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Abstract 

At the 1990 EuroCrypt Conference, Niemi proposed a new public- 
key cryptosystem based on modular knapsacks. Y.M. Chee in Sin- 
gapore, A. Joux and J. Stern in Paris independently found that this 
cryptosystem is insecure. Our two cryptanalytic methods are slightly 
different, but they are both based on the LLL algorithm. This is one 
more example of a cryptosystem that  can be broken using this pow- 
erful algorithm. 

Introduction 

Let p be a pr ime and denote by Z / p Z  the field of integers modulo p .  Unless 
otherwise s ta ted ,  all vectors shall be assumed to be column vectors. The 
MODULAR IOJAPSACK problem is defined as follows: 
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MODULAR KNAPSACKS 
INSTANCE: A primep, a matrix E E (Z/pZ)""" and a vector c E (Z/PZ)~.  
QUESTION: Is there a vector 21 E (0, I}" such that Ea: = c over Z / p Z  ? 
The MODULAR KNAPSACK problem is a decision problem that is NP- 
complete in the strong sense, even under the restriction m = 2n [NieSl]. 
The related NP-hard algorithmic problem is considered here: Find a vector 
z E {0,1}" that satisfies Ea: = c over Z / p Z  when one exists. 

At the 1990 EuroCrypt Conference, Niemi proposed a new public-key 
cryptosystem based on this problem [NieSl]. Y.M. Chee in Singapore, A. 
Joux and J. Stern in Paris independently discovered that this cryptosystem 
is insecure. The purpose of this paper is to present our cryptanalysis on 
Niemi's cryptosystem. Our attacks are based on the LLL algorithm (LLL821. 
This is one more example of a cryptosystem that can be broken using this 
powerful algorithm (see [AdlS3, Ste87, ST911). 

2 The Proposed Cryptosystem 

We briefly review Niemi's public-key cryptosystem in this section. The 
basic idea is a notion of absolute values in Z / p Z .  The absohte value 1st 
of g E Z / p Z  is the minimum of the least non-negative residues modulo 
p of the two integers g and - g .  We call g k-small if 1st 5 k and g k- 
large if 191 2 r p / 2 1  - k. We typically speak of small and large numbers, 
thus leaving k unfixed. The construction of the cryptosystem .is as follows. 
Fix a prime p ,  and positive integers n and k << p. We randomly select 
matrices C, D ,  S E (Z /pZ)"""  with k-small entries, a non-singular matrix 
R E ( Z / p Z ) " " " ,  and a diagonal matrix A E ( Z / p Z ) n x n  with k-large entries. 
The public information is p and the n x 2n matrix E = ( A B ) ?  where 

A = R-'(A - SC), (1) 

B = -R-'SD. (2) 

The private key is R. The matrices C, D, S, and A should also be kept secret 
but they are not needed after the initial construction. The message space is 
M = {a:  E (0, 1)'")' and the ciphertext space is C = {c E ( Z / P Z ) ~ ) .  The 
encryption function is I : M --t C defined by &(x) = EX, arithmetic being 
done modulo p .  
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To decrypt a ciphertext c, we compute 1 = Rc. From (1) and (2) we can 
show that 

Since the entries of C, D, and S are k-small and 5 E (0, 1}2n, the entries of 
S ( c D ) x should be small as well, Hence, A;, ,T~ = l; + ai for some small 
a;, 1 5 i 5 n. It follows that our decryption rule is: 

( A  O ) x = I + S ( C  D ) 5 .  

0, if li is small; 
1, if I; is large; 2; = 

for 1 5 i 5 n. The bits xi, n + 1 5 i 5 272 can be obtained by solving the 
matrix equation 

where z(l) = ( 2 1 , .  . . , x , ) ~  and z(2) = (x,+~, . . . , z ~ , ) ~ .  This can easily be 
done since we have n equations in n unknowns. 

Bz12) = c - Ax('), 

The decryption rule for T ; ,  1 5 i 5 n, does not always yield the cor- 
rect plain bits since its correctness depends on the size of the entries of 
S ( C D ) T .  Niemi restricts himself to the case S = I ,  where I denotes 
the identity matrix, and claims that in this case, the sufficient condition to 
ensure correct decryption is p > 4kn.  Niemi also claims that k = 1 is a 
good choice. 

In the sequel, we show how the plaintext can be recovered from the 
ciphertext without the knowledge of the secret key R. 

3 The Cryptanalytic Principle 

An integer lattice L of dimension m is an additive subgroup of 2" that 
contains m linearlv independent vectors over R" (hence rn 5 n) .  An ordered 
basis (q, . . . , - 1  :.) of a lattice L, of dimension rn is a list of elements of 1: 
such that ,C = 2211 @ Z2r2 @ .  @ Zv,. We represent an ordered basis of an 
m-dimensional lattice L by the n x m basis matrix 

whose columns are the basis vectors. A lattice with basis matrix V is simply 
denoted by ,C(V). 
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The main idea behind the attacks we are going to describe is the follow- 
ing. It is well-known that the LLL algorithm [LLL82] is a polynomial time 
algorithm designed to find a short (non-zero) vector in an integer lattice. 
More precisely, if the dimension of the lattice is n, then the LLL algorithm 
can find a vector in the lattice whose length is no more than 2("-')/' times 
the length of the shortest vector in the lattice. In particular, if the length 
of the shortest vector in the lattice is %(n-1)/2 times smaller than that of 
the other vectors, then the LLL aIgorithin will find the shortest vector. In 
practice, the LLL aigorithm is much more effective and finds vectors whose 
lengths are much smaller than that gauranteed by the theoretical bound; 
and other algorithms exist, that are even more powerful [ScESl]. In our 
attacks, we transform the problem of finding the plaintext to that of finding 
short vectors in certain lattices. Then we show that the short vector is much 
shorter than the average short vectors. This gives heuristical evidence that 
the short vector can be found in polynomial time. 

