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Abstract 

We consider the problem of multiparty secret key exchange. A ‘team” of players 
Pi through Pk wishes to determine an n-bit secret key in the presence of a compu- 
tationally unlimited eavesdropper, Eve. The team players are dealt hands of cards 
of prespecified sizes from a deck of d distinct cards; any remaining cards are dealt 
to Eve. We explore how the team can use the information contained in their hands 
of cards to determine an n-bit key that is secret from Eve, that is, an n bit string 
which each team player knows exactly but for which Eve’s probability of guessing 
the key correctly is 1/2” both before and after she hears the communication be- 
tween the team players. We describe randomized protocols for secret key exchange 
that work for certain classes of deals, and we present some conditions on the deal 
for such a protocol to exist. 

1 Introduction 

An important problem of cryptography is the problem of multiparty secret key exchange. 
This can be viewed as a multiparty protocol between a group of players. At some point, 
a subset of k 2 2 players PI through Pk form a learn. The rest of the players are 
considered eavesdroppers. The team players carry out randomized algorithms. Each 
player’s random choices are private to that player. All communication is by public 
broadcast and is overheard by the eavesdroppers. The  following scenario demonstrates 
a situation in which the need for secret key exchange might arise. 

A certain government agency handles security of information on a ‘‘community of 
interest” basis. For each project within the agency, a group of people are chosen to 
work on the project. We call this group a team. Teams form and dissolve as various 
v o i P c + s  are started and completed. All communication regarding the project is intended 
to be shared with those on the team, and to be kept secret from those outside the team. 
However, the security of the various communication channels-the telephone, interoffice 
mail, electronic mail, and face-teface communication-is not guaranteed. Hence, each 
team that forms would like to exchange a secret key, which it can then use as a part of 
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some cryptographic protocol to securely send all further communication regarding the 
project. Another place where this problem may arise is in a distributed system, for 
example a computer network linking a corporation's headquarters and branch offices. 

Formally, the team wishes to determine a random n-bit sequence S satisfying agree- 
ment, secrecy, and uniformity. Agreement is met if each team player knows s. Secrecy is 
met if the eavesdroppers' probability of guessing S correctly is the same before and after 
hearing the communication between the team players. Uniformity requires that S has 
equal probability of being any one of the 2" possible n-bit sequences. Such a secret key 
is said to be shared by the team. Each team player has an output tape that is physically 
protected from the other players. An n-bit secret key erchange protocol is one in which 
each team player outputs the same n-bit sequence satisfying the secrecy and uniformity 
conditions. The output can then be used for a variety of cryptographic purposes, for 
example, as the key in private key cryptosystems (cf. [DH]). 

We allow the eavesdroppers to be computationally unlimited, so standard crypto- 
graphic techniques based on computational difficulty cannot be used. In fact, a secret 
key exchange protocol is not possible without any further assumptions, for an eavesdrop- 
per can simulate any team player under all possible random choices and thereby learn 
S. Hence, we give the players secret initial information in the form of correlated random 
variables. While the value of each player's random variable is unknown to the other 
players, the distribution from which the  random variables are chosen is publicly known. 
For any team that forms, the remaining players are assumed to collaborate against the 
team, possibly communicating among themselves via private channels. Thus we treat 
them as a single eavesdropper, Eve, who possesses the initial information of all of the 
non-team players. Note that because initial information is given to all players before 
the team forms, it is not possible to deny Eve all initial information. We would like to 
distribute the initial information in such a way that any team that forms can obtain a 
secret key. 

Our framework is very general and admits the trivial solution in which each player is 
given a prion' a secret key for each team to which the player might eventually belong. 
Any team that forms can use the corresponding preassigned secret key, but since there 
is an exponential number of possible teams, the amount of initial information is quite 
high. Also, the structure of the initial random information is rather complicated. 

