

so0 -

Number 700 -

Of 600 -

..-? -
i
L.

..-jy 1
digits i

500 - I...
i -

400 -

300 -

200 -
100

-

-
-

I I I I I I

Figure 2: Number of digits reached vs. real time

Figure 4, we put the distribution of the values of h / g , the mean value being 3.49.

6 Conclusions

We see that ECPP in its distributed implementation is a very powerful tool to test
arbitrary large numbers for primality. It should be able to deal with somewhat larger
numbers (maybe with 1200 digits or so). Thc problem that is bound to arise is that
there is a point where we necd powcrful factoring routines such as ECM. However,
this would slow down the running time of thc whole process. So it seems not possible
to deal with 2000-digit numbers.

It should be noted that van dcr IIulst and Bosma finally succeeded in proving
the same numbcr to be prime (hopefully!). It took them [35] about three weeks and
a half on a DEC 3100 (about five times fastcr than a SUN). They have made some
improvcincnts and now, it should just rccluirc one week and a half to do that size of
number.

Acknowledgments. First of all, I thank the owners of the workstations that con-
tributed to my record, namely L. Albcrt, L. Audoire, J.-J. Codani, V. Collette, P.
Flajolet, P. Jacquet, P. Le Chcnadcc, M. Rhgnier, B. Serpette and P. Zimmermann.
W. Bosma and M.-P. van der Hulst (and also A. I<. Lenstra) must be thanked for
their stimulating work to attack the supremacy of ECPP using the Jacobi Sums test.

20 -

1s
16

14

12

10

8
6

4

2

0
0

120

5 1

Gain

Figure 3: Number of digits gained at each step

h I9

Figure 4: Distribution of h/g

121

Without the script-shells of M. Manasse, this job would have been less easy: spe-
cial thanks to him, then. Thanks to R. Ehrlich who helped me modifying the above
scripts and explained to me somc of the magic properties of NFS. Thanks also to I.
Vardi for (helpful or stylistic) comments about my manuscript.

Lastly, I'd like to thank the technical staff in Scanticon (where EUROCRYPT
took place) for the wonderful job they did for me in doing my slides concerning some
typical French comic character.

References

[l] L. M. ADLEMAN, C. POMERANCE, AND R. S. RUMELY. On distinguishing
prime numbers from composite numbers. Ann& of Math. 117 (1953), 173-206.

[2] A. 0. L. ATKIN AND F. MORAIN. Elliptic curves and primality proving. Rap-
port de Recherche 1256, INRIA, Juin 1990.

[3] P. T. BATEMAN, J. L. SELFRIDGE, AND S. S. WAGSTAFF, JR. The new
Mersenne conjecture. American Muthematical Monthly 96, 2 (19S9), 125-128.

[4] P. BEAUCIIEMIN, G. BRASSARD, c . C R ~ P E A U , c. GOUTIER, AND
C. POMERANCE. The generation of random numbers that are probably prime.
J. CnJptozogy 1 (198S), 53-64.

[5] P. BERTIN, D. RONCIN, AND J. VUILLEMIN. Introduction to programmable
active memories. In Proc. of the Internat. ConJ on Systolic Arrays (1939).

[6] w. BOSMA AND M.-P. VAN DER HULST. Faster primalily testing. To appear
in Proc. Eurocrypt '89.

[7] G. BRASSARD. Modern Crptology, vol. 325 of Led. Notes in Cornpuler Science.
Springer-Verlag, 19%.

[S] J. BRILLIIART, D. H. LEIIMER, J. L. SELFRIDGE, B. TUCICERMAN, AND
S. S. WAGSTAFF, JR. Puctorizations of b" f 1, b = 2,3,5,6,7,10,11,12 up to
high powers, 2 ed. No. 22 in Contcmporsry Mathematics. AMS, 19SS.

[9] J. W . S. CASSELS. Diopliantine equations with special references to elliptic
curves. J. London Math. SOC. 41 (19GG), 193-291.

[lo] H. COIIEN AND A. I(. LENSTRA. Implementation of a new primality test.
Mdh. Comp. 48, 177 (19S7), 103-121.

[11) H. COIIEN AND H. W. LENSTRLA, JR. Primality testing and Jacobi sum^.

h4ath. Comp. 42, 165 (19S4), 237-330.

[la] C. COUVREUR AND J. QUISQUATER. An introduction to fast generation of
large prime numbers. Pliilips J. Research 37 (1982), 231-264.

122

[13] S. GOLDWASSER AND J. KILIAN. Almost all prima can be quickly certified. In
Proc. 18th STOC (Berkelcy, l9SG), pp. 316-329.

