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Abstract. 

The problem of secure inulliparty computation is usually described as follows: each 
of 71 players in a network holds a private input I;. Together they would like to 
compute a function F(zI , .  . . , z,&) witliout revealing the inputs, even though no 
particular player can be trusted. Attempts to contrive formal definitions for the 
problem have treated properties of the solution separately (correctness, privacy, 
etc.), giving an ad hoc collection of desirable properties and varied definitions that 
do not support clear or comparable proofs. 

We propose a clear, concise, and unified definition for security and reliability in 
interactive computations. We deveiop a reduction called relative resilience that 
captures all desired properties at a single blow. Relative resilience allows one to 
classify and compare arbitrary protocols in terms of security and reliability, in the 
same way that Turing reductions allow one to  classify and compare algorithms in 
terms of complexity. Security and reliability reduce to a simple statement: a proto- 
col for F is resilient if it is as resilient as an ideal protocol in which a trusted host 
is available t o  compute F .  Relative resilience captures the notions of security and 
reliability for a wide variety of interactive c,omputations, including zero-knowledge 
proof systems, Byzantine Agreement, oblivious transfer, two-party oblivious circuit 
evaluation, among others. 

Relative resilience provides modular proof techniques that other approaches lack: 
one may compare a sequence of protocols ranging from the real-world protocol to the 
ideal protocol, proving the relative resilience of each successive protocol with greater 
clarity and less complexity. Folk theorems about the “transitivity” of security and 
the security of concatenated protocols are no* provable; and the proofs reveal that 
such folk theorems fail under subtle conditions that  have previously gone unnoticed. 
The conciseness’ and modularity of our defiiii tions and proof techniques provide 
great clarity in designing aiid reasoning about protocols and have already lead to 
provably secure protocols that are significantly more efficient than those appearing 
in the literature. 

‘This reseaicii ,<as supported ill par t  under NSF pant  CCR-870-4513 at IIarvard University, and by 
an ATkT Bell Laboratories postdoctoral fellowship. Contact: Donald Beaver, 313 Whitmore, Penn State 
Univ.,  State College, PA 16802; (614) 863-0147, beaver@cs.psu.edu. 

‘We have developed our definitions with great care and precision, and we believe them well-suited to 
Culling a meaningful 15-page abstract. A full versioii is available on request (see also [Z, 4)). 
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1 Introduction 

The purpose of cryptographic research, especially in the theoretical domain, is threefold: 

1. 
2 .  
3. 

to develop new techniques for secure communication and computation; 
to investigate and improve efficiency; 
to provide proofs of security. 

Whether it address secure communication, reliable file storage, operating system security, 
or computations performed on private data, cryptographic research must provide clear and 
provable results. Without clarity, efficiency and implementation are impossible; without 
proofs, as a long history of broken systems shows, no system can be relied upon without 
fear. 

We investigate and define the nature of security for interactive computations, in which 
results need to be computed based on values supplied by two or more participants. The 
results must satisfy an intuitive idea of correctness, and often are required to preserve the 
privacy of certain information (eg. the input values). 

Typically, an interactive computation is described as a multiparty protocol: n play- 
ers, each holding a private input I;, wish to compute some function F(s1, .  . . , z,,) with- 
out revealing anything about the inputs than what is computable solely from learning 
P(z1,. . . , zn). The results should be robust against an adversary who attacks the pro- 
tocol, gaining information from some players and perhaps even causing faulty messages 
to be sent. A well-known example is the secret ballot, in which the participants compute 
the sum of their votes without revealing how any individual voted. An adversary might 
choose or learn some of the votes, but it should not learn anything more than the overall 
tally and the choices of the players it corrupts. 

A wide variety of network models (private channels, broadcast, oblivious transfer), 
computational complexity assumptions, and adversarial powers is examined in the liter- 
ature [27, 19, 8, 11, 5 ,  24, 21. The purpose of this paper, however, is not to enumerate 
the various mechanical aspects of the various models, but to present a unifying, model- 
independent set of definitions for security and reliability for interactive computation. 
Though defining properties of interactive coniputations has proven subtle and elusive in 
the past, a concise and easily-understood property we call resilience captures a long list of 
desired security properties and provides 3. sturdy framework for modular protocol design 
and verification. 

Previous work. Research into multiparty protocols has provided a variety of robust al- 
gorithms, satisfying one major goal of cryptography while simultaneously failing another: 
to provide confidence that  the techniques are in fact reliable. The distinction between 
using methods based on unproven complexity- theoretic assumptions and using methods 
that are simply unproven is vast. 
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The primary reason for a lack of proofs is the lack of good definitions. Good definitions, 
like cryptographic research, should be: 

a. easy to understand: 
b. 
c. 

easy to use (providing sirnpie, modular proofs); 
unified and sufficiently robust to cover many situations. 

Ill-chosen or ill-coordinated definitions make the proofs of even easily-understood ideas 
like secret sharing into complicated, ugly affairs. LVorse, researchers are led to believe that 
all proofs must be complicated, eliminating the motivation to uphold the basic precept of 
cryptographic research: to demonstrate provably reliable techniques. 