We desire instead correlated random variables that have a simple structure and a small 
amount of initial information. A familiar example of such correlated random variables 
is provided by ordinary card games in which players are dealt hands from a randomly 
shuffled deck of cards. By looking at her own cards, a player gains some information 
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about the other players’ hands. Namely, she learns a set of cards that appear in no 
other player’s hand. Peter Winkler developed bidding conventions for the game of bridge 
whereby one player could send her partner secret information about her hand that was 
totally unrelated to the actual bid and completely undecipherable to the opponents, even 
though the protocol was known to them [FI, Wisla,  Wi8lb, Wigs]. Fischer, Paterson and 
Rackoff [FPR] carried this idea further, using deals of cards for secret bit transmission 
between two players. We consider secret key exchange protocols based on such card 
games in the remainder of this paper. 

The problem of secret key exchange has been considered by others in the context of 
public key cryptography (cf. [DH, Me]). Impagliazzo and Rudich provide evidence that 
most of the standard techniques in cryptography cannot be used to construct a secret 
key exchange protocol from a one-way permutation [IR]. Our results are quite different 
in character from these, for we place no computational limitations on our participants. 
Thus, oneway permutations do not exist in our model, and one must rely on other 
assumptions, such as the existence of prior secret initial information as in this paper, 
in order to make the problem solvable. Furthermore, techniques such as those used by 
Maurer [Ma] will not work here since we require that the key obtained is comple te ly  secret 
from Eve and is known exactly to all the team players, as prescribed by the secrecy and 
agreement conditions. 

In the remainder of the paper, we consider the situation in which a team has just 
formed, and investigate whether secret key exchange is possible. We use the following 
terminology. A deck D is a finite set, whose elements we call cards; a hand is subset of D. 
Let d be the size of the deck. The cards in the deck are known to all the players, as is the 
size of each player’s hand, but the cards in each player’s hand are private to  that player. 
In an ( h l ,  hz, . . . , h k ;  e)-deal,  each team player Pi is given a hand Hi such that Hi C_ D 
and lHil = hi.  Eve is dealt a hand E such that E D and e = IEI = d - Ci=l hi. 
The deal 6 = ( H I ,  H2,. . . , H k ;  E )  is legal if H I ,  H 2 , .  . . , Hk, E partition D. We call the 
description of the sizes of the hands, ,$ = ( h l ,  hz, . . . , h k ;  e ) ,  the signature’ of the deal, 
and call a deal having signature ,$ a <-deal.  If all k team players have the same hand size 
h in a signature, we write (hk; e ) .  

k 

An n-bit secret key exchange protocol that always succeeds in obtaining an n-bit 
secret key for all legal (-deals is said to  work for E .  We also say such a protocol per forms  
n-bit secret k e y  ezchange j c - - e .  

In Section 2, we describe a simple 1-bit secret key exchange protocol that  works for 
all deals in which the team players’ hands are sufficiently large relative to the size of 

2This term is borrowed from algebra, and is not intended to have MY connectionto digital signatures. 
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the team and the size of Eve’s hand. In Section 3, we present a protocol that improves 
on the first protocol in two ways. First, it establishes an n-bit secret key for arbitrary 
n. Second, it requires only that each team player hold an arbitrarily small fraction of 
the cards (assuming that  the deck is sufficiently large). In Section 4, we present some 
necessary conditions on the deal for a secret key exchange protocol to exist. In Section 5 ,  
we show that the protocol presented in Section 2 is optimal for a natural class of related 
protocols. 

2 A One-Bit Secret Key Exchange Protocol 

We first consider a simple 1-bit secret key exchange protocol. We use the notion of a k e y  
set defined in [FPR]. A key set K consists of two cards, one held by a team player P, 
the other held by a d i f f e r e d  team player Q. A key set K = ( 2 ,  y} is opaque if, given the 
information available to Eve, i t  is equally likely that P holds z and Q holds y or that P 
holds y and Q holds 2. 

Once p and Q determine an opaque key set K that they hold, they can use it to 
obtain a bit r that is secret t o  Eve. Namely, they agree that r = 0 if P holds z and r = 1 
if P holds y, or vice versa. Thus K acts as a 1 - b i f  secret channel; that is, it allows p 
and Q to communicate a single bit secretly. 

