
Foundations of Secure Interactive Computing

Donald Beaver *
ATSLT Bell Laboratories

Abstract.

The problem of secure inulliparty computation is usually described as follows: each
of 71 players in a network holds a private input I;. Together they would like to
compute a function F(zI , . . . , z,&) witliout revealing the inputs, even though no
particular player can be trusted. Attempts to contrive formal definitions for the
problem have treated properties of the solution separately (correctness, privacy,
etc.), giving an ad hoc collection of desirable properties and varied definitions that
do not support clear or comparable proofs.

We propose a clear, concise, and unified definition for security and reliability in
interactive computations. We deveiop a reduction called relative resilience that
captures all desired properties at a single blow. Relative resilience allows one to
classify and compare arbitrary protocols in terms of security and reliability, in the
same way that Turing reductions allow one to classify and compare algorithms in
terms of complexity. Security and reliability reduce to a simple statement: a proto-
col for F is resilient if it is as resilient as an ideal protocol in which a trusted host
is available t o compute F . Relative resilience captures the notions of security and
reliability for a wide variety of interactive c,omputations, including zero-knowledge
proof systems, Byzantine Agreement, oblivious transfer, two-party oblivious circuit
evaluation, among others.

Relative resilience provides modular proof techniques that other approaches lack:
one may compare a sequence of protocols ranging from the real-world protocol to the
ideal protocol, proving the relative resilience of each successive protocol with greater
clarity and less complexity. Folk theorems about the “transitivity” of security and
the security of concatenated protocols are no* provable; and the proofs reveal that
such folk theorems fail under subtle conditions that have previously gone unnoticed.
The conciseness’ and modularity of our defiiii tions and proof techniques provide
great clarity in designing aiid reasoning about protocols and have already lead to
provably secure protocols that are significantly more efficient than those appearing
in the literature.

‘This reseaicii ,<as supported ill par t under NSF pant CCR-870-4513 at IIarvard University, and by
an ATkT Bell Laboratories postdoctoral fellowship. Contact: Donald Beaver, 313 Whitmore, Penn State
Univ., State College, PA 16802; (614) 863-0147, beaver@cs.psu.edu.

‘We have developed our definitions with great care and precision, and we believe them well-suited to
Culling a meaningful 15-page abstract. A full versioii is available on request (see also [Z, 4)).

J. Felgenbaurn (Ed.): Advances in Cryptology - CRYPT0 ’91, LNCS 576, pp. 377-391, 1992.
Q Spnnger-Verlag Berlln Heldelberg 1992

378

1 Introduction

The purpose of cryptographic research, especially in the theoretical domain, is threefold:

1.
2 .
3.

to develop new techniques for secure communication and computation;
to investigate and improve efficiency;
to provide proofs of security.

Whether it address secure communication, reliable file storage, operating system security,
or computations performed on private data, cryptographic research must provide clear and
provable results. Without clarity, efficiency and implementation are impossible; without
proofs, as a long history of broken systems shows, no system can be relied upon without
fear.

We investigate and define the nature of security for interactive computations, in which
results need to be computed based on values supplied by two or more participants. The
results must satisfy an intuitive idea of correctness, and often are required to preserve the
privacy of certain information (eg. the input values).

Typically, an interactive computation is described as a multiparty protocol: n play-
ers, each holding a private input I;, wish to compute some function F(s1, . . . , z,,) with-
out revealing anything about the inputs than what is computable solely from learning
P(z1,. . . , zn). The results should be robust against an adversary who attacks the pro-
tocol, gaining information from some players and perhaps even causing faulty messages
to be sent. A well-known example is the secret ballot, in which the participants compute
the sum of their votes without revealing how any individual voted. An adversary might
choose or learn some of the votes, but it should not learn anything more than the overall
tally and the choices of the players it corrupts.

A wide variety of network models (private channels, broadcast, oblivious transfer),
computational complexity assumptions, and adversarial powers is examined in the liter-
ature [27, 19, 8, 11, 5 , 24, 21. The purpose of this paper, however, is not to enumerate
the various mechanical aspects of the various models, but to present a unifying, model-
independent set of definitions for security and reliability for interactive computation.
Though defining properties of interactive coniputations has proven subtle and elusive in
the past, a concise and easily-understood property we call resilience captures a long list of
desired security properties and provides 3. sturdy framework for modular protocol design
and verification.

Previous work. Research into multiparty protocols has provided a variety of robust al-
gorithms, satisfying one major goal of cryptography while simultaneously failing another:
to provide confidence that the techniques are in fact reliable. The distinction between
using methods based on unproven complexity- theoretic assumptions and using methods
that are simply unproven is vast.

379

The primary reason for a lack of proofs is the lack of good definitions. Good definitions,
like cryptographic research, should be:

a. easy to understand:
b.
c.

easy to use (providing sirnpie, modular proofs);
unified and sufficiently robust to cover many situations.

