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Abstract 

‘This paper presents a novel cryptographic scheme which fully conforms to the 
requirements of holding large scale general elections. The participants of the scheme 
are the voters, the candidates and thc government. Thc schcmc ensures indepen- 
dence between the voters in that they do not have to be present at the same time or 
go through several phases together; no global computation is needed. The scheme 
preserves the privacy of the votes against any subset of dishonest voters, and against 
any proper subset of dishonest candidates, including the government. Robustness 
is ensured in that no subset of voters can corrupt or disrupt the election. This also 
means that no voter is able to vote more than once without being detected. The 
verifiability of the scheme ensures that the government and the candidates cannot 
present a false tally without being caught. “Voting by telephone” is possible by 
employing the proposed scheme. 

1 Introduction 

This paper presents a cryptographic scheme for secret ballot elections. It is a scheme 
which fully conforms to  the requirements of holding large scale general elections. The  
scheme involves the eligible voters, thc government, and the candidates the voters can 
vote on. The basic assumptions of the scheme are that each voter can communicate all 
Ihe carididates (from UUW on, this includes the government) simultaneously, and that a t  

least one candidate do  not collaborate with the others. Under these assumptions, the 
scheme is robust in that  no subset of dishonest voters and no proper subset of dishonest 
candidates can disrupt or corrupt the election, and the privacy of the votes and voters 
is preserved. 

The verifiability of the scheme is restricted to the candidates. (It is possible to include 
other, possibly more trustworthy parties.) Assuming that every voter trusts one of 
these parties, this yields public verifiability. The verifiability ensures, with overwhelming 
probability, that the government cannot present a false tally without being caught. 

The scheme is well suited for implementing a “voting by telephone” scheme. 
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1.1 Relation to Previous Work 

There have been several publications on the problem of holding elections by employing 
computers and cryptographic protocols, and several cryptographic schemes have been 
proposed where the voters openly send encrypted messages back and forth until they all 
are confident of the outcome of the election (boardroom voting) [DLM82, Yao82, Mer831. 

The problems with these schemes are that one has to know in advance who wish to 
vote. and if  any voter stops following the protocol during the election, the election cannot 
be completed. Such schemes are clearly not suitable for real-world elections. 

Chaum has given an election scheme that makes use of one or several trusted ‘‘mixes” 
to scramble pairs of votes and digital pseudonyms [Cha81]. 

Whereas Chaum’s scheme hides the identity of the voters, the scheme of (Cohen) 
Benaloh e t  al.  hides the actual value of the vote [CF85, BY86, Ben871. They take 
a quite different approach. by employing the hardness of deciding higher residues and 
interactive protocols. 

My work has been much inspired by that of Benaloh e t  al., and it has adopted many 
of their ideas. The scheme of this paper does to some extent conform to their election 
paradigm. The major problem that their scheme succumbs to  is tha t  i t  requires the 
participants to go through several phases together, where one phase cannot start before 
all the participants have finished the previous. This problem is solved in my scheme; all 
voters register and vote totally independent. 

The scheme presented is a very practical and flexible election scheme. It  can be used 
to implement almost any election setting; from the conventional setting where each voter 
show up (independently!) at  the voting place, register, vote, and goes back home; to 

some kind of “voting by telephone” setting. 

Chaum has given another method of holding verifiable secret ballot elections that 
removes the need for a mix [Cha88]. The work is similar to that of a boardroom election 
in that a failure of a single voter can disrupt the election. However, Chaum’s method 
ensures that such failures can be traced. This allows an election to be restarted without 
the faulty voter. but this approach is not practical for large-scale elections. 

Boyd has proposed a voting scheme based on the use of “multiple key ciphers” [Boy88, 
BOYSO]. It ensures that votes cannot be forged, and privacy is preserved, provided the 
voters can deliver their votes anonymously. The major problem of this scheme is that  the 
government can see the votes delivered and even worse, produce a false tally by adding 
votes of its own choice; there is no verifiability. 



2 The Election Privacy Homomorphism 

I here present the privacy homomorphism that is used to construct the ballots of the elec- 
tion scheme. The privacy homomorphism is additive and probabilistic, i.e., the cleartext 
domain operation is (modular) addition and there are several different and uncorrelated 
encryptions of the same number. For full details, see Ref. [lve9la]. 