The structure of our protocol is as follows. We think of the team players as nodes of 
a graph. We connect two team players by an edge if the team players have a 1-bit secret 
channel between them. The goal of the protocol is to connect the team players. We obtain 
1-bit secret channels by finding opaque key sets between pairs of team players until the 
team is connected. Then a designated player, say PI ,  chooses a bit s randomly. Using 
flooding on the 1-bit secret channels, s is propagated to all the team players. Clearly 
s satisfies agreement and uniformity. Secrecy is satisfied because each 1-bit channel 
preserves secrecy. Hence, s is a 1-bit secret key. 

We define the notion of a feasible player. Let each team player P; hold h; cards and 
let Eve hold e cards. Then Pi is feasible if h; > 1, or if hi = 1, e = 0, and hj > 1 for all 
i # i .  In the protocol that  follows, we say a card z is discarded from the deck if all team 
players agree to  play as if z is no longer part of the deck. Similarly, we say a team player 
P drops  out of the protocol if the team players agree to play as if P were no longer part 
of the team. The protocol follows. 

1. Let P be the feasible player holding the smallest hand. (Ties are broken in favor of 
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the lower-numbered player.) If no player is feasible, then P is the lowest-numbered 
player holding a non-empty hand, if any. 

2. P chooses a random card z contained in her hand and a random card y not in her 
hand and proposes K = {z, y} as a key set by asking, “Does any team player hold 
a card in K T 3  

3. If another team player Q holds y, she knows that K is a key set, so she accepts 
K by announcing that she holds a card in K .  The cards z and y are discarded. 
Whichever player of P and Q holds fewer cards exposes the remaining cards in her 
hand, which are discarded, and drops out of the protocol. The remaining team 
players go back to step 1 with the “new” deal. 

4. If none of the team players holds y, then K is rejected.  In this case, z and Y are 
discarded, and the players go back to step 1. 

The execution of, the protocol continues in this manner until either there are not 
enough cards left to complete steps 1 and 2, or until only one team player is left. In 
the first case, the protocol fails. In the second case, all the team players are connected 
by opaque key sets. To see this, note that every key set K = {z,y) accepted in step 3 
is opaque because it is equally likely to be proposed by P in the symmetric deal where 
everything is the same except that P holds y and Q holds z. Hence the team can obtain 
a 1-bit secret key by flooding as previously described. We call this protocol the SFP key 
set protocol (for smallest feasible player). An inductive argument shows the following. 

Theorem 2.1 Lei ( = ( h l ,  ..., h k ;  e ) .  Let hi 2 1 f o r  1 5 i 5 k, and m u h i  + minhi 1 
k + e .  Then  the SFP key  se t  protocol performs 1-bit secret key  exchange for (. 

In Section 5 we consider protocols with different rules for choosing P in step 1. We 
show there that the SFP  key set protocol is optimal among all such key set protocols. 

3 An n-Bit Secret Key Exchange Protocol 

The SFP key set protocol has  two limitations: it requires that the team hold more than 
half the cards in the deck, and i t  only provides a 1-bit secret key. Moreover, it is not 
obvious how to modify the protocol to overcome these limitations. For example, the 

be taken that the communication of {z, YJ} does not reveal which card came from P’s hand. 
’In an abstract setting, {z, y) is clearly the same a4 {y, z). In an actual implementation, care must 
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protocol cannot be repeated to obtain additional key bits since players drop out and 
expose their remaining cards during execution. 

The first limitation is overcome in [FPR] for a team of two players. A 1-bit secret 
key exchange protocol is presented there that works when each team player holds any 
fixed fraction of the cards and the deck is sufficiently large. An analysis of that protocol 
establishes the following: 

Theorem 3.1 (Fischer, Paterson, Rackoff) There is a 1-bit secret key exchange protocol 
P such that f o r  a l l 0  < 5 1/2 and d 2 ($) 2l/P, P works for  (LPdJ , [PdJ ; d-2  [PdJ) .  

