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Abstract. The structure of large graphs can be revealed by partitio-
ning graphs to smaller parts, which are easier to handle. In the paper we
propose the use of core decomposition as an efficient approach for parti-
tioning large graphs. On the selected subgraphs, computationally more
intensive, clustering and blockmodeling can be used to analyze their in-
ternal structure. The approach is illustrated by an analysis of Snyder &
Kick’s world trade graph.

1 Approaches to Clustering in Graphs

In the analysis of a large graph we often decompose / reduce it to several smaller
manageable parts. This can be done even hierarchically. In the paper we discuss
subgraphs induced by classes (clusters) of some partition of the graph vertex set.

There exist several approaches for partitioning graphs. They can be divided
in the following groups:

– connectivity based partitions:
• standard concepts from Graph Theory: components, cliques, k-cores, di-

stance partition from selected subset, . . .
• neighborhoods of ”central” vertices

– neighborhood based partitions: cluster is a set of units with similar neigh-
borhoods (degree partition, regular partition, colorings, . . . )

– other approaches:
• eigen-vector methods
• hierarchy of similar graphs

Only approaches with subquadratic time complexities (such as O(n),
O(n log n) and O(n

√
n), n is the number of vertices), are fast enough for large

graphs.

J. Kratochv́ıl (Ed.): GD’99, LNCS 1731, pp. 90–97, 1999.
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2 Cores

In this paper we propose the use of cores as an efficient approach to decomposi-
tion of large graphs. The notion of core was introduced by Seidman in 1983 [8].

Let G = (V, L) be a graph. V is the set of vertices and L = E∪A is the set of
lines (edges or arcs). A subgraph H = (W, L|W ) induced by the set W is a k-core
or a core of order k iff ∀v ∈ W : degH(v) ≥ k and H is a maximum subgraph
with this property. The core of maximum order is also called the main core.

The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree,
min(in-degree, out-degree), . . . determining different types of cores. The notion
of cores can be generalized to take values of lines into account. Similarly the
p-core can be defined, where p ∈ (0, 1), with the requirement that every vertex
in p-core has the proportion p of all neighbors in the core.

The cores have the following properties:

– The cores are nested: i < j =⇒ Hj ⊆ Hi (see Figure 1).
– There exists an efficient algorithm to determine the core hierarchy.
– Cores are not necessarily connected subgraphs.

An algorithm for determining the cores hierarchy is based on the following
property:

If from a given graph G = (V, L) we recursively delete all vertices, and
lines incident with them, of degree less than k the remaining graph is
the k-core.

INPUT: graph G = (V, L) represented by lists of neighbors
OUTPUT: table core with core number for each vertex

1.1 compute the degrees of vertices;
1.2 order the set of vertices V in increasing order of their degrees;
2 for each v ∈ V in the order do begin
2.1 core[v] := degree[v];
2.2 for each u ∈ Neighbors(v) do
2.2.1 if degree[u] > degree[v] then begin
2.2.1.1 degree[u] := degree[u] − 1;
2.2.1.2 update the ordering of V

end
end;

Let us denote n = |V | and m = |L|. We shall show that the described
algorithm can be implemented to run in time O(m).

To (1.1) compute the degrees of all vertices we need time O(m). Using bin
sort – collecting all vertices of the same degree in a separate list, combined into
the ordered list by the table of their starts, we can (1.2) order the set V in time
O(n). The statement (2.1) requires a constant time and therefore contributes
O(n) to the algorithm.
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Fig. 1. 0, 1, 2 and 3 core.

The conditional statement (2.2.1) can be implemented to run in constant
time by the use of the table determining the position of each vertex data in the
order list. Since it is executed for each line at most twice the contribution of
(2.2) in all repetitions of (2) is O(m).

Therefore the total time complexity of the algorithm is O(m).

2.1 Core Decomposition

We propose the following approach to decomposition of large graphs based on
k-cores: The main core is the most interesting, so we analyze it separately. After
that we determine the residual graph, which can be obtained in different ways:
by shrinking the main core; by deleting lines in the main core; or by deleting the
main core completely (deleting vertices and lines). Again we analyze the main
core of the residual graph, and so on . . . . Note, as a ’main’ core we can consider
also the union of some top-level cores selected on the basis of ’core spectrum’.

3 Clusterings in Graphs

Let E be a finite set of units. Its nonempty subset C ⊆ E is called a cluster.
A set of clusters C = {Ci} forms a clustering. The clustering C is a complete
clustering if it is a partition of the set of units E.

The clustering problem (Φ, P,min) can be expressed as: Determine the clu-
stering C∗ ∈ Φ, for which

P (C∗) = min
C∈Φ

P (C)

where Φ is a set of feasible clusterings and P : Φ → IR+
0 is a clustering criterion

function. We denote the set of minimal solutions by Min(Φ, P ).
Let (IR+

0 ,�, 0,≤) be an ordered abelian monoid – usually � stands for + or
max. A simple criterion function P has the form:

P (C) = �
C∈C

p(C), p(C) ≥ 0 and ∀X ∈ E : p({X}) = 0
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Fig. 2. World trade graph – original adjacency matrix and adjacency matrix
reordered according to core decomposition.

The ’cluster error’ function p(C) is usually expressed using some dissimilarity
measure d over E. For example:

p(C) = max
u,v∈C

d(u, v) or p(C) =
1

|C|
∑

u,v∈C

d(u, v)

An example of dissimilarity between vertices (⊕ denotes the symmetric diffe-
rence) is:

d(u, v) =
|N+(u) ⊕ N+(v)|
|N+(u) ∪ N+(v)|

where N+(v) = {u ∈ V : (v : u) ∈ L} ∪ {v} is the rooted neighborhood of vertex
v ∈ V .