2.1 Election Triples 

Definition 2.1 Let k be a security parameter, e be a fixed small prime, p be a k/Zbit  
prime such that e l (p  - l),  and q be a k/2-bit prime such that e J ( q  - 1). Further, let 
n = p q .  Finally, let g be an element in 2; such that e divides the order of g. For such 
e ,  g,  and n, 1 define an  election t r ip le  to be (e, g )  n). 

I will throughout let G be the set of powers of g modulo n; G = { g j  (mod n)lj 2 1). 

2.2 Index Classes 

Definition 2.2 Let ( e ,  g, n) be an election triple. Let w z g* (mod n) E G, for some 
integer v .  The indez d a s s  of w ,  denoted [ w ] ( ~ , ~ , ~ )  (or simply i[w] when ( e ,  g, n) is given), 
is v (mod e). If w $! G, I say that [w] is undefined. 

Definition 2.3 An election triple ( e ,  g, n)  is said to be valid when e divides the  order of 
g.  The  election triple is said to be good if g in addition is a generator modulo p .  

In Ref. [IveSlb] it is devised an efficient perfect zero-knowledge protocol that  enables 
the publisher of an  election triple to convince anyone who wants to be assured that the 
triple is valid, without giving away any information about the secrets involved. 

I am now ready to describe how to use the privacy homomorphism, Given a good 
election triple (e ,g ,  n ) ,  the values to be encrypted must be in the st-i Z,. 



How to Encrypt 

Suppose a party A wants to encrypt a number u E Z, .  Then,  

A chooses r E R  Z,, and computes x = v + re ,  

A computes E ( v )  gr (mod n). 

In general, llog2 e] bits of cleartext is expanded into k bits of ciphertext. Since there 
are several different encryptions of the same value, test for equality is not possible. 

2.3 The Election Privacy Homomorphism Assumption 

In this section, I formally state the intractability assumption for the problem of deciding 
index classes in the election privacy homomorphism. Clearly, the problem cannot be 
harder than factoring or computing discrete logarithms modulo a composite integer (see 
open problems 5 and 22 in Ref. [AM87]). KO efficient algorithm for solving the problem 
without knowing the factorization of the modulus is known. 

In order to  state the intractability assumption, I introduce the predicate I N D ( e , g , n l .  
For all w E G, 

Assumption 2.1 (EPH Assumption (EPHA)) Lei u E 2,. Then fo r  all polynomial  
sire famil ies  of circuits C = {ck}k>l, - with ( 3 k + l e / ) - b i t  input gates, for  any good election 
triples (e,g, n) such that  In1 = k, and f o r  all w E G, 

where the probability is taken o v e r  the random inputs of Ck. is  the 
probability of guessing correctly if c k  always outputs 0. v(k) is a function that vanishes 
faster  than the inverse of any polynomial in k .  

The fraction 

In Ref. [IveSla], I show, in a manner similar to that of Goldwasser and Micali [GM84], 
that the privacy homomorphism is a probabilistic public key encryption function based 
on the above assumption. I further show that the problem of computing index classes is 
“everywhere hard”. 
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3 EPH Based Votes 

I will now describe what the ballots and votes used in the election scheme will look like. 

Before the election starts, I assume that every candidate has published a (preferably 
good, but possibly valid) election triple. Let ( e ,  gi, n,) be the election triple of candidate 
i, 1 5 i 5 r. e must be larger than the number of eligible voters. 

I 
Definition 3.1 Let ( e ,  g,,  n;) be the election triple of candidate i, 1 5 i 5 U .  A vote w 
is a a-tuple w = (g;' (mod n l ) ,  . . . , gEm (mod nu)) .  

Definition 3.2 A ballot W is a u-tuple LV = ( w l , .  . .,w,,) of votes. 

Definition 3.3 The index class tuple (or j us t  index tuple)  of  a vote w = ( g ; ' ,  . . . ,g :" )  

is the tuple (v1 (mod e ) ,  . . . , v,, (mod e) ) .  I denote i t  @wB. 