We show how to use such a protocol to perform n-bit secret key exchange for teams 
of size I: and sufficiently large decks. Our construction is a general reduction of the 
n-bit, k-player problem for signature (* = (h ' ;  d - t h )  to the 1-bit, 2-player problem for 
signature [ = (Lh/PnJ , Lh/2nJ ; d - 2 Lh/PnJ). Thus, given a protocol P that performs 
1-bit secret key exchange for f ,  we construct a new protocol P* that performs n-bit secret 
key exchange for c * .  

Lemma 3.1 Lei n 2 1, k 2 2 and d 2 kh. Lei P be a 1-bit secrei k e y  exchange proiocol 
that works for 

T h e n  there is a protocol P* ihat p e r f o m s  n-bit secret key exchange f o r  f *  = ( h k ;  d - kh). 

Proof: Suppose n,  k, d ,  h,  P, and ( satisfy the conditions of the lemma, and let 
(* = (h'; d - Eh). We construct an n-bit secret key exchange protocol P* that works for 

Assume the players are linearly ordered, say, by their indices. Two team players are 
said to be neighbors if they are adjacent in the ordering. PI is the leader and randomly 
chooses an n-bit string S to be the secret key. Each pair of neighbors Pi and Pi+l uses 
P in sequence n times to establish an n-bit secret key Bi that they share, as described 
in detail below. When Pi learns S from Pi-1, she sends Ei = S @ Bi to Pi+l publicly. 
Pi+l recovers S by computing E, @ Bi. 

We now describe in detail how the onetime pads are established. Given a team 
player Pi, we say P;+l is the righi neighbor of Pi and Pi-1 is the left neighbor of Pi. 
Each player Pi divides her hand into 2n parts, Hi' through H?", of size [h/PnJ and a 
(possibly empty) part containing her remaining cards. Pi uses parts Hi' through HT to 
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The  jth bit of the one-time pad B, is gotten as follows. Pi plays the role of player 1 
in P, pretending that the only cards she holds are those in H I .  P;+l plays the role of 
player 2 in P, pretending that the only cards she holds are those in Hi",+;'. The other 
team players do not participate. We call the cards in H! uH:$ the current cards. Both 
players pretend that Eve holds all but the current cards. Thus Pi and P;+I execute F' 

1 if the  deal were a <-deal. Since P is assumed to work for [, P, and P;+1 obtain a shared 
secret bit, which they use for the jth bit of B;. I 

Note that whenever a card x not in the current cards is referenced, all players behave 
as if Eve holds 2. If Eve does not hold x ,  she learns that z does not lie in the current 
cards, but she learns nothing further about the location of x .  Thus this process can be 
repeated, using each part of each team player's hand exactly once, to get all the one-time 
pads. 

We now apply Lemma 3.1 to families of l-bit protocols. 

Theorem 3.2 Let n 2 1, k 2 2, and let f be a function on the reals. Suppose for  every 
0 < p 5 1/4 and every d 2 f(P) that there is a I-bit secret key ezchange profocolP f h a t  
works for (LPdJ , LpdJ ; d - 2 v d ] ) ,  Let 0 < a 5 l/k, and let d 2 f (a/2n) .  Let P* be the 

j protocol constructed as in the proof of  Lemma 9.1. Then P* performs n-bit secret k e y  
i ezchange for ([cud]' ; d - k [adj). 

I 

Proof: Assume the hypotheses of the protocol, and assume we are given a deal of 
signature < = (Lad]' ; d - k Lcrd]). Let h = Lad] and let /3 = cr/2n. Since a 5 l /k ,  it  
follows that d >_ k [adJ = Ich and P _< 1/4. Also, since R is an  integer, Ipd] = L d / 2 n J  = 
[ lad]  /2n] = [h/2n]. Hence, P satisfies the conditions for Lemma 3.1. It follows from 
Lemma 3.1 that  P* performs n-bit secret key exchange for ( h k ;  d - kh)  = E as desired. 
I 

The following corollary to Theorem 3.2 is immediate using Theorem 3.1, taking 
f(P) = (+) 2l'P. 