In the case of multiparty protocol security, a host of security properties have arisen 
in the gradual, ad lioc progress of research. The definitions vary with the computational 
and communication models (eg .  private channels us. public-key-encrypted messages). 
Properties like corrcctness and privacy are intuitively easy to understand but extremely 
sensitive to subtle issues in their formulation. The definition of an “input” is crucial, and 
while seemingly simple, it has been fraught with problems. What if a player is given an 
input, for example, but behaves “properly” rzs though it were given a different input? 
“Intuitive proofs” and unwieldy or inflexible approaches are often used to finesse such 
problems. For example, encryptions of each input may be supplied to all players, thereby 
fixing the inputs [19), or a player may be required to commit to its input, say by secretly 
sharing it (8, 111. Techniques that specify the input as a function based on the transcript 
as a whole 13) may avoid fixing a particular committal technique in the definition of 

With ad hoc definitions, there is no guarantee that new properties will not arise. After 
correctness and privacy were considered, researchers began to worry about less apparent 
properties. For example, h l t y  players should choose their inputs independently of non- 
faulty players; otherwise, a 2 / 3  majority vote might be impossible, or a global random 
coin could be biased. Satisfactory definitions of input independence can be obtained in 
an information theoretic sense, but in a resource-bounded model, where one player might 
choose its input to be the encryption broadcast by another, independence becomes tricky. 
The separate analysis of properties gives an ill-coordinated and perhaps endless list of 
definitions. 

Even the inspiring idea of zero-knowledge proof systems [16], which has produced 
many new techniques and a greater understanding of how to measure information trans- 
fer, avoids the question of “choosing” input T € L by quantifying over all possible 2. 
Despite the wide appeal and strength of ZIC and simulation-based ideas in addressing 
issues of privacy (the preservacion of injurnzation), analyzing privacy alone is insufficient 
to treat correctness, independence, and other properties related to  influence wielded by 
an adversary. A s  we shall see, however, Z I i  uses a crucial tool - Yao’s notion of indistin- 
guishable ensembles [2G] - that provides n solid foundation on which to develop a unified 
definition of sccurity. 

The new approach. In  considering diverse properties and focusing on ZK simulations, 
researchers seem to have turned from the primary goal: achieving what a n  ideal ProtocoI 

LL’ input,” but they are less than elegant. 
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achieves. Normally we assume 110 player is above corruption; in fact, any t-subset is 
vulnerable. In the ideal case, however, there is one player, the trusted host, whom the 
adversary cannot corrupt. The trusted host receives all inputs over private channels, 
computes F ,  and returns the results. 

The influence and information of t h e  adversary in the idcal setting are precisely delin- 
eated. The adversary may learn inputs for corrupted players, but it has no information 
regarding nonfaulty inputs except for the function value. It may substitute inputs for 
corrupted players, but i t  has n o  other influence over the nonfaulty outputs. 

In order to state, however, that a protocol is secure by virtue of achieving what an  
idcal protocol achieves, one must define what it means to achieve the same results. A fixed 
comparison of a protocol to an ideal is one approach, but it is inflexible and inconvenient 
for constructing proofs. 

Re la t ive  resilience: a secu r i ty  reduct ion .  We present a reduction among protocols 
that allows one l o  compare a r ~ y  two protocols arid to show that one implements the other 
with the same or Letter degree of security and reliability (including privacy, correctness, 
independence, fairness, etc.). Our thesis is as follows: if a n y  adversary attacking cr cannot 
gain more  information or wield more  iiifluence than when it attacks /3, then a is at feast 
as secure and reliable - i.e. as resilient - as /3. Defining such an intuitive thesis formally 
is the crux of our work. 

An adversary attacking Q may not be compatible with attacking p; we introduce an 
interface that translates the adversary’s attacks on a to attacks on /3. The interface 
should not itself give extra advanta.ge to the adversary (e.g. through resource-unbounded 
computations). By considering ensembles describing all outputs in protocol executions 
(not just adversary views) and employing Yao’s notion of indistinguishability (261 we give 
a formal means to compare attacks on Q with interface-assisted attacks on p. Our use 
of indistiIiguishabilitv is far broader than that in Llie analysis of ZK or of pseudorandom 
number generators. 

Given a formal definition for relative resilience, an absolute measure of resilience be- 
comes simply a comparison to some standard: a t-resilient protocol for F is one that is 
as rcsilient as the ideal protocol ID(F‘) for I;: 

M o d u l a r  proof t echniques .  The ability to compare arbitrary pairs of protocols provides 
simple proofs, broader applications of the definitions, and a conceptually easier approach. 
Rather than using a single yardstick, we design rulers, tape measures, and micrometers, 
and gain a thorough understanding of the fundamental relations among the objects we 
measure. 