Further, for a vote w = (gyl,. . . , gz--),  meaning v = C;=l 'u; (mod e ) ,  I will write 
21 = c flWJD. 

Definition 3.4 A vote w = (gyl, . . . , g g - )  is valid if v = C awJ = 0 or 1. A vote where 
u = 0 is called a no-vote and a vote where 'u = 1 is called a yes-vole. 

Definition 3.5 A ballot W = ( w , , .  , . , w,,) is valid if every vote ~ 1 , .  . . , w,, are valid 
and xi"=, U j  = cy=, flwjn = 1 (mod e ) .  

I will refer to the v, = Cflwj]D as the actual vote for candidate j .  

NOW, instead of the candidates having to store each ballot from all the voters, the hc- 
momorphism property comes into use. Let Wl and IV2 be two valid ballots. It should not 
be hard to see that to store the sum of the actual votes one can store the componentwise 
product of the votes in W1 and W,. 

h 

Let the final net ballot be W = ( G I , .  . . , G,,). Then the final number of yes-votes for 
candidate j is @,). 

I 
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4 Unreusable Eligibility Tokens 

The basic assumptions of the election scheme will be applied here also; the voter com- 
municates with all the candidates simultaneously, and at least one candidate is honest. 
Let the number of candidates be u. 

The scheme for providing unreusable eligibility tokens is a modification to the scheme 
for providing unreusable electronic cash presented in Ref. [CFNSO]. 

4.1 Initialization 

The computations and actions described below can be done at any time before the process 
of token issuing starts, but only in the order indicated by the numbering. 

1. The candidates agree on and publish two (even) security parameters k and S, a 
public one-way collision-free hash function h ,  and a Secure public digital signature 
scheme ([GMRSS]) to be used by the voters. Each candidate j then publishes its 
public RSA key ( e j ,  nj )  (the corresponding secret key is dj), such that (nj I = S. 

2. For i = 1,. . . , k, the voter chooses integers ai ,  b;, t ; ,  r;, and 2; ER ZA, where n = 
maxj=l,...,,(nj), and computes the inverse of ri modulo each of the candidates' RSA 
modulus. The voter then prepares a digital signature on h(z1)llh(z2)11.. .I \h(zr).  
Let Sv denote this signature. 

4.2 Token Issuing 

Some time before the election day, the voter presents and identifies him- or herself to the 
candidates (in an election office handling eligibility), and gives his or her public signature 
key to the candidates. The candidates create a string I D v  which contains the voter's 
name, ID number, or any other information that the candidates want to establish. The 
voter and the candidates then perform the protocol below. 

1. For i = 1,. . . , k, the  voter computes the blinded values 

The voter sends {ui}i=l,. . . ,r to  the candidates. In addition, the voter supplies the 
candidates with the digital signature on h(z1)llh(z2)11.. .\lh(zk); Sv. 
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2. The candidates perform a sub-protocol and send to the voter a random subset of 
k / 2  distinct indices f = {i j ) j= l ,  , c / 2 ,  where for all j, 1 5 ij 5 k. 

3. For all i E I ,  the voter reveals cq, 6,. t i ,  ti, and zi to the candidates. 

4. For all i E I ,  the candidates check that the voter computed the vi correctly in Step 
1. In addition, the candidates cheiK t h a t  h(z,)  is among hash values signed by the 
voter. If any of the candidates discover any fallacies they terminate the protocol. 

5.  For simplicity, let the remaining indices not in I be 1, . . . , k / 2 .  Each of the candi- 
dates computes and sends the RSA signature, SC,, of the k / 2  unopened values to 
the voter. 

t i 2  

{SC,  1 J-J Ti ' h(h(ai([bi)/lh(ai B ( I D " \ l ~ i ) l [ ~ i ) ) d J  (mod nj)}j=1 ...., u .  

i = l  

6. The voter now removes the blindlng and extracts the unreusable eligibility token 

k f 2  

ET = h(h(a~llb,)l[h(a, 9 ( I D v I I ~ , ) \ I ~ ) ) ~ ~  (mod R J ) } ~ = I ,  , u .  