Ill-chosen or ill-coordinated definitions make the proofs of even easily-understood ideas
like secret sharing into complicated, ugly affairs. LVorse, researchers are led to believe that
all proofs must be complicated, eliminating the motivation to uphold the basic precept of
cryptographic research: to demonstrate provably reliable techniques.

In the case of multiparty protocol security, a host of security properties have arisen
in the gradual, ad lioc progress of research. The definitions vary with the computational
and communication models (eg . private channels us. public-key-encrypted messages).
Properties like corrcctness and privacy are intuitively easy to understand but extremely
sensitive to subtle issues in their formulation. The definition of an “input” is crucial, and
while seemingly simple, it has been fraught with problems. What if a player is given an
input, for example, but behaves “properly” rzs though it were given a different input?
“Intuitive proofs” and unwieldy or inflexible approaches are often used to finesse such
problems. For example, encryptions of each input may be supplied to all players, thereby
fixing the inputs [19), or a player may be required to commit to its input, say by secretly
sharing it (8, 111. Techniques that specify the input as a function based on the transcript
as a whole 13) may avoid fixing a particular committal technique in the definition of

With ad hoc definitions, there is no guarantee that new properties will not arise. After
correctness and privacy were considered, researchers began to worry about less apparent
properties. For example, h l t y players should choose their inputs independently of non-
faulty players; otherwise, a 2 / 3 majority vote might be impossible, or a global random
coin could be biased. Satisfactory definitions of input independence can be obtained in
an information theoretic sense, but in a resource-bounded model, where one player might
choose its input to be the encryption broadcast by another, independence becomes tricky.
The separate analysis of properties gives an ill-coordinated and perhaps endless list of
definitions.

Even the inspiring idea of zero-knowledge proof systems [16], which has produced
many new techniques and a greater understanding of how to measure information trans-
fer, avoids the question of “choosing” input T € L by quantifying over all possible 2.
Despite the wide appeal and strength of ZIC and simulation-based ideas in addressing
issues of privacy (the preservacion of injurnzation), analyzing privacy alone is insufficient
to treat correctness, independence, and other properties related to influence wielded by
an adversary. A s we shall see, however, Z I i uses a crucial tool - Yao’s notion of indistin-
guishable ensembles [2G] - that provides n solid foundation on which to develop a unified
definition of sccurity.

The new approach. In considering diverse properties and focusing on ZK simulations,
researchers seem to have turned from the primary goal: achieving what a n ideal ProtocoI

LL’ input,” but they are less than elegant.

380

achieves. Normally we assume 110 player is above corruption; in fact, any t-subset is
vulnerable. In the ideal case, however, there is one player, the trusted host, whom the
adversary cannot corrupt. The trusted host receives all inputs over private channels,
computes F , and returns the results.

The influence and information of t h e adversary in the idcal setting are precisely delin-
eated. The adversary may learn inputs for corrupted players, but it has no information
regarding nonfaulty inputs except for the function value. It may substitute inputs for
corrupted players, but i t has n o other influence over the nonfaulty outputs.

In order to state, however, that a protocol is secure by virtue of achieving what an
idcal protocol achieves, one must define what it means to achieve the same results. A fixed
comparison of a protocol to an ideal is one approach, but it is inflexible and inconvenient
for constructing proofs.

Re la t ive resilience: a secu r i ty reduct ion . We present a reduction among protocols
that allows one l o compare a r ~ y two protocols arid to show that one implements the other
with the same or Letter degree of security and reliability (including privacy, correctness,
independence, fairness, etc.). Our thesis is as follows: if a n y adversary attacking cr cannot
gain more information or wield more iiifluence than when it attacks /3, then a is at feast
as secure and reliable - i.e. as resilient - as /3. Defining such an intuitive thesis formally
is the crux of our work.

An adversary attacking Q may not be compatible with attacking p; we introduce an
interface that translates the adversary’s attacks on a to attacks on /3. The interface
should not itself give extra advanta.ge to the adversary (e.g. through resource-unbounded
computations). By considering ensembles describing all outputs in protocol executions
(not just adversary views) and employing Yao’s notion of indistinguishability (261 we give
a formal means to compare attacks on Q with interface-assisted attacks on p. Our use
of indistiIiguishabilitv is far broader than that in Llie analysis of ZK or of pseudorandom
number generators.

Given a formal definition for relative resilience, an absolute measure of resilience be-
comes simply a comparison to some standard: a t-resilient protocol for F is one that is
as rcsilient as the ideal protocol ID(F‘) for I;:

M o d u l a r proof t echniques . The ability to compare arbitrary pairs of protocols provides
simple proofs, broader applications of the definitions, and a conceptually easier approach.
Rather than using a single yardstick, we design rulers, tape measures, and micrometers,
and gain a thorough understanding of the fundamental relations among the objects we
measure.