The most important property of our definitions is that  they provide an extremely 
simple and modular way to treat security. Relative resilience is transitive, supporting 
step-by-step modular proofs (see [4, 21) in an arena where many protocols lack proofs 
because of the lack of definitions or the vast complexity of such proofs. Relative resilience 
makes it easy to analyze the sccuritp of concatenating secure protocols, an affair that 
fixed-comparisons to an ideal fail to support (cf. the discussion of alternative approaches 
in  $3, notably fault-oracles [13, 3, 211 and legal-versions [5, 141). Proofs of “folk thee- 
rems” (transitivity, concatenability, and the share-compute-reveal paradigm) using our 
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Relative resilience unifies the idea of security and reliability for a host of interac- 
tive computations: Zero Knowledge, Byzantine Agreement, Oblivious Transfer, Instance- 
Hiding Schemes, etc.. Relative resilience explains the quite disparate collection of alterna- 
tive and previous formal approaches to multiparty protocol security its particular aspects 

History of ideas. In 1988, Beaver [3] developed and generalized the notion of fault- 
oracles introduced by Galil, Haber, and Yung [12]. Micali and Rogaway [21] independently 
pursued the same approach. In  1989, after a brief collaboration and exchange of ideas 
about fault-oracles, Beaver, hlicali, and Rogaway employed the fault-oracle approach to 
sccurity in a joint paper [Y]. 

Beaver found the fault-oraclc approach unsatisfactory (for reasons presented within) 
and went on to  develop the ideas presented here. Micali and Rogaway developed the 
fault-oracle approach further [21] (see also these Proceedings). The reader is strongly 
encouraged to compare approaches’ and to decide which is the more natural, the more 
concise, and the more powerful. 

Con ten t s .  Relative resilience is defined in 52.2. and resilience in 32.3. In 53 we show how 
resilience captures zero-knowledge and other interactive computations concisely, and we 
compare it to other approaches to defining security. In $4 we give theorems supporting 
a modular approach to protocol design and proof, describing the transitivity of security 
and the security of protocol concatenation. 

’iiicludiiig those prescnted iii [5, 14) 
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2 Defining Security 

2.1 

Preliminaries. Let E = {0,1} with extra symbols (#,@,(,)) encoded naturally. Let 
[n] = { 1,. . . ,n}  and let 2 = (q, . . . , zn). Let dist(x) be the set of distributions on some 
set X (usually finite). Let PFF be the set of functions mapping (Em)" -+ dis t ( (Em)n)  
described by probabilistic circuit families { C F ( ~ ,  m)} .  

The difference between distributions P, Q E d i s t ( X )  
is IP - QI = lPrp [z] - Prg [.]I. A probabilistic function is a function whose range 
contains distributions, namely f : X + dis t (Y) .  The composition of probabilistic 
functions g and f is given by Prgaf(=l [z]  = C, Pr,(=) [y] Prg(,) [ z ]  . An ensemble is a 
probabilistic function P : C* x N + dis t (C*)  such that Prp(+) [z] = 0 for 1x1 > k' 
and some fixed c. Two ensembles P and Q are O(S(k))-indistinguishable ( P  dk) &) if 
(%~)(vk 2 b ) ( v z ) l P ( z , k )  - Q(z ,k ) l  < S(k). Definitions of perfect (O(O)), exponen-  
t ial  ( O ( d - k )  for some d) ,  stat is t ical  ( 0 ( k d )  for all d > 0), and computat ional  (for all 
PPT-tests T and all d > 0, T ( P )  is O(k-d)-indistinguishable from T(Q) )  are standard. 
Networks and Protocols. A player is an interactive PPTM having a random tape, 
input tape, output tape, and work tape. The 1/0 tapes may encode several ( n )  different 
tapes for communication with several machines. The superstate q, of machine Pi is a 
string describing its finite control, current state, and contents of all tape squares read or 
written so far. With messages ml . - .  m, written on its input tape, Pi induces a transition 
( Q ~ , ( C ~ , M ~ ) - - . ( C J , J M J ) )  +- 6(qi,ml...nz,), where ( C , M )  requests that message IM be 
sent on channel C. 

A channel is a probabilistic function C : C* -+ d i ~ t ( 2 ~ ~ ~ ~ " ) .  For example, a 
private channel from i to j satisfies Prc(,,,] [{(Z,j ,m)}] = 1, while a broadcast  channel  
from i is Prq,) [ { ( z ,  1, m), . . . , (i, n,  m)}] = 1. An oblivious transfer channel from i to 
j gives Prq,) [ { ( i , j , ( O , O ) } ]  = and Prc(,) [{( i , j , ( l ,m)}]  = i. A network is a set of 
channel functions. 

Ensembles describing protocol  execution. A protocol is a collection of sets of 
players CI = { (Pi , .  . . , P n ) } , , E ~ .  For each n (number of players), m (size of inputs), k 
(security parameter), 2 E (Em)" (inputs), and 2 E (C')" (auxiliary inputs), a protocol CI 
induces a distribution C I ( Z G ,  k) on outputs and final views;3 as z ranges over possible 2.a' 
values, this gives an ensemble [a]. The messages sent from players in set A to those in B 
during round r are denoted p ( A ,  B ,  r ) .  Let R(n, m, I;) bound the number of rounds until 
all nonfaulty players halt. Let ji = ( p (  [n], 1, r), . . . , p( [n],  ra, r)) denote a set of incoming 
message, and denote by $5 a global state of the system. Let : C* ---t C* be an o u t p u t  
function; the o u t p u t  of Pi is y; = ~ ( q ~ ( n v m v k ) ) .  The view v: of a player at  round 
r 2 R(n, m, k) is the list of states and messages it has seen; in the memoryless model ,  
an intermediate view contains only the current state, tape contents, and incoming and 
outgoing messages. Let Reformat($,Z) = tj4. A round and an execution of a synchronous 

Ensembles Induced by Protocol Execution 

jIf  2' or a' does not have n components or if mine xi does not have m bits, the distribution gives 
probability 1 to the empty string. 