:=l 

After executing the initialization protocol, the candidates store I D v ,  Sv, and { Z i } i c I .  

During the initialization protocol, the candidates have verified that each of the k/2 Vi 's  

they examined generates an appropriate IDVI[z , .  I will now assume that the candidates 
have legal proof tha t  the voter has voted more than once if they can present the preimage 
of at least ( k / 2 )  + 1 of the hash values h ( q )  in SV. 

4.3 Using the Token 

On the election day, when the voter is using the token in the voting process, the protocol 
below is performed by the voter and the candidates. 

1. The voter sends ET to the candidates. 

2. The candidates perform a sub-protocol to obtain the challenge string c, and send 
it to the voter. c = {ci E R  {0,1}};=1,, , k / 2 .  

3. For i = 1 , .  . . , k/2, the voter sends the values yi to the candidates. 

air b i ,  h(a, @ ( IDvJ \ z i ) l \ t i )  if c; = 0 
if ci = 1 h(a;([bi),ai @ (IDv[(z,),ti w = 
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4. The candidates check that the yi’s fit ET. 

If any of the checks fails, the candidates halt and reject, otherwise they halt and 
accept. 

When the protocol is finished with the candidates accepting, the candidates check 
whether the token has been used before, by searching in a database where all the previ- 
ously received tokens are stored. If it is not used before, the candidates store ET, the 
challenge string {c; ER ( 0 ,  l } } i = l , , , , , k / 2 ,  and the values ai, if ci = 0 ,  and ai @ ( I ~ v l ( z ; ) ,  
if ci = 1. If the candidates discover that the token has been used before, then with 
overwhelming probability, any candidate is able to extract the identity I D v  of the voter, 
and provide a legal proof of the fact that the voter has voted twice. 

4.4 ET Security 

The security of the unreusable electronic cash scheme was left as an open challenge in 
Ref. [CFNSO], and no attempts to solve the problem have been made here. Ref. [IveSlb] 
gives a proof of unreusability. 

5 The Election Scheme 

The participants of the  scheme are the eligible voters and the candidates. Let the number 
of eligible voters and candidates be p and u, respectiveIy, such that u < p.  Note that 
the registration and voting phases can be performed independently by each voter. 

5.1 Election Initialization 

The candidates do what is described in Step 1 in Section 4.1. They then execute the 
following election initialization protocol 

Agreeing on e: The candidates agree on a prime e which is larger than the number of 
eligible voters (e > p > I.). 

Generating election triples: For i = 1 to u, candidate i secretly produces two random 
s/2-bit primespi and qi, such that el(pj-1) and eJ(qi-1). Let ni = p i p i .  Candidate 
i also chooses an element gi E Z:, which is a generator modulo p .  p i  and pi  are 
kept secret, while ( e , g i ,  ni) is published as candidate i’s election triple. 
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Each candidate in turn must then give a zero-knowledge proof to show that the 
election triple is valid to any candidate who wants to be assured. 

In the sequel of this chapter, all computations are done modulo the 71;’s. Which 
applies where should be clear from the subscript of the g; involved. 

A 

Finally the candidates compute an  initial “net ballot” Wo =   GO,^,. . . , such 
that for all j ,  C @&,jD = 0. Each of the candidates then signs a copy of the hash value 
h(Foll0) using the secure digital signature scheme, and then publishes it. h is employed 
for efficiency reasons only. The zero that is concatenated with the ballot is the (initial) 
sequence number. This signing is to avoid that, when the- election is finished, any proper 
subset of dishonest candidates can construct their own find ballot and claim it  to  be the 
real one. 

5.2 Voter Registration 

An eligible voter first performs the eligibility token initialization described in Step 2 in 
Section 4.1. After this, she appears and identifies herself at a registration office to  obtain 
an unreusable eligibility token, ET, produced by the protocol given in Section 4.2 with 
security parameter 2k. 

5.3 Voter Initialization 

At some time before the actual voting is to take place, the voter decides which candidate 
she wants to give a vote to. A vote on candidate 1 (the government) might yield a blank 
vote. I will for simplicity m u m e  tha t  the voter votes blank. 

The voter then performs the initializing computations shown below. Note that  these 
computations can be done off-line. 