4 The Attack of Y.M. Chee 

An observer of Niemi's cryptosystem who sees a ciphertext c, and has knowl- 
edge of public information p and E ,  can recover the corresponding plaintext 
by solving for a vector 5 E {0,1}*" in the matrix equation Ex = c over 
Z / p Z .  The equivalent problem over 2 is to find z E (0, 1)'" such that 

for some y E 2". 

Lemma 4.1 Let L be the lattice  wit?^ basis matrix V = 

M u  = Xc for some X E Z i f  and only if 

Proof: The lattice L contains a vector (o"> if and only if there exist 
integer X and integral vector 'v such that 

(3) 

Then 

some 

2, (;) = (L :J (1) = ( I \ r l v - x c )  - M u = X c -  
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It is easy to see that Lemma 4.1 implies that solving for x E (0 , l )"  
satisfying ( 3 )  for some y E Z" is equivalent to finding a vector of the form 

(i),  first 2n components of u being either 0 or 
. ,  

basis matrix 

1, in the lattice L with 

such that the first 2n components of u constitutes a (0, 1)-vector z satisfying 

Ex = c. 

a reasonably short vector in C. Given an ordered basis of a lattice, the 
LLL algorithm computes another ordered basis, containing relatively short 
vectors, for the lattice. This new ordered basis is called a reduced basis. Our 

hope is that by running the LLL algorithm on the lattice L, the vector 

we are looking for appears in the reduced basis. Unfortunately, because the 
last n components of u may be large, such a vector is often too long to 
appear in any reduced bases. In order to remedy this situation, we adopt 
the following strategy. 

(3 is 

(3  

Since the first 2n components of u is either 0 or 1, 

Let 
Ei,j = (0 3 * - . ,  0, -2J-1 P, 0, * * ' 7 0 l T ,  - 

i-1 

for 1 5 i 5 n. Then x E (0, 
x satisfies 

satisfies (3) for some y E 2" if and only if 

( E  tl,l ... cl,jl E z , ~  * * 62,jz * * *  en,] E n , j ,  ) (f ) = c, (4) 

for Some y E Z ~ I  +JZ +...+ ~n , where ji > o for aII I 5 i 5 n. Let s; = E& Ei,j 
denote the sum of all entries in row i of E .  It is easy to see that if we 
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choose j ;  = [log,(s;/p)l, 1 5 i 5 n, then 1 satisfies (4) for some y E 
(0, ~ 1 } ~ + j z + - . + j n .  

We now consider a new lattice with the (3n+Cr=’=, j , )  x (2n+l+C:=,j;) 

where E’ = ( q , ~  . . . E l , j l  €2,1 . . . €2,j, . * .  €n,l * * * &,jn ). It fol- 

lows from previous discussions that we are looking for a vector (zt;) f JW) 
such that its first n components consitutes a {O,l}-vector 5 satisfying 
E z  = c. There exists such a vector whose components are either 0, or 
51. This short vector very often appears in the reduced basis of L(G).  

5 The Attack of A. Joux and J.  Stern 

Given a ciphertext c and public information p and E ,  we choose a large 
scaling factor X and define: 

H =  
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L e m m a  5.1 If x E 2'" satisfies (3) !or some y E Z", then 

vector in the  lattice ,C(N) .  

Proof The lattice L ( N )  contains the vector 

x c  XE X p l  XC - XEX + Xp?/ 

By the hypothesis of the lemma, c - Ex f p y  = 0. Hence (4) is a vector 

in C ( H ) .  I 

As a consequence of Lemma 5.1, we see that if x E {0,1}2" is the 

plaintext corresponding to a ciphertext c, then ~ ( x )  = ( !x) is a short 

vector in the lattice L ( H ) .  In fact, 

Let us now discuss the other short vectors in L ( H ) .  Since X is large, the 
first TZ components of the first vector of the reduced basis for L ( H )  will 
almost surely all be zero. A random vector of this form has average length 
d(2n  + l ) ( p 2  - 1)/12. This shows that with p = 4kn, v(z)  is approximately 
2kn/& times shorter than an average vector with first n components dl 
zero. This provides heuristical evidence that the vector v(x) appears in 
the reduced basis for C ( H )  with high probability. It is also interesting to 
remark that there are other vectors which may provide a decryption of c, 
since they increase the probability of finding x. Let us explain informally 
what these vectors arc, and why they are useful. First, we can say that 
summing up a few small numbers gives a small number (with a different 
constant k of course) and that summing up a few large numbers can give 
either a small number or a large number, depending on the parity of the 
number of numbers we sum up. Thus, if we obtain in the reduced basis a 

short vector of the form , where p is a small odd number, we can 
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write E(,ua: - z‘) = 0 and thus, if px - 2’ is small enough, we can infer that 
the first n components of this vector are ail even, and therefore that the 
first n components of z and x’ have the same parity. 

6 Conclusion 

The previous sections gave heuristical evidence that Niemi’s proposed public- 
key cryptosystem is not secure. We would.li1~e to remark that it gets less 
and less secure. The reason for this is that a recent improvement of attacks 
against low-density knapsacks [CLJSl] can be used to improve the attacks 
described here. The idea is to replace the identity part of the basis matrices 
as described in [CLJSl]. We plan to carry out systematic experiments with 
this improved version. 
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