Figure I: Algorithmic description of synchronous, distributed pro- 
tocol execution. - 

rotocol can be expressed as probabilistic functions: 

Round(?$) = Deliver(Channel(Local(@p))) 
Exec(5.Z) = Reformat(RoundR("*"pk)(Init(Sa'))). 

'igure 1 describes protocol execution algorithmically. 
kdversaries. An adversary d is an interactive TM with one communication line, on 
rhich it makes corruption requests. A Byzantine adversary requests either the view of 
I player i or requests to replace outgoing messages from corrupted players. Note that 
dversary may change input and random tapes before the protocol starts ( i .e .  before 
nessages are generated). A passive adversary cannot change messages. If the adversary 
uperstate is q.4, let T = T ( q A )  denote the set of players it has corrupted. A t-adversary 
atisfies IT (qA) I  5 t ;  an ideal t-adversary also satisfies T ( q A )  C_ [n]. A static adversary 
atisfies T ( q A )  = To for some fixed To. A rushing, dynamic adversary sees p"'p, T, r )  
step 2.2) before choosing whom to corrupt and how to corrupt them. 

The function Fault  provides A with requested information and allows it to compute a 
lew request. The function Replace allows A to change outgoing messages pOU'(T, [n], r), 
vhich are then passed through channels, changing some of the messages in pdc'(T, [ n ] , ~ )  
n step 2.2. Let U A  be an auxiliary input for A, let Y A  denote its output Y A ( q A ) ,  and let 
Reformat(rl'.C-qA) = c - 3 - y ~ .  An execution of a protocol with adversary is: 

RoundA(q'ji.qA) = Deliver(Replace(Fault"(Channel(Locai(@~qA))))) 
ExecA( S.a'.aA) = Reformat( RoundAR(","~~)(Init(l.a'.aA))). 

An execution thus maps i G a A  to y'.v'.y~. The ensemble of outputs induced by a simple 
adversary a t tack  is the following: 

[&,A]' = ~ T A  = (%:(91), . . , G(%), Y A ( q A ) )  



2.2 Relative Resilience 
Interfaces. The principle behind ZI< [ l G ]  states that the information revealed during 
a proof is bounded by the fact ux E L” because a simulator can produce an accurate 
verifier (adversary) view based only on ‘‘2 E L.” This brilliant use of the notion of 
ensemble indistinguishability [2G] covers only half the picture of interaction, though. In 
addition to information, there is the influence an adversary has on the outputs of nonfaulty 
players. ZK-simulation ignores this side because a faulty verifier doesn’t “influence” the 
ha1  output of the prover, which is irrelevant in ZIi  proof systems - only the verifier’s 
decision is considered. In an interactive protocol, the influence of the adversary is reflected 
in the distributions on final outputs of nonfaulty players. By examining the ensemble of 
all outputs, we unify the  long list of desired properties (correctrless, independence, etc.). 

To say that a is as secure - ie. resilient - as p is to say that attacks on a do 
no better than attacks on p. An adversary A attacking a gains information and wields 
influence on a; its information and influence should be the same as with p. But A may 
be incompatible with 3 for many reasons: the network may differ from protocol a, the 
communication format may differ, etc. To allow A to attack p ,  we give it an inter-ace 
2. Interface Z accepts corruption requests from A, performs direct attacks on p, obtains 
views v! of p, and returns pseudo-views 6: (apparently of a )  to A in response to A’s 
requests. 

The interface should not give A extra power, though; the combined machine Z(A) 
acting as an adversary against ,B should no1 exceed the power allowed to adversaries 
attacking p. In cases where adversaries are polynomial-time bounded, this means that 
the interface itself must be polynomial-time. 

Definition 1 A n  in te r face  is an Interactive TiV Z with two  tapes. On its “enuiron- 
ment simulation” tape, 1 receives and responds to messages from an adversary; on its 
“adversarial” tape, Z sends and receives messages as an adcersary in its own right. A n  
interface from a to ,B satisfies Z(A) E ADVp f o r  all A E ADV,, where ADV, ,ADVp are the 
respective classes of allowed adversaries for a ,  ,b. 

A preliminary definition illustrates the use of an interface to demonstrate that the 
information (adversary output) and influence (player outputs) are the same in attacks 
against a as in p: 
Definition 2 (Weak Rela t ive  Resilience) Protocol a is weakly as resilient as pro- 
tocol p if there exists a n  interface Z f rom a to p such that for all d € ADV,, 

faI A]’ = [P, I( A)]’. 
Post  Protocol Corruption. To support protocol concatenation and other issues in 
modularity, we strengthen this preliminary definition somewhat. In particular, an inter- 
face Z from Q to @ should be able to do a good job not only during the execution of /3 but 
later on, when it may be called upon (as a result of subsequent protocol executions) to 
respond to requests for new corruptions. Its eternal job is to return outputs and pseudo- 
views seemingly from a. Definition (2), however, says nothing about its ability to do SO 

after protocol /3 is complete. 
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A post-protocol  corrupting adversary may, after it sees the end of a, generate 
a request LLPPC” to enter a post-protocol corruption stage, at which point it receives all 
outputs 27 (but not, the views) and then continues to  make requests for corruptions in a. 
The interface sees neither the PPC request nor the response y’l but it must continue to 
answer corruption requests i from d with (final) pseudo-views u r .  Z can itself obtain y; 
and view from 8, but the pseudo-a-view 6: that i t  generates must be accurate enough 
that, even knowing all the outputs,‘ the adversary cannot detect a difference between 
information from 1 and information from corrupting “the real thing,” protocol a. The 
interface must satisfy, as usual, ( V d  E ADV,)Z(d) E ADVp. 