1. The voter prepares the ballot W according to the following program: 

FOR j = 1 TO u DO 

FOR i = 1 TO u - 1 DO vi,j := a random element in z,, 
v,,j := an element i n  Z,, s.t. cy=’=, v,,j = IF j = 1 THEN 1 ELSE 0 

w j  := (gul.j 1 ,... ,927;) 
END DO 
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W := ( ( ~ 1 , .  . ., w,,), E T )  

2. The voter prepares the tuple V = (.I,. . . , u , , ) ,  where U i  = x;,, V i , j .  

3 .  For each vote wj in the ballot the voter prepares k "test-pairs" according to  the 
following program: (for simplicity, I drop the subscript j )  

FOR i = 1 TO k DO 

bi t i  := a random element in ( 0 , l )  

FOR j = 1 TO u - 1 DO 

a;,j := a random element in Zn, 

pi,j := a random element in Zn, 
END DO 

a;,4 := an element in Zne s.t. xi"=, a;,, = 0 

pi,u := an element in ZnU s.t. xr='=, pi,, = 1 

a; := (gp'.', . . . , go"',") 

bi := (&', . . . , g o  A?* )  

pair; : = IF bi t ;  = 0 THEH (a i ,  b i )  ELSE (b ; ,  ai) 

END DO 

PAIR := { ( ~ a i r l , j , .  . . , ~ a i r k , j ) } j = i  ,.._, 0 

5.4 Voting 

When voting, the voter performs the protocol below with the candidates. 

Repeat Steps 1-4 k times ( i  = 1, .  . . , k) (for each vote wj in parallel). (For simplicity, 
I drop the subscript j . )  

1. If i = 1, the voter sends the vote w to the candidates. The voter sends p a i r ,  to  the 
candidates. 

2. The candidates perform a sub-protocol to obtain a random challenge bit c ; ,  and 
send it to the voter. 

3. The voter answers with d;. 
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d;[l,ll 4. If ci = 0, the candidates check that pa i r i [ l ]  = (gl , . . .,g$[l’pl) and pairi[2] = 
(g:it2’11,. . . , g$”’“’), or possibly vice versa. If ci = 1, the candidates check that 
cs=l d i b ]  = 1 and that (#‘I . . . , g:‘“]) = w.pair[l] or w.pair [2] .  If any candidate 
discovers any errors, the candidates halt and the voter is excluded from the election. 

5.  Finally, when steps 1 4  have been repeated k times, the voter sends V to the 
candidates. 

6. The candidates check that C:=l vi = 1 and that, for each i ,  g”’ = n;=, W j [ d .  

Besides the voting protocol the voter and the candidates perform the token usage 
protocol described in Section 4.3. This can easily be embedded in the voting protocol. 

If none of the candidates have discovered any fallacies in the voting protocol or the 
token usage protocol, they accept the ballot, and indicates this to the voter by sending 
him or her signed “receipts” (of some sort). The candidates then compute the net ballot 
W, = (i&,,-l,~ *  to,,^,. . ., ~ ~ - 1 , ~  - where Wm,j is vote j of voter m. Again, each 
candidate signs a copy of h(?,llrn), as described in the election initialization protocol. 

A 
h 

5.5 Tally Computing 

When the election is finished the final net ballot is ?,,I = (G,,JJ,. . . , G , , I , ~ ) ,  where p’ 
is the number of voters that actually voted during the election. Now, the total num- 
ber of yes-votes cast for candidate j is CaG,,,,jD. To be able to compute this tally, 
the candidates have to publish their “sub-tallies”, i.e., candidate i publishes the tuple 
([iu^p,,l[l’l], . . . , [Gp,,u[i l ] ) ,  and so forth. They must in addition give a (perfect) zero- 
knowledge proof of the validity of the published “sub-tallies”. See full paper for reference. 

6 Security 

The first thing to notice is that the voting protocol is u versions of a computational 
zero-knowledge protocol, given in Ref. [Ive9lb]. Note also that the protocol for each 
vote in the ballot is run sequentially, so the protocol is still zero-knowledge. 