Assume E = V . A pair of clusters (C1, C2) determines a block – a subgraph

B(C1, C2) = (C1 ∪ C2, {(u, v) ∈ L : u ∈ C1, v ∈ C2})

Given a clustering C we obtain a reduced graph or blockmodel of G by shrinking
each cluster to a vertex and deciding for each induced block whether it produces
a line in the reduced graph, and of what type.

To evaluate the quality of blockmodel a criterion function of general form is
needed:

P (C; T ) =
∑

(C1,C2)∈C×C

min
T∈T

w(T )δ(C1, C2;T )

where T is a set of feasible types, and δ measures the deviation of blocks, induced
by a clustering, from the ideal block structure. For details see [1,3].
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Fig. 3. Secondary core.

4 Example – World Trade Graph

We selected Snyder & Kick’s world trade graph [9] to illustrate our partitioning
approach. World trade among 118 countries is described by 2116 edges and 514
arcs.

Because of limited space for this paper or because of their format some picture
were omitted. They are available at:

http://vlado.fmf.uni-lj.si/pub/networks/doc/part/gd99.htm
First we tried to obtain a layout of World trade graph using standard spring

embedders. The resulting layouts were not satisfactory – the inner structure of
the graph cannot be noticed in them.

There are also too many lines. For such graphs a presentation by adjacency
matrix is an option. The adjacency matrix of the World trade graph is displayed
on the left side of Figure 2. To see some structure in it we have to reorder it.

The first approach to reorder the vertices was by the core decomposition. The
main core contains 54 countries (from 118). Its layout was obtained using a 3D
spring embedder. The lines were omitted in the picture. By examining countries
we found out that such layout could be expected – similar countries were put
close to each other.

Because the main core is quite large we divided it further into three clu-
sters using pre-specified blockmodeling [3] with the center-periphery pattern as
a goal. The first of the three obtained clusters is a clique on 8 vertices formed by
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Fig. 4. Blockmodel and reordered adjacency matrix.

Luxembourg, France, Belgium, Denmark, The Netherlands, Great Britain, Italy
and Japan. The other two clusters are far away from cliques.

Vertices and lines of the main core were removed from the graph and the se-
condary core was computed afterwards. It is shown in Figure 3. Three additional
steps were needed to complete the decomposition.

The right side of Figure 2 shows the reordered matrix according to the cores
– 1’s are mostly in the upper left corner. The partition into clusters can be seen
in the matrix as well.

Next we applied a blockmodeling (structural equivalence, 10 clusters) and
obtained the following clustering C10:

1. USA, UK, Netherlands, Belgium, Luxembourg, France, West Germany, Italy, Ja-
pan.

2. Canada, Switzerland, Spain, Sweden, Norway, Denmark.
3. Brazil, Argentina, Portugal, Poland, Austria, Czechoslovakia, Yugoslavia, Finland,

India, Pakistan, Australia.
4. Ireland, East Germany, Hungary, Greece, Bulgaria, Rumania, USSR, Iran, Iraq,

Egypt, China.
5. Cuba, Ghana, Nigeria, Kenya, Morocco, Algeria, Tunisia, Sudan, Turkey, Syria,

Lebanon, Israel, Kuwait, Ceylon.
6. Mexico, Colombia, Venezuela, Peru, Chile, Uruguay, South Africa.
7. Saudi Arabia, Burma, Thailand, Malaysia, Philippines, Indonesia.
8. Taiwan, Korea-S, Vietnam-S.
9. Haiti, Dominican Rep., Jamaica, Trinidad-Tobago, Guatemala, Honduras, El Sal-

vador, Nicaragua, Costa Rica, Panama, Ecuador, Cyprus, Iceland, Senegal, Ivory
Coast, Guinea, Liberia, Zaire, Uganda, Ethiopia, Libya, New Zealand.

10. Bolivia, Paraguay, Malta, Albania, Mali, Dahomey, Mauritania, Niger, Upper Volta,
Sierra Leone, Togo, Cameroun, Gabon, Centr. Afr. Rep., Chad, Congo, Burundi,
Rwanda, Somalia, Malagasy, Jordan, Yemen, Afghanistan, Mongolia, Korea-N,
Nepal, Cambodia, Laos, Vietnam-N.
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Fig. 5. Contextual matrix (C3, C9).

with P (C10) = 1452 – the CONCOR clustering reported in [9] has P = 2673.
The blockmodel induced by C10 is displayed on the left side of Figure 4, and the
corresponding adjacency matrix on its right side.

Adjacency matrix presentation can be used for some hundreds of vertices.
For larger graphs we can save the idea by introducing a contextual matrix pre-
sentation of selected block – adjacency matrix for a selected block surrounded
by a blockmodel (see Figure 5).

Another, indirect [2], approach to analyze the graph is to introduce a dissi-
milarity d into set V , or its subset, and apply some of multivariate techniques to
it. We applied Ward’s clustering method to the dissimilarity d from Section 3.
The results are comparable to that obtained by core decomposition and block-
modeling.

5 Conclusion

The cores, because they can be efficiently determined, are one among few con-
cepts that provide us with meaningful decompositions of large graphs. We expect
that different approaches to the analysis of large graphs can be built on this ba-
sis. (Most) current clustering and blockmodeling methods can be applied only
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to (sub)graphs of moderate size – the development of subquadratic algorithms
for these problems is a challenge for a near future.

All the computations in this paper were done with programs Pajek (Slovene
word for Spider) and Model2 for Windows (32 bit). They are freely available, for
noncommercial use, at their homepage [10].
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