An execution of a protocol with a post-protocol corrupting adversary induces an en- 
semble on player and adversary o u t p ~ t s . ~  We denote this ensemble, and the ensemble 
restricted to adversary output  alone or to player outputs alone, as: 

[a,AI = @I/A = (X(q1),...,y,(q,),yA(qA)) 
[a,dIYA = YA = y,1(cIA)  
[a, A]’:.] = ?J = ( X ( ( l l ) ,  . . ., Yn(qn)). 

When an interface is involved, we write the induced ensembles respectively as [P,Z(d)], 
[ P , 1 ( 4 1 Y A ,  and [PI  Z(-4)1?-’. 
Relative Resilience. Wi th  interfaces, post-protocol corruption, and the induced ensem- 
bles in hand, the notion of relative resilience can be stated concisely: 

Definit ion 3 (Relative Resi l ience)  Protocol u is as resilient as P ,  wri t t en  a P ,  if 
there  ezists an interface 1 from a t o  p such that f o r  all A E ADV,, 

b ,AI  = [P,Z(A)I. 
The use of the >- symbol is intended. Using Theorem 3 below, it is not hard to show 
that defines a partial order. Complexity-theorctic reductions among problems employ 
a polynomial-time transducer to map one problem to another, thereby comparing their 
difficulty. Relative resilience is a reduction among protocols, employing an interface to 
map one protocol to another, thereby comparing their security and reliability. 

Privacy and cor rec tness .  Relative resilience captures a priori  the notions of privacy 
and correctness: a is as private as ,B if [a, x [p, Z(A)IYA and it is as correct as p 
if [a,d]q”l M [p,Z(A)]ynl. We write these ;ts a?Privp and akmCt/3, respectively. 
Computa t iona l  arid other issues.  Statistical and computational versions of these 
definitions are easy modifications using statistical and computational indistinguishabil- 
ity. Some qualifications a re  necessary in moving from the information-theoretic to  the 
polynomially-bounded scenario. Statements of theorems presented here include polyno- 
mial bounds ( eg .  on the number of protocols to concatenate) so that they may apply for 
each degree of resilience; stronger statements are often possible. 

‘Why should A have all outputs? To allow protocol concatenation, we must consider the case that 
some (naturally ridiculous) later protocol legilimniely reveals all protocol-computed information, which 
includes all y’s - but not all views. Z’s efforts must be accurate even in this worst-case situation. 

’Note that the player outputs are the same whether the adversary does post-protocol corruption or 
not. 
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2.3 Resilience 
A real protocol permits an adversary class for which no player is above corruption. An 
ideal protocol contains one or more trusted hosts (players (n + I), (n +2), . . .) who cannot 
be corrupted. Given a probabilistic finite function F E PFF, the ideal protocol  for 
F ,  ID(F), has two rounds: (1) each player i sends 5;  to host ( n  + 1); (2) host (n + 1) 
computes (or samples) F(z1, .  . . , zR) and returns the values (one per player). 

Definition 4 (Resilience) a is a t-resilient protocol for F 21 Q 

adversaries. 
ID(F), against t -  

3 Unifying All Interactive Computations 
To demonstrate the conciseness, clarity, and unity of our approach, we redefine a few 
well-known problems using relative resilience. 
Zero-knowledge. In the ideal  zero-knowledge proof system, denoted ID(L), player 
P sends x to trusted host TH, who calculates whether z E L and sends ux E L" to V if 
so. The host otherwise sends "?" to indicate a failed proof. The classical notion of ZKPS 
(161 is defined in one sentence: A two-party protocol a = (P, V )  is a zero-knowledge 
proof system for L iff i t  is as resilient as I D (  L ) ,  against static 1-adversaries. 

For clarity, let us examine the relation between the two approaches to defining ZK. If 
the 1 adversary corrupts neither P nor V ,  then resilience ensures that V accepts the correct 
statement ux E L" from P and checked by the trusted host; completeness is satisfied. If 
the 1-adversary corrupts P ,  resilience ensures that a nonfaulty V never accepts a false 
statement ux E L"; soundness is satisfied. If the 1-adversary corrupts V ,  resilience ensures 
that the adversary gains no more information than Z corrupting V in the ideal case, where 
the host ensures that only the statement "1: E L" is transmitted. 