The most important property of our definitions is that they provide an extremely
simple and modular way to treat security. Relative resilience is transitive, supporting
step-by-step modular proofs (see [4, 21) in an arena where many protocols lack proofs
because of the lack of definitions or the vast complexity of such proofs. Relative resilience
makes it easy to analyze the sccuritp of concatenating secure protocols, an affair that
fixed-comparisons to an ideal fail to support (cf. the discussion of alternative approaches
in $3, notably fault-oracles [13, 3, 211 and legal-versions [5, 141). Proofs of “folk thee-
rems” (transitivity, concatenability, and the share-compute-reveal paradigm) using our

38 1

Relative resilience unifies the idea of security and reliability for a host of interac-
tive computations: Zero Knowledge, Byzantine Agreement, Oblivious Transfer, Instance-
Hiding Schemes, etc.. Relative resilience explains the quite disparate collection of alterna-
tive and previous formal approaches to multiparty protocol security its particular aspects

History of ideas. In 1988, Beaver [3] developed and generalized the notion of fault-
oracles introduced by Galil, Haber, and Yung [12]. Micali and Rogaway [21] independently
pursued the same approach. In 1989, after a brief collaboration and exchange of ideas
about fault-oracles, Beaver, hlicali, and Rogaway employed the fault-oracle approach to
sccurity in a joint paper [Y].

Beaver found the fault-oraclc approach unsatisfactory (for reasons presented within)
and went on to develop the ideas presented here. Micali and Rogaway developed the
fault-oracle approach further [21] (see also these Proceedings). The reader is strongly
encouraged to compare approaches’ and to decide which is the more natural, the more
concise, and the more powerful.

Con ten t s . Relative resilience is defined in 52.2. and resilience in 32.3. In 53 we show how
resilience captures zero-knowledge and other interactive computations concisely, and we
compare it to other approaches to defining security. In $4 we give theorems supporting
a modular approach to protocol design and proof, describing the transitivity of security
and the security of protocol concatenation.

’iiicludiiig those prescnted iii [5, 14)

382

2 Defining Security

2.1

Preliminaries. Let E = {0,1} with extra symbols (#,@,(,)) encoded naturally. Let
[n] = { 1,. . . ,n} and let 2 = (q, . . . , zn). Let dist(x) be the set of distributions on some
set X (usually finite). Let PFF be the set of functions mapping (Em)" -+ dis t ((Em)n)
described by probabilistic circuit families { C F (~ , m)} .

The difference between distributions P, Q E d i s t (X)
is IP - QI = lPrp [z] - Prg [.]I. A probabilistic function is a function whose range
contains distributions, namely f : X + dis t (Y) . The composition of probabilistic
functions g and f is given by Prgaf(=l [z] = C, Pr,(=) [y] Prg(,) [z] . An ensemble is a
probabilistic function P : C* x N + dis t (C*) such that Prp(+) [z] = 0 for 1x1 > k'
and some fixed c. Two ensembles P and Q are O(S(k))-indistinguishable (P dk) &) if
(%~)(vk 2 b) (v z) l P (z , k) - Q(z ,k) l < S(k). Definitions of perfect (O(O)), exponen-
t ial (O (d - k) for some d) , stat is t ical (0 (k d) for all d > 0), and computat ional (for all
PPT-tests T and all d > 0, T (P) is O(k-d)-indistinguishable from T(Q)) are standard.
Networks and Protocols. A player is an interactive PPTM having a random tape,
input tape, output tape, and work tape. The 1/0 tapes may encode several (n) different
tapes for communication with several machines. The superstate q, of machine Pi is a
string describing its finite control, current state, and contents of all tape squares read or
written so far. With messages ml . - . m, written on its input tape, Pi induces a transition
(Q ~ , (C ~ , M ~) - - . (C J , J M J)) +- 6(qi,ml...nz,), where (C , M) requests that message IM be
sent on channel C.

A channel is a probabilistic function C : C* -+ d i ~ t (2 ~ ~ ~ ~ ") . For example, a
private channel from i to j satisfies Prc(,,,] [{(Z,j ,m)}] = 1, while a broadcast channel
from i is Prq,) [{ (z , 1, m), . . . , (i, n, m)}] = 1. An oblivious transfer channel from i to
j gives Prq,) [{ (i , j , (O , O) }] = and Prc(,) [{(i , j , (l ,m)}] = i. A network is a set of
channel functions.

Ensembles describing protocol execution. A protocol is a collection of sets of
players CI = { (Pi , . . . , P n) } , , E ~ . For each n (number of players), m (size of inputs), k
(security parameter), 2 E (Em)" (inputs), and 2 E (C')" (auxiliary inputs), a protocol CI
induces a distribution C I (Z G , k) on outputs and final views;3 as z ranges over possible 2.a'
values, this gives an ensemble [a]. The messages sent from players in set A to those in B
during round r are denoted p (A , B , r) . Let R(n, m, I;) bound the number of rounds until
all nonfaulty players halt. Let ji = (p ([n], 1, r), . . . , p([n], ra, r)) denote a set of incoming
message, and denote by $5 a global state of the system. Let : C* ---t C* be an o u t p u t
function; the o u t p u t of Pi is y; = ~ (q ~ (n v m v k)) . The view v: of a player at round
r 2 R(n, m, k) is the list of states and messages it has seen; in the memoryless model ,
an intermediate view contains only the current state, tape contents, and incoming and
outgoing messages. Let Reformat($,Z) = tj4. A round and an execution of a synchronous

Ensembles Induced by Protocol Execution

jIf 2' or a' does not have n components or if mine xi does not have m bits, the distribution gives
probability 1 to the empty string.