Corollary 3.1 Let 0 < a 5 l / k .  Suppose d 2 8 ( z ) 2  22n/u. Then P* performs n-bit 
secret key exchange for (Lad] ' ;  d - k Lad]) .  

Unfortunately, the required deck size here grows exponentially in n/a.  Richard 
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Beige1 [Be] has  suggested an improved 1-bit two-player protocol in which the deck size 
appears to grow only polynomially in l / a .  Using such a protocol, our construction yields 
an  n-bit team protocol for which the deck grows only polynomially in n / a .  

1 

I 

I 4 Lower Bound Results I 

! 
~ In order to discuss lower bounds, we first define our model more precisely. We look at 

a synchronous distributed model of computation in which there is a team of k players 
PI through Pk and a passive eavesdropper, Eve. Let P he an n-hit secret key exchange 
protocol for PI through 9. In each round of P, each of the team players simultaneously 
broadcasts a message to all of the other players. All messages are overheard by Eve. Let 
Z be the set of possible messages, and let z, E Z be the message that each Pi sends in 
the round. The k-tuple ( z ~ , z z , .  . . , .zk) E 2' is called a stalement of 'P. A sequence of 
statements is called a conuersaiion of P ,  denoted by 7,. We assume each protocol P 
always terminates after some fixed number tV of rounds. A conversation T, is complete 
if  IT^^ = t,. As it will be clear from context which protocol is being discussed, we will 
omit the protocol subscripts. 

The protocol run by each player P, is a randomized algorithm that determines the 
message for Pi to send at each round based on her hand and the conversation so far. 
Specifically, let 'Hi be the set of possible hands for Pi. Let H i  E 'Hi ,  and let u be a 
conversation. A protocol for Pi is a pair ( p i ,  0;). If u is not complete, pi (H , ,  u) is a 
random variable over the message space Z ,  where Pr b ; ( H i ,  u )  = 21 is the probability 
that Pi sends message z at round r + 1 given that P; holds hand Hi and the conversation 
through round r is u. If u is complete, Ui(H,,  7) E {0,1}" specifies Pi's output value. 

A joint P P O t O C d  for players PI through pk consists of a set of protocols ( p i , o i ) ,  
where each (pi,(?;) is a protocol for Pi. All the protocols ( p , , U ; )  are known to each 
team player, as well as to Eve. Thus an n-bit secret key exchange protocol that works 
for is a joint protocol {(PI, 01), . . . , ( p ~ ,  ak)} for the team players such that for all 
possible runs on each legal <-deal, if every team player Pi plays according to (p;,  Oi), the 
team succeeds in obtaining an n-bit secret key. It is a straightforward exercise to modify 
the protocols we describe in English in this paper to fit this model. 

We generalize a theorem of [FPR] to show that secret key exchange is not possible if 
the deal does not provide sufficient shared information. Throughout the remainder of thls 
section, we fix a deck D and a signature ( = ( h l ,  hz ,  . . . , h k ;  e) such that ci=l h;+e = 101. k 

Recall that a <-deal of a deck D is a collection of k + 1 hands ( H I , .  . . , Hk; E )  such 
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that lHjl = hi for i E (1,. . . , A }  and IEI = e l  and recall that a deal is legal if the hands 
partition D .  We sometimes use the term “general deal” to refer to a deal that is not 
necessarily legal. Let A’ be the set of all (general) <-deals of D, and let A be the set of 
legal <-deals of D. Note that A A’ and that a general deal 6 is legal if and only if the 
hands in 6 are pairwise disjoint. 

A random legal deal is a uniformly distributed random variable over A. A random 
general deal is a uniformly distributed random variable over A’. Note that in both a 
random legal deal and in a random general deal, each hand Hi is uniformly distributed 
over ‘Hi. The difference is that in a random general deal, the hands H I , .  . . , Hk are inde 
pendent random variables, whereas in a random legal deal, they are correlated. Hence, 
only in a random legal deal does player Pi get any information about the cards in other 
player’s hands. 

Let 9 be the probability that a random general deal is also a legal deal. Intuitively, 
the smaller 7 is, the more shared information the deal contains. The following theorem 
provides an upper bound on 7 in order for n-bit secret exchange to be possible. 