Notice that a corrupt P does have influence over the output of V :  it can cause V not 
to believe a proof or it  can convince V of a true statement, but its influence is bounded 
by that permitted in the ideal case. Relative resilience maps the adversary's limitations 
in the ideal case to the limitations i t  should have in the real case, without having to 
enumerate all desired properties. 
Secret sharing. The ideal vacuous protocol, ID(O), returns no result. A t- threshold 
scheme is a pair of protocols (SHA, REC) computing probabilistic functions (sha,  rec) 
such that 

1. rec is t-robust (Le . ,  insensitive to 5 t changes in inputs); 
2. s h a  is t-private (Le.,  ID(sha) 2 ID(0)); 
3. rec o sha(z) = x. 

Other  examples. Byzantine Agreement, Oblivious Transfer, Coin Flipping, Instance- 
Hiding Schemes, and a host of interactive computations have simple descriptions using 
relative resilience. These are left to the reader. 
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Other  recent  definitions: t he i r  disadvantages;  a unified theory. Several authors 
[13, 3, 211 have considercd thc idea of a fault-oracle that performs a single function com- 
putation and leaks a subset of the inputs. Extending the ZK-approach, they require a 
simulator with access to a fault-oracle to generate an adversarial view based on seeing 
and changing a subset of inputs and receiving a single computation of F. Rephrased in 
the language of relative resilience, a fault-oracle represents a trusted host, and a simulator 
provides a fixed comparison to the "ideal" protocol. Oracles lack the flexibility of allow- 
ing comparisons among various protocols (and exclude those not designed to "compute a 
function") and do not support an obvious modular framework. For example, it is not clear 
how the concatenation of two secure protocols may be proven secure without altering the 
definitions, since the security of each is proven with respect to a separate oracle call, while 
the simulator for the concatenated protocol may make only one oracle call. The notion 
of transitivity of security is not expressible in  terms of fault-oracles. 

The legal-version approach says that a protocol is "legal-robust" if every execution 
with an adversary corresponds to an execution in which all players behave, except that the 
inputs of some subset may be different [ 5 ,  141. This approach is again a fixed comparison 
to an essentially ideal situation, lacking flexibility and modularity. In the language of 
relative resilience: define the ideal  version ID(cu)  of a protocol a to be the ideal protocol 
in which the trusted host (1) receives inputs and random tapes from each player and ( 2 )  
i n t e n a l l y  runs cr (without corruption), returning the outputs (not the internal views) to 
the players. Then, a protocol a is legal-robust if the fixed comparison a I D ( a )  holds. 

4 Folk Theorems and Modular Proof Techniques 
Many intuitively justified approaches become provable using relative resilience. Resilience 
brings to light several pitfalls overlooked by imprecisely stated folk theorems. The con- 
tribution of this section is a formal statement of provable theorems and the necessary 
conditions under which they hold. We sketch the proofs; full versions require a little more 
space than here permitted. 

Pro- 
tocol concatenation is defined naturally. The concatenation of f(n, m, k) protocols is 

The mathematical distinction between uniform and pointwise convergence of functions 
has a probabilistic counterpart: two families {Pi}  and {Qi} of ensembles are uniformly 
O(S;(z, k))-indistinguishable if (3ko)(Vz)(Vk 2 b)(Vz) lP, (z ,  k) - Q;(z, k)l < 6i(z, k). 
The term uniform does nut refer to  Turing machine computability. We say that protocol 
family {a;} is uniformly as t-resilient as family { p ; }  if the ensemble families { [ai, A]} 
and {[pi, Z(d)]} are uniformly indistinguishable. 

Uniform convergence is necessary to the following theorems; counterexamples are 0th- 
erwise easy to find (see below and [2]), showing that folk theorems cannot be applied 
without care. Luckily for many presumably secure applications, any two finite families 
of ensembles are uniformly indistinguishable if  each pair of corresponding ensembles are 
indistinguishable. 

The composition of f ( ~ ,  I ; )  ensembles is PJ(.z,  k) = P,(z,.t) o .. . o Pl (z ,  k). 

af(5.a',k) =crf(n,m,k)O.'-dQl(~'~,k). 
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Lemma 1 (Composing poly-many ensembles) If { Pt } is uniformly indistinguishable 
Jrom {Q;} and if f(2, k) is polynomially Bounded, then P f  

Proof. We sketch a proof for perfect and statistical indistinguishability appearing in 
[2,4]; the proof for computational indistinguishability is direct and follows the same lines. 
Unlike probability-walk proofs in  other settings, we must explicitly consider the conver- 
gence rates -serendipity does not allow us to omit them. Assume by way of contradiction 
that {Pi} is uniformly &(z, I;)-indistinguishable from {Qi} and f is poly-bounded, but 
that P f  is not 6(z ,  k)-indistinguishable from Q f ,  where 6(z ,  k) = C { y )  b,(z, k). Let h 
be the uniform convergence parameter. Define RI = 0.. a o PI o Ql-* o - ' - o Q1. Then 
for some k 2 

Q f .  

and for some z ,  

f ( 2 . k )  

C bi(z,k) < C I P j ( I , k )  o . * . ~ P i ( z , k ) - Q f ( , i )  o . * . o Q ~ ( z , k ) I  

C I R 3 - R  1 + Ri - Rz + . . . + Rf(z,k)- i  - R l ( z , k )  I 
i=l I 

5 
2 

f (2.k) 

5 C C lRi-l(ztk)-R(z,k)I.  
L i= l  

Reversing the order of summation, it follows that for some i, S i ( z , k )  < 
Cz IR.-i(z,k) - R(z ,  k)l. From here it is straightforward to show that this demonstrates 
Pi is not 6i(Z, k)-indistinguishable from Qi for this k 2 b, a contradiction. 0 

A counterexample is easy to describe for nonuniform convergence [2]; for example, 
define: 

Prp,(L,k) [0] = 1 if k < 22 
Prp,(,,k) [I] = 1 if k 2 2i 
PrQ.(*,k) [I] = 1 always. 