Figure I: Algorithmic description of synchronous, distributed pro-
tocol execution. -

rotocol can be expressed as probabilistic functions:

Round(?$) = Deliver(Channel(Local(@p)))
Exec(5.Z) = Reformat(RoundR("*"pk)(Init(Sa'))).

'igure 1 describes protocol execution algorithmically.
kdversaries. An adversary d is an interactive TM with one communication line, on
rhich it makes corruption requests. A Byzantine adversary requests either the view of
I player i or requests to replace outgoing messages from corrupted players. Note that
dversary may change input and random tapes before the protocol starts (i .e . before
nessages are generated). A passive adversary cannot change messages. If the adversary
uperstate is q.4, let T = T (q A) denote the set of players it has corrupted. A t-adversary
atisfies IT (qA) I 5 t ; an ideal t-adversary also satisfies T (q A) C_ [n]. A static adversary
atisfies T (q A) = To for some fixed To. A rushing, dynamic adversary sees p"'p, T, r)
step 2.2) before choosing whom to corrupt and how to corrupt them.

The function Fault provides A with requested information and allows it to compute a
lew request. The function Replace allows A to change outgoing messages pOU'(T, [n], r),
vhich are then passed through channels, changing some of the messages in pdc'(T, [n] , ~)
n step 2.2. Let U A be an auxiliary input for A, let Y A denote its output Y A (q A) , and let
Reformat(rl'.C-qA) = c - 3 - y ~ . An execution of a protocol with adversary is:

RoundA(q'ji.qA) = Deliver(Replace(Fault"(Channel(Locai(@~qA)))))
ExecA(S.a'.aA) = Reformat(RoundAR(","~~)(Init(l.a'.aA))).

An execution thus maps i G a A to y'.v'.y~. The ensemble of outputs induced by a simple
adversary a t tack is the following:

[&,A]' = ~ T A = (%:(91), . . , G(%), Y A (q A))

2.2 Relative Resilience
Interfaces. The principle behind ZI< [l G] states that the information revealed during
a proof is bounded by the fact ux E L” because a simulator can produce an accurate
verifier (adversary) view based only on ‘‘2 E L.” This brilliant use of the notion of
ensemble indistinguishability [2G] covers only half the picture of interaction, though. In
addition to information, there is the influence an adversary has on the outputs of nonfaulty
players. ZK-simulation ignores this side because a faulty verifier doesn’t “influence” the
ha1 output of the prover, which is irrelevant in ZIi proof systems - only the verifier’s
decision is considered. In an interactive protocol, the influence of the adversary is reflected
in the distributions on final outputs of nonfaulty players. By examining the ensemble of
all outputs, we unify the long list of desired properties (correctrless, independence, etc.).

To say that a is as secure - ie. resilient - as p is to say that attacks on a do
no better than attacks on p. An adversary A attacking a gains information and wields
influence on a; its information and influence should be the same as with p. But A may
be incompatible with 3 for many reasons: the network may differ from protocol a, the
communication format may differ, etc. To allow A to attack p , we give it an inter-ace
2. Interface Z accepts corruption requests from A, performs direct attacks on p, obtains
views v! of p, and returns pseudo-views 6: (apparently of a) to A in response to A’s
requests.

The interface should not give A extra power, though; the combined machine Z(A)
acting as an adversary against ,B should no1 exceed the power allowed to adversaries
attacking p. In cases where adversaries are polynomial-time bounded, this means that
the interface itself must be polynomial-time.

Definition 1 A n in te r face is an Interactive TiV Z with two tapes. On its “enuiron-
ment simulation” tape, 1 receives and responds to messages from an adversary; on its
“adversarial” tape, Z sends and receives messages as an adcersary in its own right. A n
interface from a to ,B satisfies Z(A) E ADVp f o r all A E ADV,, where ADV, ,ADVp are the
respective classes of allowed adversaries for a , ,b.

A preliminary definition illustrates the use of an interface to demonstrate that the
information (adversary output) and influence (player outputs) are the same in attacks
against a as in p:
Definition 2 (Weak Rela t ive Resilience) Protocol a is weakly as resilient as pro-
tocol p if there exists a n interface Z f rom a to p such that for all d € ADV,,

faI A]’ = [P, I(A)]’.
Post Protocol Corruption. To support protocol concatenation and other issues in
modularity, we strengthen this preliminary definition somewhat. In particular, an inter-
face Z from Q to @ should be able to do a good job not only during the execution of /3 but
later on, when it may be called upon (as a result of subsequent protocol executions) to
respond to requests for new corruptions. Its eternal job is to return outputs and pseudo-
views seemingly from a. Definition (2), however, says nothing about its ability to do SO

after protocol /3 is complete.