Theorem 4.1 Let < and 7 be as defined above, and let n 3 1. If 7 > l /Zk- ’ ,  then no 
protocol performs n-bid secret key ezchange for <. 

Proof (sketch): Assume to the contrary that some n-bit secret key exchange protocol 
works for [ when 4 > 1/2’-’. We may assume without loss of generality that n = 1. 
Using a somewhat involved probabilistic argument, we show that lAl/lA’l 5 1 / 2 k - 1 ,  i.e., 
at most 1/2k-’ of all deals are legal. Since all deals are equally likely, i t  follows that 
y 5 1/2k-1, a contradiction. We conclude that no protocol performs 1-bit secret key 
exchange for <. I 
- 

The full proof is rather long and is omitted. (It may be found in [FW].) We remark 
that the theorem holds even for protocols in which Eve is not allowed to look at her 
hand. Thus, our theorem applies to a larger class of protocols than necessary. We do 
not know how to use Eve’s ability to see her cards to  improve this result. 

Corollary 4.1 Let n 2 1 and 2 5 k 5 8 .  Then no protocol performs n-bit secret k e y  
ezchange for (1’; I). 

Proof: In these cases, 7 = (k + I)!/(k + l)k > 1/2’+’ . I 

For k > 8,7 = (k + l)! /(k + l )k  c 1/2k-1, so nothing can be concluded. 
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Theorem 4.1 says nothing about the (lk; 0) case. However, it is possible to show the 
following. 

Theorem 4.2 Let n 2 1. Then no protocol performs n-bit secret key exchange for 
(1,1,1; 0). 

Proof (sketch): It  is sufficient to show no protocol performs 1-bit secret key exchange 
for (1 ,1 ,1 ;  0). To prove this, we look at properties of the possible conversations of a 1-bit 
secret key exchange protocol on (1,1,1;  0)-deals. Let T be a complete conversation. We 
say that T is realizable if there is some 6 E A such that T is a possible conversation of the 
protocol when the deal is 6, and in this case we say 6 is consisient with r. An output 
u E (0, 1) is possible given T if there is some 6 = (HI, H z ,  H3) E A consistent with T 
such that u = @ ( H i ,  7) for each i. 

Suppose P performs 1-bit secret key exchange for (1, 1,l;O). We construct a tree 
of conversations as follows. The nodes of the tree are conversations, and the edges out 
of a node are labeled by possible next statements. Thus the interior nodes are partial 
conversations; leaf nodes are complete conversations. A conversation T pusses through 
a node cr if T extends cr. It can be shown that exactly two deals are consistent with 
each realizable conversation, and that both of the deals consistent with a realizable 
conversation have the same parity4. We say that the parity of a realizable conversation 
T is the parity of the two deals consistent with r.  We say a node is single valued if all 
conversations passing through it have the same parity. I t  is multivalued otherwise. We 
are now ready to derive a contradiction. 

By the correctness of ’P, all (1,  l,l;O)-deals must be possible initially. Thus the 
root of the tree is multivalued. Because only one conversation passes through any leaf 
node, all leaves are single valued. Hence there must be a multivalued node u having 
only single valued children. Thus there exist complete conversations 70 and 71 passing 
through u such that TO has parity 0 and TI has parity 1. It is then possible to construct 
an ‘interpolated” conversation passing through u that gives rise to a multivalued child, 
a contradiction. I 

This proof is highly dependent on specific properties of the set of possible (1,1,1; 0)- 
deals, and does not generalize easily to larger teams. However, using an extension to 
the graph theoretical framework developed by Beaver, Haber and Winkler [BHW] to 
represent shared knowledge between two players, it is possible to show the following 
general result (cf. [FWW).  

‘The parityof a (l , l , l;O)-dedis the parity of the permutationdemibingit. 
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Theorem 4.3 Lei n 2 1, k 2 2, and e 2 0. Then  no protocol performs n-bit secret key 
erchange for ( l k ;  e) unless n = 1, I: = 2, and e = 0. 