Clearly, for dl i, P ; = ' ( ~ - ~ ) Q ~  since (v;, z ) ( \ ~ k  2 2 i ) ~ ; ( z ,  L-) = Q ~ ( Z ~  k). Letting f ( z ,  E ; )  = 
k, we see (Vz, k)Prp,(,+) [O] = 1, because I " ( z ,  k) = Pk(Pk-*(.. - ) 1  k) and k < 2L.  On the 
other hand, (Vz, k)PrQ,(z,k) [O] = 0. Hence (Vz, k ) I P f ( z ,  k) - Q f ( z ,  k)l = 2 # U ( k 2 - k ) ,  a 
contradiction. Uniformity of convergence is also necessary when comparing polynomially- 
many protocols: 

Theorem 2 (Concatena t ing  poly-many protocols) I j {  a;} is uniformly as t-resil ient 
US { p i }  a n d  i f f (n ,m,  k) is polynomial ly  bounded, t h e n  crf 

Proof. We sketch a few salient points, following our proof for statistical resilience in [2]. 
The main idea is to construct an interface Z from a/ to pf, using interfaces Z; between 
each pair oi and pi. Each interface is taken without loss of generality6 to be canonical, ie. 

6A simple argument demonstrates that no generality is lost for information-theoretic settings; a qual- 

,B'. 

ification must be made when defining computational resilience. 
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the set of corruption requests by Zi against p, is always a subset of those requested by A;. 
Using Lemma 1, the two enseIiiLles [a’, Z(d)]  and [Pf, Z(d)] are shown indistinguishable. 
0 

T h e o r e m  3 (Transit ivity of 2 ) (Y 2 p arid ,O 7 implies (Y 2 y. Polynornially many 
uppfications work as well: I f { a ; + l }  is uniformly as t-resilient as { [ ~ i } , ~  and i f f ( n , n , k )  
is polynominlly bounded, then af 2 (YO. 

Proof. 
subinterfaces 
Theorem 2. 0 

See [2, 41; the interface Z from cd to a0 internally runs f(n, m, k) nested 
We consider canonical interfaces as in the proof of o . . . o o 

4.1 The Share-Compute-Reveal Paradigm 
Define hide(H) = sha o H o rec, the probabilistic function that reconstructs a secretly- 
shared value, computes H ,  and shares it again. The share-compute-reveal paradigm [18, 
19, 8, 111 for multiparty protocols is to express F as F’ = o{F, and compute rec o 
[o{hide(F;)] o sha. That is, inputs are secretly shared; intermediate values are secretly 
computed but not revealed; then the final output is reconstructed. The formal and fully 
provable statement of this methodology is as follows: 

Theorem 4 (“Completeness” paradigm) Let (SHA, REC) be u t-threshold scheme, 
and let F = Ff = o{Fi for some polynomidy bou,nded f ( n ,  m, k). If {ai} is uniformly as 

t-resifient as {ID(hide(F,))}, then 

REC o [o{(Y;]  o SlIA ID(F). 

Proof.  
and privacy of ( rec ,sha)  but is omitted (cf. [2, 41, however). 0 

Uniformity is essential. The proof uses Theorems 2 and 3 and the robustness 

5 Summary 
A correct, concise, and useful formulation of security and fault-tolerance is necessary to  a 
proper foundation of the theory and practice of cryptography. We are happy to provide 
proofs of our theorems upon request and are even happier to discuss them openly and to 
develop our methodology further. 

We have emphasized the important point that protocol security must be treated in 
a unificd manner: security and reliability (privacy and correctness) are two sides of the 
same coin. Treating a variety of propcrties separately leads to confusion. 

’Roughly speaking, (Vi)ai+l 2 ai - with uniform convergence. 
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To say tha t  a protocol is secure is to say it achieves t h e  results of a n  ideal protocol. Our 
formal definition of relative resilience s tdcs  prcciscly what i l  means for one protocol to 
achieve t h e  results of another, avoiding the  inflexibility inherent in  fault-oracle approaches. 
Relative resilience provides a natural  reductzo~a among protocols t h a t  supports  concise and 
modular proofs, inspiring newfound confidence in theoretical cryptography and resulting 
in clearer a n d  more efficient design of provably secure protocols. 

References 

[I] M. Abadi, J. Feigenbaum, J.  Kilian. “On Hiding Information from an Oracle.” 
J .  Comput. System Sci. 39 (1%9), 21-50. 

[a] D. Beaver. “Secure Multiparty Protocols and Zero Knowledge Proof Systems Tol- 
erating a Faulty Minority.” TO appear, J. Cryptology. An earlier version appeared 
as “Secure Multiparty Protocols Tolerating Half Faulty Processors.” Proceedings of 
Crypto 1999, ACM, 1989. 