Theorem 6.1 (Completeness) The ballot of an honest voter is accepted by honest 
candidates with probability one. 
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Proof: The fact that each valid vote is accepted with probability one follows directly 
from the completeness part of the proof of zereknowledgeness of the voting protocol 
(see Ref. [IveSlb]). In addition, for the whole valid ballot, the check performed by the 
candidates in Step 6 in the voting protocol will always be accepted. 

Theorem 6.2 (Soundness) If at least one candidate is honest, then, with overwhelm- 
ing probability, a dishonest voter will not succeed in deliueeng an invalid ballot. 

Proof: That this holds for each of the votes in the ballot follows directly from the sound- 
ness part of the proof of zero-knowledgeness of the voting protocol (see Ref. [IveSlb]). 
In addition, the fact that  u < e implies that if more than one of the votes are yes-votes, 
then C:='=, vi > 1, and the honest candidates will not accept. 

Theorem 6.3 (Privacy) Under the EPHA, if at least one candidate is honest, the p r i -  
vacy of the votes is preserved. 

Proof: The voting protocol is proven to be computational zero-knowledge (see Ref. 
[IveSlb]), and this implies that  no information about the value of the votes can be ex- 
tracted only from executing the protocol. Let r denote any subset of dishonest candidates 
such that Irl < u. Let, for simplicity, the candidates in r be C1, C2,. . . , Co-l, and thus 
Irl = u - 1. First, the candidates in r cannot extract any information from the index 
class of the elements they are able to  decrypt, i .e.,  from [ ~ [ i ] ] ,  i < u in any votes. The 
other element w[u], will to the candidates in r, be a random element in Go.' 

From the above i t  follows that a polynomial advantage in determining the actual vote 
for some candidate in some ballot (delivered by an honest candidate) yields a polynomial 
advantage in determining the actual vote for any candidate in any ballot. 

Assume now that the candidates in I? have gained such a polynomial advantage (some- 
how). But, then this is a polynomial advantage in determining the index class of at least 
one element w[a], in any vote in any ballot. This clearly contradicts the EPHA, and our 
assumption must be wrong. 1 

Theorem 6.4 (Unreusability) With overwhelming probability, no voter is able to vote 
more than once without being detected b y  an honest candidaie. 

'Recall that GI = {d (mod n,)lj 2 I}, where (e ,gI ,n,)  is theelectiontriplepublishedby candidate 
1. 
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Proof: This follows from the proof of unreusability of the eligibility tokens. See Ref. 
[IveSlb]. I 

Theorem 6.5 (Tally correctness) Under the assumptions that the employed signature 
scheme ts secure and that at least one  candidaie zs honest, then, wzih overwhelming 
probability, the published tally i s  equal fo the actual result of the electton. 

Proof: TO be able to claim the validity of a published tally, the (claimed) final ballot 
must be shown together with signed copies from all the candidates. If this is the case, the 
properties of the privacy homomorphism ensures t h a t  at most one tally can be produced 
from this final ballot (see Ref. [Ivegla]). By the proof of soundness, every ballot ‘‘in” the 
published net ballot is valid with overwhelming probability, and thus exactly one tally 
can be produced from it. 

No proper subset of dishonest candidates can produce a valid final ballot with an 
equal or larger sequence number without breaking the signature scheme. 1 

Theorem 6.6 (Eligibility) Under ihe assumption that the RSA blind signature scheme 
i s  secure, a n d  i f  at least one candidate zs honest, then with overwhelmzng probability, only 
eligible voters are able to deliver a ballot successfully. 

Proof (sketch): It is not known under what assumptions the theorem holds. See Section 
4.4. 1 

The above election scheme enables voters to deliver their votes independent of each 
other. N o  subset of voters can disrupt the election, and the same applies to any subset 
of less than u candidates. 

7 Discussion 

The scheme is very efficient in that nearly all timeconsuming computations can be done 
offline. In the most time-critical protocol - the voting protocol, the voter need not do 
any time-consuming computations. 

The election scheme presented here has one important drawback; the possibility for 
a voter to be paid to vote for a dishonest candidate, and afterwards be able to prove to 
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this candidate that he or she actually did so.' It remains an open problem to fix this 
problem. 
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