5 Key Set Protocols Revisited 

Even for the simple case of n = 1, there is a large gap between signatures for which we 
have a secret key exchange protocol and signatures for which we have shown that no 
protocol exists. For example, (2,2,2; 2) falls into this gap. 

One approach to closing the gap is to modify the SFP key set protocol presented 
in Section 2. In step 1 of this protocol, a team player P ,  the proposer,  is chosen. By 
considering different rules for choosing the proposer, we get a class of protocols. We call 
such a rule a proposing rule.  We require a proposing rule to be a deterministic function of 
the current signature. We call the protocol that results from proposing rule R the 77, key 
se t  protocol. We call the class of all such protocols the class of key set protocols. By this 
definition, the SFP key set protocol results from the smallest feasible p layer  proposing 
rule (SFP): If any team player is feasible, the feasible player with the smallest hand is 
chosen. (Ties are broken in favor of the lower-numbered player.) If no team player is 
feasible, the lowest-numbered team player holding a non-empty hand is chosen, if any. 

Theorem 2.1 holds for any 72 key set protocol where R always chooses a feasible player 
if some team player is feasible. The converse, however, does not in general hold. For 
example, the signature E = (3,3,2,1; 1) does not satisfy the conditions of the theorem, 
but the SFP key set protocol works for I. We have been unable to find an exact char- 
acterization of the signatures for which the SFP key set protocol works. Nevertheless, 
it is possible to show that the SFP key set protocol is optimal for the class of key set 
protocols. By this we mean that for a signature (, if the R key set protocol works for 
[ for some R, then the SFP key set protocol also works for E .  To prove this we look at  
a simple combinatorial stick game between a team and an adversary. The stick game 
abstracts the important aspects of the key set protocol. 

The stick game is a game between a team and an adversary. There are I: team piles, 
PI through 4, and a pile E. Pile Pi contains hi sticks, and pile E contains e sticks. 
The team always moves first. On the team’s turn, the team designates a team pile Pi 
containing at  least one stick. On the adversary’s turn, the adversary either removes one 
stick from Pi and one from E (allowed only when e > 0), or chooses another team pile Pj 
such that hj > 0, removes the smaller of Pi and Pj entirely, and removes one stick from 
the larger pile. Note that removing a pile is not the same as removing all the sticks in 
the pile. Play ends when there are one or zero team piles, in which case the team wins, 
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or when there is no move available (either to the team or to the adversary), in which 
case the team loses. A configuration of the stick game can be described by the tuple 
( h l , .  . . , h k ;  e ;  I ) ,  where I specifies whether it is the team’s turn ( T )  or the adversary’s 
turn ( A ) .  We call the stick game starting from configuration C the C st ick  game. 

A sfrategy for the team, or team strategy, is a function that, given a configuration 
of the stick game where it is the team’s turn specifies the next team move. Similarly, 
an adversary strategy is a function that specifies the next adversary move. We say a 
configuration c is winning if there is some team strategy S such that if the team plays 
the C stick game by strategy S, then the team wins regardless of the moves chosen by 
the adversary. We say S is a successful ieam stmiegy for C .  We call S an opf imal  team 
s f rufegy  if it is a successful team strategy for every winning configuration C. We similarly 
define optimal adversary strategy. 

The stick game is a finite game, since every adversary turn decreases the total number 
of sticks by at least two. Furthermore, it is a game of complete information, since the 
team and the adversary take turns and all information about the state is known to both 
the team and the adversary. Hence game theory tells us that every configuration is either 
winning or losing, and an optimal team strategy S and an optimal adversary strategy A 
both exist [BCG]. 

We define a feasible pile in a stick game configuration exactly as we defined a feasible 
player in a signature, and we similarly define the SFP strategy for the team in the stick 
game. It is easy to see that  a configuration in the stick game is winning for a given 
team strategy if and only if the key set protocol works for the corresponding signature 
when the team plays according to the corresponding proposing rule. Hence to show the 
optimality of the corresponding SFP key set protocol we need only show the optimality 
of the SFP stick game strategy. 