[3] D. Beaver. “Formal Definitions for Secure Distributed Protocols.” Proceedings of the 
DIMACS Workshop on Distributed Compuling and Cryptography, Princeton, NJ ,  
October, 19S9, J. Feigenbaum, M. Merritt (eds.). 

(4) D. Beaver. Security, Fault Tolerance, and Communication Complexity in Lktributed 
Systems. PliD Thesis, Harvard University, Cambridge, 1990. 

[ 5 ]  D. Beaver, S. Goldwasser. “Multiparty Computation with Faulty Majority.” Pro- 
ceedings of the 30”‘ FOG‘S, IEEE, 1359, 463-473. 

[G] D. Beaver, S. Haber. “Cryptographic Protocols Provably Secure .4gahst Dynamic 
Adversaries.“ Submitted to FOCS 91. 

[7]  D. Beaver, S. MiCali, P. Rogaway. “The Round Complexity of Secure Protocols.” 
Proceedings of the 2ZSL STOC, ACM, 1990, 503-513. 

[8] M. Ben-Or. S. Goldwasser, A.  Wigderson. “Completeness Theorems for Non- 
Cryptographic Faul t- Toleran t Distributed com p u t a t  ion.” Proceedings of the 20“ 
STOC, ACM, 1988, 1-10. 

[9] R. Blakley. “Security Proofs for Information Protection Systems.” Proceedings of the 
1980 Symposium on Security and Privacy, IEEE Computer Society Press, New York, 
1981. 79-88. 

[lo1 G. Brassard. D. Chaurn, C. Crepeau. “Minimum Disclosure Proofs of Knowledge.” 
J .  Cornput. System Sci. 37 (1988), 156-189. 

[ll] D. Chaurn, C. Crepeau, I. Damgjrd.  “Multiparty Unconditionally Secure Protocols.” 
Proceedings of the 20fh STOC, ACM, 1988, 11-19. 

1121 Z. Gdi l ,  S. IIaber, M. Yung. “Cryptographic Computation: Secure Fault-Tolermt 
Protocols and the Public-Iiey Model.” Proceedings of Crypt0 i987, Springer-Verk 
19S8, 135-155. 



391 

{13] Z. Gaiil, S. Haber, and M. Yung. “ l l i~ l imom-I~~~owledge  Interactive Proofs for Deci- 
sion Problems.” SIAM J .  Compul. 18:4 (19Y9), 711-739. 

[14] S. Goldwasser, L. Levin. “Fair Computation of General Functions in Presence of 
Immoral Majority.” Proceedings of Cryplplo 1990. 

1151 S. Goldwasser, S. Micaii. “Probabilistic Encryption.” J .  Cornput. System Sc:. 28 
(1984), 270-209. 

[lG] S. Goldwasser, S. Micdi, C. Rackoff. “The Knowledge Complexity of Interactive 
Proof Systems.” SIAM J.  Cornput. 18:l (1989), 186-208. 

[17] S. Goldwasser, M. Sipser. “Private Coins vs. Public Coins in Interactive Proof Sys- 
tems.” Proceedings or the I S f h  STOC, ACM, 1986, 59-63. 

[lS] 0. Goldreich, S. Micali, A.  Wigderson. “Proofs that Yield Nothing but Their Valid- 
ity and a Methodology of Cryptographic I’rotocoi Design.” Proceedings of the 27th 
FOCS, IEEE, 1986. 17+187. 

[I91 0. Goldreich, S. Micali, A. Wigderson. “How to  Play Any Mental Game, or A 
Completeness Theorcin for Protocols with Honest Majority.” Proceedings of the 19’” 
STOC, ACM, 1987, 218-229. 

[ZO] S. Haber. Multi-Party Cryptographic Computation: Techniques and Applications, 
PhD Thesis, Columbia University, 1988. 

121) S. Micali, P. Rogaway. “The Notion of Secure Computation.’’ Unpublished 
Manuscript, 1990. 

(221 S. Micali, P. Rogaway. “Secnre Computation.” These Proceedings (Crypt0 f991), 
page 9.8. 

[23] Y .  Oren. “On the Cunning Power of Cheating Verifiers: Some Observations about 
Zero Ihowledge Proofs.” Proceedings of the 19’“ STOC, ACM, 1987, 462-471. 

[24] T. Rabin, M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with 
Honest Majority.” Proceedings of the 213t STOC, ACM, 1989, 73-85. 

[25] A. Shamir. “How to Share a Secret.” Communications of the ACM, 22 (1979), 612- 
613. 

[26] A. Yao, “Theory and Applications of Trapdoor Functions.” Proceedings of the 
FOCS, IEEE, 1982, SO-91. 

[27] A. Y ~ o .  “HOW to Generate and Exchange Secrets.” Proceedings of the 27th FOCS, 
IEEE, 1986, 162-167. 


	Introduction
	Defining Security
	Ensembles Induced by Protocol Execution
	Relative Resilience
	Resilience

	Unifying All Interactive Computations
	Folk Theorems and Modular Proof Techniques
	The Share-Compute-Reveal Paradigm

	Summary
	References