385

A post-protocol corrupting adversary may, after it sees the end of a, generate
a request LLPPC” to enter a post-protocol corruption stage, at which point it receives all
outputs 27 (but not, the views) and then continues to make requests for corruptions in a.
The interface sees neither the PPC request nor the response y’l but it must continue to
answer corruption requests i from d with (final) pseudo-views u r . Z can itself obtain y;
and view from 8, but the pseudo-a-view 6: that i t generates must be accurate enough
that, even knowing all the outputs,‘ the adversary cannot detect a difference between
information from 1 and information from corrupting “the real thing,” protocol a. The
interface must satisfy, as usual, (V d E ADV,)Z(d) E ADVp.

An execution of a protocol with a post-protocol corrupting adversary induces an en-
semble on player and adversary o u t p ~ t s . ~ We denote this ensemble, and the ensemble
restricted to adversary output alone or to player outputs alone, as:

[a,AI = @I/A = (X(q1),...,y,(q,),yA(qA))
[a,dIYA = YA = y,1(cIA)
[a, A]’:.] = ?J = (X ((l l) , . . ., Yn(qn)).

When an interface is involved, we write the induced ensembles respectively as [P,Z(d)],
[P , 1 (4 1 Y A , and [PI Z(-4)1?-’.
Relative Resilience. Wi th interfaces, post-protocol corruption, and the induced ensem-
bles in hand, the notion of relative resilience can be stated concisely:

Definit ion 3 (Relative Resi l ience) Protocol u is as resilient as P , wri t t en a P , if
there ezists an interface 1 from a t o p such that f o r all A E ADV,,

b ,AI = [P,Z(A)I.
The use of the >- symbol is intended. Using Theorem 3 below, it is not hard to show
that defines a partial order. Complexity-theorctic reductions among problems employ
a polynomial-time transducer to map one problem to another, thereby comparing their
difficulty. Relative resilience is a reduction among protocols, employing an interface to
map one protocol to another, thereby comparing their security and reliability.

Privacy and cor rec tness . Relative resilience captures a priori the notions of privacy
and correctness: a is as private as ,B if [a, x [p, Z(A)IYA and it is as correct as p
if [a,d]q”l M [p,Z(A)]ynl. We write these ;ts a?Privp and akmCt/3, respectively.
Computa t iona l arid other issues. Statistical and computational versions of these
definitions are easy modifications using statistical and computational indistinguishabil-
ity. Some qualifications a re necessary in moving from the information-theoretic to the
polynomially-bounded scenario. Statements of theorems presented here include polyno-
mial bounds (eg . on the number of protocols to concatenate) so that they may apply for
each degree of resilience; stronger statements are often possible.

‘Why should A have all outputs? To allow protocol concatenation, we must consider the case that
some (naturally ridiculous) later protocol legilimniely reveals all protocol-computed information, which
includes all y’s - but not all views. Z’s efforts must be accurate even in this worst-case situation.

’Note that the player outputs are the same whether the adversary does post-protocol corruption or
not.

386

2.3 Resilience
A real protocol permits an adversary class for which no player is above corruption. An
ideal protocol contains one or more trusted hosts (players (n + I), (n +2), . . .) who cannot
be corrupted. Given a probabilistic finite function F E PFF, the ideal protocol for
F , ID(F), has two rounds: (1) each player i sends 5; to host (n + 1); (2) host (n + 1)
computes (or samples) F(z1, . . . , zR) and returns the values (one per player).

Definition 4 (Resilience) a is a t-resilient protocol for F 21 Q

adversaries.
ID(F), against t -

3 Unifying All Interactive Computations
To demonstrate the conciseness, clarity, and unity of our approach, we redefine a few
well-known problems using relative resilience.
Zero-knowledge. In the ideal zero-knowledge proof system, denoted ID(L), player
P sends x to trusted host TH, who calculates whether z E L and sends ux E L" to V if
so. The host otherwise sends "?" to indicate a failed proof. The classical notion of ZKPS
(161 is defined in one sentence: A two-party protocol a = (P, V) is a zero-knowledge
proof system for L iff i t is as resilient as I D (L) , against static 1-adversaries.

For clarity, let us examine the relation between the two approaches to defining ZK. If
the 1 adversary corrupts neither P nor V , then resilience ensures that V accepts the correct
statement ux E L" from P and checked by the trusted host; completeness is satisfied. If
the 1-adversary corrupts P , resilience ensures that a nonfaulty V never accepts a false
statement ux E L"; soundness is satisfied. If the 1-adversary corrupts V , resilience ensures
that the adversary gains no more information than Z corrupting V in the ideal case, where
the host ensures that only the statement "1: E L" is transmitted.