1141 D. GORDON. Strong primes arc easy to find. In Proc. Eurocrypt '84 (1954),

[15] J.-C. HERVB, F. MORAIN, D. SALESIN, B. SERPETTE, J. VUILLEMIN, AND

Springcr, pp. 216223.

P. ZIMMERMANN. Bignum: A portable and efficient package for arbitrary pre-
cision arithmetic. Rapport de Recherche 1016, INRIA, avril 19813.

[16] D. HUSEMOLLER. Elliptic curves, vol. 111 of Graduate Texts in Mathematics.
Springer, 19S7.

[17] D. E. KNUTII. The Art of Computer Programming: Seminumerical AIgorithms.
Addison-Wesley, 1951.

[lS] A. I<. LENSTRA. C~yptology and computational number theory. AMS, 1989,
ch. Primality testing. Lecture Notes, August 6-7, 1989, Boulder, Colorado.

[19] A. I<. LENSTRA AND M. S. MANASSE. Factoring by electronic mail. To appear
in Proc. Eurocrypt 'S9, 19S9.

[20] H. TV. LENSTRA, JR. Elliptic curva and number theoretic algorithms. Tech.
Rep. Report S6-19, Math. Inst., Univ. Amsterdam, 19S6.

[21] H. W. LENSTRA, JR. Factoring integers with elliptic curves. AnnaZs of Math.
126 (1957), 649-4373.

[22] P. L. MONTGOMERY. Modular multiplication without trial division. Math.
Comp. 44, 170 (April 19S5), 519-521.

[23] P. L. MONTGOMERY. Speeding the Pollard and elliptic curve methods of fac-
torization. Math. Comp. 48, 177 (January 19S7), 243-264.

[24] F. MORAIN. Atkin's test: ncws from the front. To appear in Proc. Eurocrypt
'SO.

[25] F. MORAIN. Elliptic curves, primality proving and some Titanic primcs. TO
appcar in Actes des Journ6cs Arilhm&iques, Luminy 1989.

[26] F. MORAIN. Irnplemcntation of thc Atkin-Coldwasser-IGlian primality testing
algorithm. Rapport de Recherche 911, INRIA, Octobre 1985.

[27] F. MORAIN. Construction of Hilbert class fields of imaginary quadratic fields and
dihcdral equations modulo p. Rapport de Recherche 1057, INRIA, Septembre
19s9.

[2S] F. MORAIN. Rksolution d'kquations de petit degrk modulo de grands noinbra
premiers. Rapport de Recherche 10S5, INRIA, Septembre 1989.

123

[29] F. MORAIN AND 3. OLIVOS. Speeding up the computations on an elliptic curve
Rapport de Recherche 983, INRIA, Mars using addition-subtraction chains.

1989.

[30] D. A. PLAISTED. Fast verification, testing and generation of large primes.
Theoretical Computer Science 9 (1979), 1-16.

[31] H. C. POCKLINGTON. The determination of the prime and composite nature
of large numbers by Fermat’s theorem. Proc. Cambridge Philos. SOC. 18 (1914-
1916), 29-30.

[32] R. SCIIOOF. Elliptic curves over finite fields and the computation of square roots
mod p. Math. Cornp. 44 (1985), 483494.

[33] R. D. SILVERMAN. Parallel implementation of the quadratic sieve. The Journal
of Supercomputing 1, 3 (19S7).

[34] J. T. TATE. The arithmetic of elliptic curves. Inventiones Math. 23 (1974),
179-206.

[35] M.-P. VAN DER HULST. Timings for (23539 + 1)/3. Email, February 1990.

[3G] H. c. WILLIAMS AND H. DUBNER. The primality of R1031. Math. Cornp. 47,
176 (1986), 703-71 1.

[37] M. C. WUNDERLICII. A performance analysis of a simple prime-testing algo-
rithm. Math. Cornp. 40, 162 (1983), 709-714.

[38] S. YATES. Titanic primes. J. Recr. Math. 16 (1983/84), 250-260.

	DISTRIBUTED PRIMALITY PROVINGANDTHE PRIMALITY OF (2353g+ 1)/3
	1 Introduction
	2 A brief description of ECPP
	2.1 Elliptic curves
	2.2 Primality proving
	2.3 Outline of ECPP

	3 Large primes
	4 Distributed computations
	4.1 Constraints
	4.2 The first phase
	4.2.1 Role of the master
	4.2.3 Tasks performed by every machine
	4.2.4 Communications between m and S

	4.3 The second phase
	4.4 Problems encountered

	5 Establishing a new frontier: the history of N3539
	5.1 Entomology of a Record
	5.2 Technical details

	6 Conclusions
	References