We show this by a series of arguments known as strategy stealing arguments. We 
define size((h1, . . . , hk; e; I)) = k + e. The strategy stealing arguments are by induction 
on size(C). We construct configurations CI, . . . , Ci and Ci,. . ., Cj as shown in Figure 1. 

The configurations C1,. . . are constructed by playing the Co stick game. We assume 
the team never makes a move that  would take a winning configuration to  a losing one, 
and we specify the adversary moves. Since an adversary move cannot take a winning 
configuration to a losing one, it follows that if C,, is winning, then every Cl is winning. 
Similarly, the configurations Ci, . . . are constructed by playing the 12; stick game. We 
assume the adversary never makes a move on a losing configuration that results in a 
winning configuration, and we specify the team moves. It follows that if Ch is losing, 
then every Cj is losing, or conversely, if any Ci is winning, then Ch is winning. The 
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Co winning Cl, winning 
v h 

v h 
C; winning a Ci winning 

Figure 1: The  strategy stealing argument. 

construction terminates when we obtain C, and (7; for which we can show that if c; is 
winning then Cj is also winning. 

A case by case analysis of possible adversary responses to each SFP team move enables 
us to prove the following. (A full proof appears in [FW]). 

Theorem 5.1 The  SFP strategy is an opt imal  team strategy f o r  the  stick game, and 
hence the SFP key set  protocol is optimal  for the class of key set protocols. 

Theorem 5.1 indicates that  changing the proposing rule is not a sufficient modification 
to the key set protocol to close the gap described at the beginning of the section. However, 
there are other possible modifications to the key set protocol to consider. For example, 
one might allow the players to communicate in order to choose the proposer. This also 
does not close the gap, for we can show that the SFP key set protocol is optimal for 
the larger class of protocols this gives rise to. However, the optimality may fail if the 
proposed key set is allowed to be chosen non-randomly. 

In the key set protocols described here, every time a key set is found, one of the 
team players discards all the cards in her hand and drops out of the protocol, except 
to wait to hear the secret bit. We do this in order to avoid getting more than one key 
set between any two players. I t  would be possible to consider key set protocols in which 
a team player only drops out when a team player in the same connected component of 
the key set graph is chosen to propose a key set. We suspect that this does not give the 
team additional power, and conjecture that Theorem 5.1 holds for this larger class of 
protocols. 

Another possible modification to the key set protocol is to allow team players to 

discard only the key set cards and risk getting multiple key sets between two team 
Players. It is an open question whether multiple key sets can be used (for example to 
“send” some of the cards in a player’s hand to another player) to achieve 1-bit secret key 
exchange where no key set protocol of the class described in this paper succeeds. 
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6 Concluding Remarks 

We have shown here some conditions on the signature of the deal that allow secret key 
exchange and some conditions under which secret key exchange is not possible. However, 
there is a large gap. There are many signatures for which we can neither give a secret 
key exchange protocol nor demonstrate the nonexistence of such a protocol. 

As a future direction for this work, we intend to look at the concept of shared secret 
information between a team. We would like to develop a theory of shared secret infor- 
mation which can be applied to arbitrary correlated random variables. Specifically, can 
we quantify how many bits of shared secret information a deal contains for the team? 
How can we use this information to develop better protocols and tighter lower bounds 
on the signatures for which secret key exchange is possible? More generally, what other 
mechanisms besides deals from a common deck of cards give correlated random variables 
that can be used for secret key exchange? 

Deals of cards have a small amount of initial information. However, deals of cards 
appear somewhat inefficient for secret key exchange, in that the number of secret bits 
the team can obtain is small in comparison to the number of cards they are dealt. 
Michael Rabin [Ra] suggests a protocol that uses private correlated random variables to 
solve another classical security problem, authentication. His method requires random 
variables that appear to contain more initial information than a deal of cards, but also 
appear to contain more shared secret information. We would like to use the theory of 
shared secret information suggested above to quantify the ratio of initial information to 
shared secret information, and to investigate upper and lower bounds on this ratio for 
secret key exchange protocols. 
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