Notice that a corrupt P does have influence over the output of V : it can cause V not
to believe a proof or it can convince V of a true statement, but its influence is bounded
by that permitted in the ideal case. Relative resilience maps the adversary's limitations
in the ideal case to the limitations i t should have in the real case, without having to
enumerate all desired properties.
Secret sharing. The ideal vacuous protocol, ID(O), returns no result. A t- threshold
scheme is a pair of protocols (SHA, REC) computing probabilistic functions (sha, rec)
such that

1. rec is t-robust (Le . , insensitive to 5 t changes in inputs);
2. s h a is t-private (Le., ID(sha) 2 ID(0));
3. rec o sha(z) = x.

Other examples. Byzantine Agreement, Oblivious Transfer, Coin Flipping, Instance-
Hiding Schemes, and a host of interactive computations have simple descriptions using
relative resilience. These are left to the reader.

307

Other recent definitions: t he i r disadvantages; a unified theory. Several authors
[13, 3, 211 have considercd thc idea of a fault-oracle that performs a single function com-
putation and leaks a subset of the inputs. Extending the ZK-approach, they require a
simulator with access to a fault-oracle to generate an adversarial view based on seeing
and changing a subset of inputs and receiving a single computation of F. Rephrased in
the language of relative resilience, a fault-oracle represents a trusted host, and a simulator
provides a fixed comparison to the "ideal" protocol. Oracles lack the flexibility of allow-
ing comparisons among various protocols (and exclude those not designed to "compute a
function") and do not support an obvious modular framework. For example, it is not clear
how the concatenation of two secure protocols may be proven secure without altering the
definitions, since the security of each is proven with respect to a separate oracle call, while
the simulator for the concatenated protocol may make only one oracle call. The notion
of transitivity of security is not expressible in terms of fault-oracles.

The legal-version approach says that a protocol is "legal-robust" if every execution
with an adversary corresponds to an execution in which all players behave, except that the
inputs of some subset may be different [5 , 141. This approach is again a fixed comparison
to an essentially ideal situation, lacking flexibility and modularity. In the language of
relative resilience: define the ideal version ID(cu) of a protocol a to be the ideal protocol
in which the trusted host (1) receives inputs and random tapes from each player and (2)
i n t e n a l l y runs cr (without corruption), returning the outputs (not the internal views) to
the players. Then, a protocol a is legal-robust if the fixed comparison a I D (a) holds.

4 Folk Theorems and Modular Proof Techniques
Many intuitively justified approaches become provable using relative resilience. Resilience
brings to light several pitfalls overlooked by imprecisely stated folk theorems. The con-
tribution of this section is a formal statement of provable theorems and the necessary
conditions under which they hold. We sketch the proofs; full versions require a little more
space than here permitted.

Pro-
tocol concatenation is defined naturally. The concatenation of f(n, m, k) protocols is

The mathematical distinction between uniform and pointwise convergence of functions
has a probabilistic counterpart: two families {Pi} and {Qi} of ensembles are uniformly
O(S;(z, k))-indistinguishable if (3ko)(Vz)(Vk 2 b)(Vz) lP, (z , k) - Q;(z, k)l < 6i(z, k).
The term uniform does nut refer to Turing machine computability. We say that protocol
family {a;} is uniformly as t-resilient as family { p ; } if the ensemble families { [ai, A]}
and {[pi, Z(d)]} are uniformly indistinguishable.

Uniform convergence is necessary to the following theorems; counterexamples are 0th-
erwise easy to find (see below and [2]), showing that folk theorems cannot be applied
without care. Luckily for many presumably secure applications, any two finite families
of ensembles are uniformly indistinguishable if each pair of corresponding ensembles are
indistinguishable.

The composition of f (~ , I ;) ensembles is PJ(.z, k) = P,(z,.t) o .. . o Pl (z , k).

af(5.a',k) =crf(n,m,k)O.'-dQl(~'~,k).

388

Lemma 1 (Composing poly-many ensembles) If { Pt } is uniformly indistinguishable
Jrom {Q;} and if f(2, k) is polynomially Bounded, then P f

Proof. We sketch a proof for perfect and statistical indistinguishability appearing in
[2,4]; the proof for computational indistinguishability is direct and follows the same lines.
Unlike probability-walk proofs in other settings, we must explicitly consider the conver-
gence rates -serendipity does not allow us to omit them. Assume by way of contradiction
that {Pi} is uniformly &(z, I;)-indistinguishable from {Qi} and f is poly-bounded, but
that P f is not 6(z , k)-indistinguishable from Q f , where 6(z , k) = C { y) b,(z, k). Let h
be the uniform convergence parameter. Define RI = 0.. a o PI o Ql-* o - ' - o Q1. Then
for some k 2

Q f .

and for some z ,

f (2 . k)

C bi(z,k) < C I P j (I , k) o . * . ~ P i (z , k) - Q f (, i) o . * . o Q ~ (z , k) I

C I R 3 - R 1 + Ri - Rz + . . . + Rf(z,k)- i - R l (z , k) I
i=l I

5
2

f (2.k)

5 C C lRi-l(ztk)-R(z,k)I.
L i= l

Reversing the order of summation, it follows that for some i, S i (z , k) <
Cz IR.-i(z,k) - R(z , k)l. From here it is straightforward to show that this demonstrates
Pi is not 6i(Z, k)-indistinguishable from Qi for this k 2 b, a contradiction. 0

A counterexample is easy to describe for nonuniform convergence [2]; for example,
define:

Prp,(L,k) [0] = 1 if k < 22
Prp,(,,k) [I] = 1 if k 2 2i
PrQ.(*,k) [I] = 1 always.

Clearly, for dl i, P ; = ' (~ - ~) Q ~ since (v;, z) (\ ~ k 2 2 i) ~ ; (z , L-) = Q ~ (Z ~ k). Letting f (z , E ;) =
k, we see (Vz, k)Prp,(,+) [O] = 1, because I " (z , k) = Pk(Pk-*(.. -) 1 k) and k < 2L. On the
other hand, (Vz, k)PrQ,(z,k) [O] = 0. Hence (Vz, k) I P f (z , k) - Q f (z , k)l = 2 # U (k 2 - k) , a
contradiction. Uniformity of convergence is also necessary when comparing polynomially-
many protocols:

Theorem 2 (Concatena t ing poly-many protocols) I j { a;} is uniformly as t-resil ient
US { p i } a n d i f f (n ,m, k) is polynomial ly bounded, t h e n crf

Proof. We sketch a few salient points, following our proof for statistical resilience in [2].
The main idea is to construct an interface Z from a/ to pf, using interfaces Z; between
each pair oi and pi. Each interface is taken without loss of generality6 to be canonical, ie.

6A simple argument demonstrates that no generality is lost for information-theoretic settings; a qual-

,B'.

ification must be made when defining computational resilience.

389

the set of corruption requests by Zi against p, is always a subset of those requested by A;.
Using Lemma 1, the two enseIiiLles [a’, Z(d)] and [Pf, Z(d)] are shown indistinguishable.
0

T h e o r e m 3 (Transit ivity of 2) (Y 2 p arid ,O 7 implies (Y 2 y. Polynornially many
uppfications work as well: I f { a ; + l } is uniformly as t-resilient as { [~ i } , ~ and i f f (n , n , k)
is polynominlly bounded, then af 2 (YO.

Proof.
subinterfaces
Theorem 2. 0

See [2, 41; the interface Z from cd to a0 internally runs f(n, m, k) nested
We consider canonical interfaces as in the proof of o . . . o o

4.1 The Share-Compute-Reveal Paradigm
Define hide(H) = sha o H o rec, the probabilistic function that reconstructs a secretly-
shared value, computes H , and shares it again. The share-compute-reveal paradigm [18,
19, 8, 111 for multiparty protocols is to express F as F’ = o{F, and compute rec o
[o{hide(F;)] o sha. That is, inputs are secretly shared; intermediate values are secretly
computed but not revealed; then the final output is reconstructed. The formal and fully
provable statement of this methodology is as follows:

Theorem 4 (“Completeness” paradigm) Let (SHA, REC) be u t-threshold scheme,
and let F = Ff = o{Fi for some polynomidy bou,nded f (n , m, k). If {ai} is uniformly as

t-resifient as {ID(hide(F,))}, then

REC o [o{(Y;] o SlIA ID(F).

Proof.
and privacy of (rec ,sha) but is omitted (cf. [2, 41, however). 0

Uniformity is essential. The proof uses Theorems 2 and 3 and the robustness

5 Summary
A correct, concise, and useful formulation of security and fault-tolerance is necessary to a
proper foundation of the theory and practice of cryptography. We are happy to provide
proofs of our theorems upon request and are even happier to discuss them openly and to
develop our methodology further.

We have emphasized the important point that protocol security must be treated in
a unificd manner: security and reliability (privacy and correctness) are two sides of the
same coin. Treating a variety of propcrties separately leads to confusion.

’Roughly speaking, (Vi)ai+l 2 ai - with uniform convergence.

390

To say tha t a protocol is secure is to say it achieves t h e results of a n ideal protocol. Our
formal definition of relative resilience s tdcs prcciscly what i l means for one protocol to
achieve t h e results of another, avoiding the inflexibility inherent in fault-oracle approaches.
Relative resilience provides a natural reductzo~a among protocols t h a t supports concise and
modular proofs, inspiring newfound confidence in theoretical cryptography and resulting
in clearer a n d more efficient design of provably secure protocols.

References

[I] M. Abadi, J. Feigenbaum, J. Kilian. “On Hiding Information from an Oracle.”
J . Comput. System Sci. 39 (1%9), 21-50.

[a] D. Beaver. “Secure Multiparty Protocols and Zero Knowledge Proof Systems Tol-
erating a Faulty Minority.” TO appear, J. Cryptology. An earlier version appeared
as “Secure Multiparty Protocols Tolerating Half Faulty Processors.” Proceedings of
Crypto 1999, ACM, 1989.

[3] D. Beaver. “Formal Definitions for Secure Distributed Protocols.” Proceedings of the
DIMACS Workshop on Distributed Compuling and Cryptography, Princeton, NJ ,
October, 19S9, J. Feigenbaum, M. Merritt (eds.).

(4) D. Beaver. Security, Fault Tolerance, and Communication Complexity in Lktributed
Systems. PliD Thesis, Harvard University, Cambridge, 1990.

[5] D. Beaver, S. Goldwasser. “Multiparty Computation with Faulty Majority.” Pro-
ceedings of the 30”‘ FOG‘S, IEEE, 1359, 463-473.

[G] D. Beaver, S. Haber. “Cryptographic Protocols Provably Secure .4gahst Dynamic
Adversaries.“ Submitted to FOCS 91.

[7] D. Beaver, S. MiCali, P. Rogaway. “The Round Complexity of Secure Protocols.”
Proceedings of the 2ZSL STOC, ACM, 1990, 503-513.

[8] M. Ben-Or. S. Goldwasser, A. Wigderson. “Completeness Theorems for Non-
Cryptographic Faul t- Toleran t Distributed com p u t a t ion.” Proceedings of the 20“
STOC, ACM, 1988, 1-10.

[9] R. Blakley. “Security Proofs for Information Protection Systems.” Proceedings of the
1980 Symposium on Security and Privacy, IEEE Computer Society Press, New York,
1981. 79-88.

[lo1 G. Brassard. D. Chaurn, C. Crepeau. “Minimum Disclosure Proofs of Knowledge.”
J . Cornput. System Sci. 37 (1988), 156-189.

[ll] D. Chaurn, C. Crepeau, I. Damgjrd. “Multiparty Unconditionally Secure Protocols.”
Proceedings of the 20fh STOC, ACM, 1988, 11-19.

1121 Z. Gdi l , S. IIaber, M. Yung. “Cryptographic Computation: Secure Fault-Tolermt
Protocols and the Public-Iiey Model.” Proceedings of Crypt0 i987, Springer-Verk
19S8, 135-155.

391

{13] Z. Gaiil, S. Haber, and M. Yung. “ l l i~ l imom-I~~~owledge Interactive Proofs for Deci-
sion Problems.” SIAM J . Compul. 18:4 (19Y9), 711-739.

[14] S. Goldwasser, L. Levin. “Fair Computation of General Functions in Presence of
Immoral Majority.” Proceedings of Cryplplo 1990.

1151 S. Goldwasser, S. Micaii. “Probabilistic Encryption.” J . Cornput. System Sc:. 28
(1984), 270-209.

[lG] S. Goldwasser, S. Micdi, C. Rackoff. “The Knowledge Complexity of Interactive
Proof Systems.” SIAM J. Cornput. 18:l (1989), 186-208.

[17] S. Goldwasser, M. Sipser. “Private Coins vs. Public Coins in Interactive Proof Sys-
tems.” Proceedings or the I S f h STOC, ACM, 1986, 59-63.

[lS] 0. Goldreich, S. Micali, A. Wigderson. “Proofs that Yield Nothing but Their Valid-
ity and a Methodology of Cryptographic I’rotocoi Design.” Proceedings of the 27th
FOCS, IEEE, 1986. 17+187.

[I91 0. Goldreich, S. Micali, A. Wigderson. “How to Play Any Mental Game, or A
Completeness Theorcin for Protocols with Honest Majority.” Proceedings of the 19’”
STOC, ACM, 1987, 218-229.

[ZO] S. Haber. Multi-Party Cryptographic Computation: Techniques and Applications,
PhD Thesis, Columbia University, 1988.

121) S. Micali, P. Rogaway. “The Notion of Secure Computation.’’ Unpublished
Manuscript, 1990.

(221 S. Micali, P. Rogaway. “Secnre Computation.” These Proceedings (Crypt0 f991),
page 9.8.

[23] Y . Oren. “On the Cunning Power of Cheating Verifiers: Some Observations about
Zero Ihowledge Proofs.” Proceedings of the 19’“ STOC, ACM, 1987, 462-471.

[24] T. Rabin, M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority.” Proceedings of the 213t STOC, ACM, 1989, 73-85.

[25] A. Shamir. “How to Share a Secret.” Communications of the ACM, 22 (1979), 612-
613.

[26] A. Yao, “Theory and Applications of Trapdoor Functions.” Proceedings of the
FOCS, IEEE, 1982, SO-91.

[27] A. Y ~ o . “HOW to Generate and Exchange Secrets.” Proceedings of the 27th FOCS,
IEEE, 1986, 162-167.

	Introduction
	Defining Security
	Ensembles Induced by Protocol Execution
	Relative Resilience
	Resilience

	Unifying All Interactive Computations
	Folk Theorems and Modular Proof Techniques
	The Share-Compute-Reveal Paradigm

	Summary
	References

